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Abstract

A function f: P* - P, P ={0,1,...,p — 1} is k-
decomposable iff f can be represented as f(X;, Xy) =
g(hl (Xl), hQ(Xl), ceey hk(Xl), XQ), where (4Y1, XQ) is
a bipartition of input variables. This paper introduces
the notion of totally k-undecomposable functions. By
using this concept, we can drastically reduce the search
space to find k-decompositions. A systematic method
to find the bipartitions of input variables that will not
produce any k-decompositions is presented. By com-
bining it to the conventional decomposition methods,
we can build an efficient functional decomposition sys-
tem. This method is promising to design LUT-based
FPGAs.

Key words: Functional decomposition, Symimet-
ric function, LUT-based FPGA, Multiple-valued logic
function.

I Introduction

Decompositions of logic functions have been studied
for many years. Major contributions are summarized
as follows:

e Formulations using decomposition tables [1, 5].
Formulations using compatibility [12].
Fast method using Jacobian [20].
Applications to multi-level PLA networks [13, 6].
Extension to incompletely specified functions [21].

Computation of column multiplicity using BDDs
14, 8, 4].

Application to FPGAs [11].

Bi-decomposition [15].

Fast method [2, 10].

Extension to multiple-valued logic [7, 9].

Extension to multiple-output functions [18, 22, 9].

In the above contributions, most are related to two-
valued functions. However, extensions to multiple-
valued functions are quite natural.

In this paper, we will consider decompositions
shown in Fig. 1.1. Given a multiple-valued function
f:P"— P, P={0,1,...,p— 1}, we will consider the
problem whether f can be represented as f(X;, Xy) =
g(hl (Xl), hQ(Xl), ceey hk(Xl), XQ), or not.

Let » be the number of the input variables, then
we have to consider nearly 2" different bipartitions
(X1,X>) of the input variables {1, 22,...,2,}. When

f(Xl, XQ) = g(hl(Xl), hQ(Xl), e h/@(Xl), XQ)
Figure 1.1: Disjoint k-decomposition.

n is large, the number of bipartitions to consider is too
large, and the exhaustive search is impractical.

This paper introduces the concept of totally unde-
composable functions. By using this concept, we can
drastically reduce computation time to find decompo-
sitions. This paper shows a systematic method to find
the bipartitions of input variables that will not produce
any decompositions. By combining it to the conven-
tional decomposition methods, we can build an efficient
functional decomposition system.

The rest of this paper is organized as follows: Sec-
tion II gives definitions and basic properties of func-
tional decompositions. Section III introduces the con-
cept of k-undecomposable functions. It also derives a
theorem to find bipartitions (X, X ) that will not pro-
duce any k-decomposition. Section IV shows a method
to represent a set of bipartitions by using a switch-
ing function. Section V enumerates the number of
k-undecomposable functions. It also shows that, for
sufficiently large n., almost all functions are totally k-
undecomposable.

IT Definitions and Basic Properties
Definition 2.1 A p-valued function is a mapping
f:P" — P, where P={0,1,....,p—1} and p > 2. If

p =2, f i1s a switching function.

Definition 2.2 Let the set of the input variables be
{X} ={a1,20,...,2,}. (X1,X0,...,X,) is a parti-
tion of X of {X;}N{X;} =0 (1 <i<j<n)and
{X1} Uu{Xa}U--- U{X,} = {X}. Especially when
r = 2, the partition is « bipartition. The number of
the variables in {X} is denoted by |X|.

Definition 2.3 A p-valued function f has o disjoint
k-decomposition iff f us represented as f( X, Xy) =



X1 = (z1,72)

) 0 0 0|1 1 12 2 2
Xo=(xs,24) O 1 2|0 1 2|0 1 2
00 {21122 |2|1]|1]|1

0L {oj1]11l0lO0j0O0]1]|1|1

02 (1|11 (1|1|1}]1l0]0

10 1010[0{0]0]10[0]0]0

11 {1 (00|11 11]0]2]|2

12 | 2101021212022

20 1012121010101 2]2]2

21 |1 {22111 2]010

22 121212121212 2]01]0

Figure 2.1: Decomposition table.

g(h1(X1), ho(X1),. .., hie(X1), X2), where (X1, X3) is
a bipartition of X, and g and h; are p-valued functions.
If |X0| > k41 and | Xz| > 1+4[log, k], then the decom-
position is non-trivial, and f s k-decomposable,
where [a] denotes the least integer not smaller than a.
We also assume that functions with up to two variables
are decomposable. {X1} and {X3} are the bound set
and the free set, respectively. Variables in {X1} and
{X2} are bound variables and free variables, re-
spectively. When f is k-decomposable, f is realized by
the network shown in Fig. 1.1.

Definition 2.4 If f does not depend on one or more
variables, then f is degenerate.

Note that if f is degenerate, then f is decomposable.

Definition 2.5 Let f(X) be a p-valued function, and
(X1,X2) be a bipartition of X, where ny = |X1| and
ny = |X3|. The decomposition table of f has p™
columns and p™* rows, each column has distinct p-ary
label of ny digits, each row has distinct p-ary label of
ng digits, and the corresponding entry of the table rep-
resents the value of f.

Example 2.1 Let f(X) be a function f:{0,1,2}* —
{0,1,2}, and (X1,X3) be a bipartition of X, where
Xy = (21,22) and Xy = (x3,24). Fig. 2.1 is an ex-
ample of a decomposition table. 1

Definition 2.6 The number of different column pat-
terns wn the decomposition table for a bipartition
(X1,X2) is the column multiplicity and is denoted
by p(f @ X1, X2).

Theorem 2.1 A p-valued function f(X) has a dis-
joint k-decomposition f(X) = g(hi1(X1),h2(X1),...,
hip (X1 ), Xo) aff p(f : X1, X5) < pt.

The size of decomposition tables for n variables
is p", and the number of different bipartitions is
O(2™). Thus, the straightforward method to find a
k-decomposition is impractical for the functions with
many inputs. A method to find decompositions by
using ROBDDs (reduced ordered binary decision di-
agrams) or ROMDDs (reduced ordered multi-valued
decision diagrams) has been developed.

h
X2

A
!

Figure 2.2: Computation of column multiplicity pu(f :
X1, Xo).

Theorem 2.2 [14, 8, 7] Let (X1,Xs) be a bipartition
of X. Suppose that the ROMDD for f(X) is parti-
teoned wnto two blocks as shown in Fig. 2.2. The num-
ber of nodes in the lower block that are adjacent to the
upper block is equal to p(f : X1, X2).

Lemma 2.1 For any bipartition (X1, Xy) of input
variables of a p-valued function f, 1 < p(f : X1, Xs) <
min(p"l,ppnz), where ny = | X1| and ny = | X3|.

(Proof) The number of columns in the decomposition
table is p™'. Thus, we have pu(f : X1, Xy) <p™. The
number of different functions of no variables is p?"”.
Since each column of the decomposition table shows
an ny-variable function, we have p(f : X7, Xy) < PP

O

Definition 2.7 Let f(X 4, Xp) be a function, where
|Xp| = np. Let g € P™8 be an assignment for Xp.
Then, f(Xa,dp) denotes the sub-function, where the
values of Xp are fized to the constants dp. f(da, Xp)
18 sitmalarly defined.

Definition 2.8 Let X = (21,22,...,25) and @ =
(a1,a2,...,an). Then,

i =p—1sfzr;=a; fori=1,2,...,n.
: = 0 otherwise.

Lemma 2.2 If k > pIX2l, then any p-valued function
18 realized wn the network shown in Fig. 1.1.

(Proof) Let ny = |Xal. An arbitrary func-
tion f(X7,Xy) is represented by f(X1,Xy) =
Viaecpn f(X1,0)2 §, where P ={0,1,...,p—1}. Since
the number of products in the above expression is at
most p"2, we have the lemma. 0O

Example 2.2 When ns = 1 and k = p, any p-valued
function is realized in the network shown in Fig, 2.3 by
using the follounng expansion:

F(X1, X)) = X9 fo(X)VXG fr (X0)V-- VXD f (X))
1



p=k
X1:H i
: GHf

X2 —

Figure 2.3: Example of a trivial k-decomposition.

X1 = (21,22, 23)
0O 0 o o1 1 1 1
. 0O 0 1 110 O 1 1
Xy=(esas) 0 1 0 1[0 1 0 1
00 1[{1]0]0]1]0]0]O0
01 1/]0[0]J1]0O0]1]1]O0
10 ([0O]0]OJ1[O]1]1]O
11 oO(1(1]0|0l0O0]0]O

Figure 3.1: Totally 2-undecomposable function.

We assume that the k-decomposition in Lemma 2.2 is
trivial. This is why we assumed that ny > ﬂogp El+1
in Definition 2.3.

IIT /i-Undecomposable Functions

In this part, we introduce the notion of to-
tally k-undecomposable functions. We will show
that if f(X4,dp) is totally k-undecomposable, then
f(Xa4,XpB) is k-undecomposable for many bipartitions.
Thus, by finding totally k-undecomposable subfunc-
tions, we can drastically reduce the search space for
functional decompositions.

Definition 3.1 A p-valued function f(X) is totally
k-undecomposable if u(f : X1,Xy) > p* for any
bipartition (X1, Xy), where | X1| > 1+ k and | Xo| >
1+ [log, k.

Example 3.1 Consider the case where n =3, p = 2,
and k= 1. f(a1,ve, a3) = v102V agws Vage is totally
1-undecomposable. |

Example 3.2 Consider the case where n =5, p = 2,
and k = 2. A five-variable function f shown in Fig. 3.1
is totally 2-undecomposable, since p(f : X1, X2) > 4
for any bipartitions with | X1| = 3 and |X,| = 2. ]

Lemma 3.1 Let (X14, X1, Xo4,XoB) be a partition
of X, where |X14| > k+ 1 and |Xaa| > 1+
[logp k]. Let d1p and dap be assignments of X1p and
Xop, respectively. If (X4, d1p, Xoa,dap) has no k-
decomposition of the form

F(X1a, Xoa) = F(X1a, @158, Xoa, Toi)
= 9(h1(X1a), h2(X1a),. ..,

then, f(X14,X18,Xoa,Xop) has no k-decomposition
of the form

f(X1A7‘X1B74Y‘2A,4Y23)

ilk(-’ﬁA), Xo4),

= g(h(X14, XaB), 2 (Xi4, X1B)s 0
hie(X1a, XiB), Xoa, XoB).

In this case, {X1p} or {Xop} can be empty set(s).

(Proof) Assume that f has a k-decomposition of the
form

f(X14,X1B, Xoa, XoB)
= g(h(X14, X1B), ha(X14, XuB),...,
hi(X14,X18), Xoa, XoB).

Assign dyg and dop to Xip and Xop, respectively.
Then, we have the decomposition f(Xi4,d1p5, Xa4,

dzp) = g(hi(Xia,@iB),ha(Xia,@1B),- .., he(Xia,
d1p), Xoa,do2p). However, this contradicts the as-
sumption of the lemma. a
Example 3.3 Consider the case where n = 8, k =

2, and p = 2.
variable function.

Let f(x1,22,...,28) be an 8-
If (z1,292,23,0,1,26,27,1) has no
2-decomposition of the form f(xy,x9,x3,36,27) =
g(hi(wy, wa, x3), ha(wy, w9, w3), w6, v7), then [f(xy,xs,
...,x8) has no 2-decomposition of the form f =
g(hi(z1, w2, 23, x4, 05), ho(21, X2, T3, T4, T5), 6, L7, T3).
In this example, X14 = (w1,22,23), X1 = (w4, 25)
AXVQA = (,776,.737), AYQB = (,778)/. (?1]_; = (0 1) ana
dsg = 0.

-

Theorem 3.1 Let (X4, Xp) be a partition of X,
where | X a| > k+[log, k|42 and | Xp| > 1. For an as-
signment dg, if f(Xa,dp) is totally k-undecomposable,
then f has no decomposition of the form f(X1,Xy) =
g(’h(-’ﬁ), hQ(Xl), ey hk;(Xl), XQ), where (Xl, XQ) 8
a bipartition of X, {Xa}t N {X1}| > k + 1, and
(XA (X} > 1+ [log, A].

(PI’OOf) Let /‘(A = (XlA,‘XvQA) and X]_; = (X137X2B)-
Then, apply Lemma 3.1, and we have the theorem.

O

Definition 3.2 Let (Xi,X,) be a bipartition of
{z1,29,..., 2, }, where X1 = (21, 29,...,3,) and Xy =
(Tpg 1, Tpg2y e ooy ). Such a bipartition is compactly
denoted by the bipartition of integers (1,2,...,rr +
Lr+2,...,n).

Example 3.4 Let f(x1, 29,3, %4, %5) be a five-vari-
able two-valued function. If f(xy,x2, x3,0,0) is totally
1-undecomposable, then f is 1-undecomposable for the

following 12 bipartitions:

(1,2]3,4,5), (1,2.4)3.5), (1,2,5]3,4), (1,2.4,5|3).
(1,3]2.4.5), (1,3.4]2,5), (1,3,5]2.4), (1.3,4,5]2).
2.3]1.4.5), (2.3,4]1,5), (2,3.5[1.4)., (2.3.4,5]1).



Theorem 3.2 Consider a  p-valued  function
F(Xa, Xp), where ng = | Xa| > k + |—10gp El 4+ 2 and
np =|Xp| > 1. For an assignment dp, if f(Xa,dp) is

totally k-undecomposable, then f s k-undecomposable

for

IVHA 1—[log,, k] -|
alna,ng,p, k)= Z C(ng,i)| 2%

| &

bipartitions.

(Proof) F is k-undecomposable when the following
conditions are satisfied:
1) More than k variables in {X4} are included as
bound variables.
2) More than [log, k] variables in {X 4} are included
as free variables.
3) Variables in {Xp} can be either in the bound set
or the free set.
From 1) and 2), we have the first factor. And, from 3),
we have the second factor. |

Example 3.5 Let f(w1, 49,23, 24,25) be a five-vari-
able 2-valued function. If f(x1,22,235,0,0) is totally
1-undecomposable, then f is 1-undecomposable for a =
12 bipartitions, sincek =1, p =2, n7 = 3, and ngy = 2.
Thas 1s also verified by Example 3.4 1

Corollary 3.1 Consider an n-variable  function
F(Xa, Xp), where nyg = |Xa4| > b+ ﬂogp k]l +2, and
np = |Xp| > 1. For an assignment dg, if (Xa,dp) s
totally k-undecomposable, then we have to check for at
most

k [log,, k]

Blnasns.p.k) = | DO Z Clna.j)| 2"

=0

(na,i)

bipartitions.

(Proof) There are 2" = 2m42"5 bipartitions.
Among them, a(na,ng,p, k) bipartitions are k-
undecomposable.  So, we have to check at most
B(na,np,p, k) =2" —a(na,np,p, k) bipartitions. O

Example 3.6 Corollary 5.1 shows that when p =2
and k =1, the f/actwn of B to 2™ is v = Q,L = "2123),
Thprefore/ when ny = 3, v = 5/8; when ny = 4
v =3/8; whenny =5, v = T7/32; and when ny = 6,

|

~=1/8.

IV  Switching Function Representing
Set of Bipartitions

Functional decomposition is to find a bipartition
(X1, X3) such that f(X1,X2) = g(h1(X1), ha(X1), ...,
hi(X1), X3). There are 2" different bipartitions in-
cluding trivial ones, and these can be represented by

)

a switching function of n variables. In this part, we
will introduce such representations. Also, bipartitions
that will not produce decompositions are compactly
denoted by symmetric functions. We also introduce
notations for symmetric functions.

Definition 4.1 A function f is a totally symmetric
function if any permutation of the variables in f does
not change the function.

Definition 4.2 The elementary symmetric func-
tions of n variables are

n - = -
Sy = &1Ta- - Ty,

Sil:l?lf?Q"'anfllTQf?g"'fn\/"'

Sy = a9 Ty

ST =1 off exactly 1 inputs are equal to one. Let A C
{0,1,...,n}. A symmetric function S’ is defined as
follows:

sh=\ s

i€A

Example 4.1 f(l‘rl,éL'%éng) = I1T9T3 V T1ToT3 Vv
T129T3V T Taxy 18 a totally symmetric function. f =1
when all the variables are one, or when only one vari-
able is one. Thus, f can be written as S;V 83 = S% a1

1

Definition 4.3 A set of bipartitions of the input vari-
ables {x1,29,...,2n} is represented by a switching
function bp of n variables. In bp, x; = 1 denotes that
x; 18 wn the bound set, and x; = 0 denotes that x; is
wn the free set. The number of true minterms of bp s
denoted by |bp|.

Example 4.2 Suppose that n = 5. The minterm
T1T2x3T4 Ty denotes that x1, x9, and x3 are in the
bound set, and x4 and x5 are in the free set. 1

Lemma 4.1 The set of bipartiteons for trivial k-
decompositions for n-variable p-valued function is given
by
uy = S?Ul,.u,k:} \ S?nfﬂogp kl,...,n}"

(Proof) When the number of variables in the bound
set is less than k+ 1, then it is a trivial decomposition.
To be non-trivial k-decomposition, at least 14 [log,, k|
variables must be in the free set. So, if the number
of variables in the bound set is greater than n — 1 —
[log, k], then it is a trivial decomposition. |

Example 4.3 Let n = 10, p = 2, and k = 2, then the
set of bzpartitions for trivial k-decomposttions is given
by uy = S{o 12,910} This s explained as follows: If
the number of bm/nd variables 18 two or smaller, then



the decomposition is trivial, since the module for H has
two outputs. If the number of variables in the bound
set 15 9 or 10, then the number of free variables is one
or zero. By Definition 2.3, this also corresponds to
a trwial decomposition. Thus, the number of trivial
decompositions is given by

lug| = C(10,0) 4+ C(10,1) + C(10,2)
+C(10,9) + C(10,10) = 67.

The set of non-trivial bipartitions is given by uy =
10
51345673} !
Theorem 4.1 Let f(X) be a p-valued function, and
(Xa,XpB) be a partition of X. If f(Xga,dp) =

f(wl,wg,...qw,,) 1s totally k-undecomposable, then f
has no k-decomposition for the bipartitions

— qQr »
U = S{k+l,k+2,...,7‘—l—ﬂogp k“}(l‘l s T2y ,,7’?,4).

(Proof) By Theorem 3.1 and Lemma 4.1, f is k-
undecomposable for these bipartitions. a

Example 4.4 Consider the case where p =2, n =5,
k=1and r = 3. If f(a1,29,23,0,0) is totally 1-
undecomposable, then f is undecomposable for the bi-
partitions

u = 53(1717172,173) = T1xoxy V 21T0x3 V T129T3.

Note that u denotes the same set of bipartitions as Fx-
ample 3.4. 1

Example 4.5 Suppose that we have to check whether
the given 2-valued 10-variable function f(xy,zo,...,
x10) can be realized by a network shown in Fig. 4.1.
In this case, the strarghtforward method needs to check
all possible bipartitions (X1, X2), where | X1| = 5 and
|X2| = 5. This set of bipartitions is represented by
S0z, 29,...,219), and the number of bipartitions to
consider is |SE0(wy,aq,...,210)] = C(10,5) = 252.
However, if f(x1,29,23,24,25,0,0,0,0,0) is totally 2-
undecomposable, then we need not check for C(5,3) x
C(5,2) = 100 bipartitions. This fact s explained as
follows: From Theorem 4.1, the set of bipartitions that
will not produce 2-decomposition s given by

=4 |4
up = S3(x1, 79, 73,74, 5) 55 (T6, T7, T3, Tg, T10)-

In wy, the first factor selects three wvariables from
{1, @9, 23,24, x5} as bound variables, and the second
factor selects two wvariables from {xg,x7,xs, 9, 19}
as bound wvariables. For example, suppose that
{X1} = {a1,29,23,26,27} is selected as a bound
set, and {Xo} = {wa,w5,78,29,210} 18 selected
as a free set. This bipartition (X1,X2) does
not produce 2-decomposition, since {xy,xq,x3} 18
in the bound set and {vy,x5} is in the free

hy
h;

X1 H

Xzz

F(X1, Xy) = g(h(X0), ha(X0), Xo)
Figure 4.1: 2-decomposition of 10-variable function.

set, and f(xy, w2, 23, 24,25,0,0,0,0,0) is totally 2-
undecomposable. Note that |u| = C(5,3)C(5,2) =
10 x 10 = 100.

In a similar way, if £(0,0,0,0,0, xg, 7, x5, T9, T10)
18 also totally 2-undecomposable, then the following bi-
partitions need not be checked:

— Qb (. . . S 5, ) , R,
uy = 53 (‘LGME'T)ISaJJQv‘LIO)SQ ($17¢F27I3,=L4, =L5)-

ug denotes C'(5,3) x C'(5,2) = 100 bipartitions for that
no 2-decomposition exist. So, we need only to check for
the following bipartitions:

10 .
bp = S;"(x1, 29, ..

. 7.’1?10)111_1 9.
Since ur and uy are mutually disjoint, we have only to
check

lbp| = |53° (w1, w2, ... 10)| = ur| = |uz]
= C(10,5) — 100 — 100 = 52

bipartitions.  In this case, we can reduce the search
space wnto one fifth by finding two subfunctions that
are 2-undecomposable. 1

Theorem 4.2 Let f(x1,29,...,2,_1,a) be totally k-
undecomposable, where a € P. Then, f(x1,29,...,
Ty—1,Ty,) 18 totally k-undecomposable iff f is undecom-
posable for the following C'(n—1, [log, k])+C(n—1,k)

n—1
S{nflfflogp k1}

n—1
Sy T @,y Ty ) 2.

bipartitions: (w1, 22,0, Ty ) By V

Example 4.6 Consider the case where n = 6, p = 2,
and k = 2. Suppose that f(x1,x2,23,%4,25,0) is
totally k-undecomposable. To show that f is totally
undecomposable, we need the followings: For xg =
0, we have to check for the bipartitions denoted by
S3(x1, w9, 23,04, 75)Ts. Fig. 4.2(a) shows an evample
of C(5,4) bipartitions. For xg = 1, we have to check
for bipartitions denoted by S3(x1,79,3,24,75)T6.
Fig. 4.2(b) shows an example of C(5,2) = 10 bipar-
titzons. 1



X1
Xo—H[—
G

X3 G

Xa
X5

(a) 2-decomposition (b) 2-decomposition

corresponding to Zg. corresponding to xg.

Figure 4.2:

V  Number of Totally

k-Undecomposable Functions
When n is sufficiently large, almost all functions
are totally 1-undecomposable [19]. In this part, we
will show that almost all functions are also totally k-
undecomposable.

5.1 p-valued case
Lemma 5.1 Let Ny(n,p,k) be the number of n-
variable p-valued k-decomposable functions. Then,

n—1—log,, k]

N(](”-,Pak) S Z

ny=k+1

C(ymq )phe" 077 i

(Proof) Suppose that a function f has a disjoint k-
decomposition shown in Fig. 1.1. First, consider the
module H. The number of ways to select bound vari-
ables is C'(n,n1). Since H has n; inputs and & out-
puts, the number of functions for H is p*?"". Next,
consider the module G. Since G has ny + k inputs
and single output, the number of functions for G is

no+k n—nj+k
P = pP

. Hence, we have the lemma. O

Theorem 5.1 Let Nyg(n,p, k) be the number of n-
variable p-valued totally k-undecomposable functions.
Then,
Nud("apa k)
—
(Proof) Since Nya(n,p, k) + Na(n,p, k) = pP", we will
show that

— 1 asn — oo.

N, 2 k
M—N}ag n — 0o. (5.1)
pp

From Lemma 5.1, we have

n—1—[log, k|

_/’Vd(n,p, k) S Z

ny=k+1

Cnm )p"" 7" (5.2)

Since C(n,n1) < 2", the right-hand-side of (5.2) is less
than

n—1—[log, k|

S

ni=k+1

n—1—[log, k]

pk/)"" 4pr2tk — 9n §

ni=k+1

pA("l)7

(5.3)

where A(n1) = kp™ +p"2T*. Note that A(n) takes its
maximum when ny = k+landn; =n—-1-— [log‘p k],
and the values of A(ny) are kp*Tt + p"~1 and p"~! +
kpET1, respectively. Thus, A(ny) < p"~' 4+ C, where C'
does not depend on n. So, (5.3) is less than

D(n) =2"(n— 1~ [log, k] = (k+1)p*" " *€.
Let us take the logarithm of D(n), and we have
log, D(n) = nlog, 2+log, (n—k~[log, k] —2)4p" ' +C.
log, D(n) 1

Since o — , a8 n — 00, we can conclude that
(5.1) holds. O

5.2 Two-valued case

When n > 4 and p = 2, most functions are totally
l-undecomposable. For k = 1, we obtained the values
of Nyq(n,p, k) by exhaustive enumeration:

Nua(3,2,1) = 104,
Nua(4,2,1) = 57,240, and
Nua(5,2,1) = 4,290,002, 448.

When n = 3, there are 22" = 232 = 4, 294,967,296
functions. Thus, 99.9% of the functions are totally
l-undecomposable. The case of k¥ = 2 is interesting,
since some FPGAs have LUTs with two outputs [3].
The decompositions must satisfy the relation:

|X1] > k41 and | X3 > 1+ [log, k].

This requires that | X| = | X1|+|X2| > k+ 2+ [log, k].
Thus, when k£ = 2, only the functions with n > 5 are
interesting. For n = 5, the only case is ny = 3 and
ne = 2, and we have N,4(5,2,2) = 3,744,402, 432.
Thus, 87.2% of the 5-variable functions are totally 2-
undecomposable.

VI Conclusion and Comments

In this paper, we defined totally k-undecomposable
logic functions, and showed a systematic method to
find a set of bipartitions that will not produce disjoint
k-decompositions. Key contributions are:

1) Generation of a set of k-undecomposable bipar-
titions from totally k-undecomposable subfunc-
tions.

2) Representation of k-undecomposable bipartitions
by an n-variable switching function.

3) Enumeration of totally k-undecomposable func-
tions.

The presented method can be extended to the case of
incompletely specified functions. This method can be
combined to existing decomposition methods to reduce
search space.



When n = 3 or 4, p = 2 and k& = 1, totally k-
undecomposable functions are easily detected by BDDs
and look-up tables [17]. By using this method, we
can show the undecomposability of randomly gener-
ated functions very quickly.

We decomposed more than four thousand bench-
mark functions including functions with 256 inputs and
245 outputs [16, 17]. Experimental results for p = 2
and k£ = 1 show that for 1-undecomposable functions,
the computation time were reduced to up to one hun-
dreds. Currently, we are developing a system for k-
decompositions with k& = 2.

Even if the given functions have two-valued inputs
only, functional decompositions with multi-valued in-
puts seems to be useful. This is explained as fol-
lows: Suppose that a completely specified two-valued
input function has a k-decomposition of the form
F(X1, Xo) = g(hy(Xy),92(X1)s- -5 g(X1), Xo), and
that p(f : X1,X2) < 2F. In this case, assigning
pu(f + X1, Xy) different binary vectors to the k out-
puts of H produces don’t care conditions for function g¢.
This makes decomposition problem very difficult [21].
However, if we do not assign the binary vectors to the
output of h, but assume that h produces a multiple-
valued output, then no don’t cares are generated. In
this case, the decomposition problem is easier.
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