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Abstract
A function f : Pn

! P , P = f0; 1; : : : ; p � 1g is k-
decomposable i� f can be represented as f(X1;X2) =
g(h1(X1); h2(X1); : : : ; hk(X1);X2), where (X1; X2) is
a bipartition of input variables. This paper introduces
the notion of totally k-undecomposable functions. By
using this concept, we can drastically reduce the search
space to �nd k-decompositions. A systematic method
to �nd the bipartitions of input variables that will not
produce any k-decompositions is presented. By com-
bining it to the conventional decomposition methods,
we can build an e�cient functional decomposition sys-
tem. This method is promising to design LUT-based
FPGAs.

Key words: Functional decomposition, Symmet-
ric function, LUT-based FPGA, Multiple-valued logic
function.

I Introduction
Decompositions of logic functions have been studied

for many years. Major contributions are summarized
as follows:

� Formulations using decomposition tables [1, 5].

� Formulations using compatibility [12].

� Fast method using Jacobian [20].

� Applications to multi-level PLA networks [13, 6].

� Extension to incompletely speci�ed functions [21].

� Computation of column multiplicity using BDDs
[14, 8, 4].

� Application to FPGAs [11].

� Bi-decomposition [15].

� Fast method [2, 10].

� Extension to multiple-valued logic [7, 9].

� Extension to multiple-output functions [18, 22, 9].

In the above contributions, most are related to two-
valued functions. However, extensions to multiple-
valued functions are quite natural.

In this paper, we will consider decompositions
shown in Fig. 1.1. Given a multiple-valued function
f : Pn

! P , P = f0; 1; : : : ; p� 1g, we will consider the
problem whether f can be represented as f(X1;X2) =
g(h1(X1); h2(X1); : : : ; hk(X1);X2), or not.

Let n be the number of the input variables, then
we have to consider nearly 2n di�erent bipartitions
(X1;X2) of the input variables fx1; x2; : : : ; xng. When
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f(X1;X2) = g(h1(X1); h2(X1); : : : ; hk(X1); X2)

Figure 1.1: Disjoint k-decomposition.

n is large, the number of bipartitions to consider is too
large, and the exhaustive search is impractical.

This paper introduces the concept of totally unde-
composable functions. By using this concept, we can
drastically reduce computation time to �nd decompo-
sitions. This paper shows a systematic method to �nd
the bipartitions of input variables that will not produce
any decompositions. By combining it to the conven-
tional decomposition methods, we can build an e�cient
functional decomposition system.

The rest of this paper is organized as follows: Sec-
tion II gives de�nitions and basic properties of func-
tional decompositions. Section III introduces the con-
cept of k-undecomposable functions. It also derives a
theorem to �nd bipartitions (X1;X2) that will not pro-
duce any k-decomposition. Section IV shows a method
to represent a set of bipartitions by using a switch-
ing function. Section V enumerates the number of
k-undecomposable functions. It also shows that, for
su�ciently large n, almost all functions are totally k-
undecomposable.

II De�nitions and Basic Properties
De�nition 2.1 A p-valued function is a mapping
f : Pn

! P , where P = f0; 1; : : : ; p� 1g and p � 2. If
p = 2, f is a switching function.

De�nition 2.2 Let the set of the input variables be
fXg = fx1; x2; : : : ; xng. (X1;X2; : : : ;Xr) is a parti-
tion of X if fXig \ fXjg = � (1 � i < j � n) and
fX1g [ fX2g [ � � � [ fXrg = fXg. Especially when
r = 2, the partition is a bipartition. The number of
the variables in fXg is denoted by jXj.

De�nition 2.3 A p-valued function f has a disjoint
k-decomposition i� f is represented as f(X1;X2) =



X1 = (x1; x2)

0 0 0 1 1 1 2 2 2
X2 = (x3; x4) 0 1 2 0 1 2 0 1 2

00 2 1 1 2 2 2 1 1 1
01 0 1 1 0 0 0 1 1 1
02 1 1 1 1 1 1 1 0 0

10 0 0 0 0 0 0 0 0 0
11 1 0 0 1 1 1 0 2 2
12 2 0 0 2 2 2 0 2 2

20 0 2 2 0 0 0 2 2 2
21 1 2 2 1 1 1 2 0 0
22 2 2 2 2 2 2 2 0 0

Figure 2.1: Decomposition table.

g(h1(X1); h2(X1); : : : ; hk(X1);X2), where (X1;X2) is
a bipartition of X, and g and hi are p-valued functions.
If jX1j � k+1 and jX2j � 1+dlogp ke, then the decom-
position is non-trivial, and f is k-decomposable,
where dae denotes the least integer not smaller than a.
We also assume that functions with up to two variables
are decomposable. fX1g and fX2g are the bound set
and the free set, respectively. Variables in fX1g and
fX2g are bound variables and free variables, re-
spectively. When f is k-decomposable, f is realized by
the network shown in Fig. 1.1.

De�nition 2.4 If f does not depend on one or more
variables, then f is degenerate.

Note that if f is degenerate, then f is decomposable.

De�nition 2.5 Let f(X) be a p-valued function, and
(X1;X2) be a bipartition of X, where n1 = jX1j and
n2 = jX2j. The decomposition table of f has pn1

columns and pn2 rows, each column has distinct p-ary
label of n1 digits, each row has distinct p-ary label of
n2 digits, and the corresponding entry of the table rep-
resents the value of f .

Example 2.1 Let f(X) be a function f : f0; 1; 2g4 !
f0;1; 2g, and (X1;X2) be a bipartition of X, where
X1 = (x1; x2) and X2 = (x3; x4). Fig. 2.1 is an ex-
ample of a decomposition table.

De�nition 2.6 The number of di�erent column pat-
terns in the decomposition table for a bipartition
(X1;X2) is the column multiplicity and is denoted
by �(f : X1;X2).

Theorem 2.1 A p-valued function f(X) has a dis-
joint k-decomposition f(X) = g(h1(X1); h2(X1); : : : ;
hk(X1); X2) i� �(f : X1;X2) � pk.

The size of decomposition tables for n variables
is pn, and the number of di�erent bipartitions is
O(2n). Thus, the straightforward method to �nd a
k-decomposition is impractical for the functions with
many inputs. A method to �nd decompositions by
using ROBDDs (reduced ordered binary decision di-
agrams) or ROMDDs (reduced ordered multi-valued
decision diagrams) has been developed.
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Figure 2.2: Computation of column multiplicity �(f :
X1; X2).

Theorem 2.2 [14, 8, 7] Let (X1;X2) be a bipartition
of X. Suppose that the ROMDD for f(X) is parti-
tioned into two blocks as shown in Fig. 2.2. The num-
ber of nodes in the lower block that are adjacent to the
upper block is equal to �(f : X1;X2).

Lemma 2.1 For any bipartition (X1; X2) of input
variables of a p-valued function f , 1 � �(f : X1;X2) �

min(pn1 ; pp
n2

), where n1 = jX1j and n2 = jX2j.

(Proof) The number of columns in the decomposition
table is pn1 . Thus, we have �(f : X1;X2) � pn1 . The

number of di�erent functions of n2 variables is pp
n2

.
Since each column of the decomposition table shows
an n2-variable function, we have �(f : X1;X2) � pp

n2

.
2

De�nition 2.7 Let f(XA;XB) be a function, where
jXBj = nB. Let ~aB 2 PnB be an assignment for XB.
Then, f(XA;~aB) denotes the sub-function, where the
values of XB are �xed to the constants ~aB. f(~aA;XB)
is similarly de�ned.

De�nition 2.8 Let X = (x1; x2; : : : ; xn) and ~a =
(a1; a2; : : : ; an). Then,

X~a

�
= p � 1 if xi = ai for i = 1; 2; : : : ; n.
= 0 otherwise.

Lemma 2.2 If k � pjX2j, then any p-valued function
is realized in the network shown in Fig. 1.1.

(Proof) Let n2 = jX2j. An arbitrary func-
tion f(X1;X2) is represented by f(X1;X2) =W
~a2Pn2 f(X1;~a)X

~a
2 , where P = f0; 1; : : : ; p�1g. Since

the number of products in the above expression is at
most pn2 , we have the lemma. 2

Example 2.2 When n2 = 1 and k = p, any p-valued
function is realized in the network shown in Fig. 2.3 by
using the following expansion:

f(X1;X2) = X0
2f0(X1)_X

1
2f1(X1)_� � �_X

p�1
2 fp�1(X1):
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Figure 2.3: Example of a trivial k-decomposition.

X1 = (x1; x2; x3)

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1

X2 = (x4; x5) 0 1 0 1 0 1 0 1

00 1 1 0 0 1 0 0 0
01 1 0 0 1 0 1 1 0
10 0 0 0 1 0 1 1 0
11 0 1 1 0 0 0 0 0

Figure 3.1: Totally 2-undecomposable function.

We assume that the k-decomposition in Lemma 2.2 is
trivial. This is why we assumed that n2 � dlogp ke+1
in De�nition 2.3.

III k-Undecomposable Functions
In this part, we introduce the notion of to-

tally k-undecomposable functions. We will show
that if f(XA;~aB) is totally k-undecomposable, then
f(XA; XB) is k-undecomposable for many bipartitions.
Thus, by �nding totally k-undecomposable subfunc-
tions, we can drastically reduce the search space for
functional decompositions.

De�nition 3.1 A p-valued function f(X) is totally
k-undecomposable if �(f : X1;X2) > pk for any
bipartition (X1;X2), where jX1j � 1 + k and jX2j �

1 + dlogp ke.

Example 3.1 Consider the case where n = 3, p = 2,
and k = 1. f(x1; x2; x3) = x1x2_x2x3_x3x1 is totally
1-undecomposable.

Example 3.2 Consider the case where n = 5, p = 2,
and k = 2. A �ve-variable function f shown in Fig. 3.1
is totally 2-undecomposable, since �(f : X1; X2) > 4
for any bipartitions with jX1j = 3 and jX2j = 2.

Lemma 3.1 Let (X1A;X1B; X2A;X2B) be a partition
of X, where jX1Aj � k + 1 and jX2Aj � 1 +
dlogp ke. Let ~a1B and ~a2B be assignments of X1B and

X2B, respectively. If f(X1A;~a1B;X2A;~a2B) has no k-
decomposition of the form

f̂(X1A;X2A) = f(X1A;~a1B;X2A;~a2B)

= ĝ(ĥ1(X1A); ĥ2(X1A); : : : ; ĥk(X1A);X2A);

then, f(X1A; X1B;X2A;X2B) has no k-decomposition
of the form

f(X1A;X1B ;X2A;X2B)

= g(h1(X1A; X1B); h2(X1A; X1B); : : : ;

hk(X1A;X1B);X2A;X2B):

In this case, fX1Bg or fX2Bg can be empty set(s).

(Proof) Assume that f has a k-decomposition of the
form

f(X1A;X1B; X2A;X2B)

= g(h1(X1A; X1B); h2(X1A; X1B); : : : ;

hk(X1A;X1B);X2A;X2B):

Assign ~a1B and ~a2B to X1B and X2B , respectively.
Then, we have the decomposition f(X1A;~a1B;X2A;
~a2B) = g(h1(X1A;~a1B); h2(X1A;~a1B); : : : ; hk(X1A;
~a1B);X2A;~a2B). However, this contradicts the as-
sumption of the lemma. 2

Example 3.3 Consider the case where n = 8, k =
2, and p = 2. Let f(x1; x2; : : : ; x8) be an 8-
variable function. If (x1; x2; x3; 0; 1; x6; x7; 1) has no

2-decomposition of the form f̂(x1; x2; x3; x6; x7) =

ĝ(ĥ1(x1; x2; x3); ĥ2(x1; x2; x3); x6; x7); then f(x1; x2;
: : : ; x8) has no 2-decomposition of the form f =
g(h1(x1; x2; x3; x4; x5); h2(x1; x2; x3; x4; x5); x6; x7; x8):
In this example, X1A = (x1; x2; x3), X1B = (x4; x5),
X2A = (x6; x7), X2B = (x8), ~a1B = (0; 1), and
~a2B = 0.

Theorem 3.1 Let (XA;XB) be a partition of X,
where jXAj � k+dlogp ke+2 and jXBj � 1. For an as-

signment ~aB, if f(XA;~aB) is totally k-undecomposable,
then f has no decomposition of the form f(X1;X2) =
g(h1(X1); h2(X1); : : : ; hk(X1);X2), where (X1; X2) is
a bipartition of X, jfXAg \ fX1gj � k + 1, and
jfXAg \ fX2gj � 1 + dlogp ke.

(Proof) Let XA = (X1A;X2A) and XB = (X1B; X2B).
Then, apply Lemma 3.1, and we have the theorem. 2

De�nition 3.2 Let (X1;X2) be a bipartition of
fx1; x2; : : : ; xng, where X1 = (x1; x2; : : : ; xr) and X2 =
(xr+1; xr+2; : : : ; xn). Such a bipartition is compactly
denoted by the bipartition of integers (1; 2; : : : ; rjr +
1; r + 2; : : : ; n).

Example 3.4 Let f(x1; x2; x3; x4; x5) be a �ve-vari-
able two-valued function. If f(x1; x2; x3; 0; 0) is totally
1-undecomposable, then f is 1-undecomposable for the
following 12 bipartitions:

(1; 2j3; 4; 5); (1; 2; 4j3; 5); (1; 2; 5j3; 4); (1; 2; 4; 5j3);
(1; 3j2; 4; 5); (1; 3; 4j2; 5); (1; 3; 5j2; 4); (1; 3; 4; 5j2);
(2; 3j1; 4; 5); (2; 3; 4j1; 5); (2; 3; 5j1; 4); (2; 3; 4; 5j1):



Theorem 3.2 Consider a p-valued function
f(XA; XB), where nA = jXAj � k + dlogp ke + 2 and

nB = jXBj � 1. For an assignment ~aB, if f(XA;~aB) is
totally k-undecomposable, then f is k-undecomposable
for

�(nA; nB; p; k) =

2
4
nA�1�dlog

p
keX

i=k+1

C(nA; i)

3
5 2nB

bipartitions.

(Proof) F is k-undecomposable when the following
conditions are satis�ed:

1) More than k variables in fXAg are included as
bound variables.

2) More than dlogp ke variables in fXAg are included
as free variables.

3) Variables in fXBg can be either in the bound set
or the free set.

From 1) and 2), we have the �rst factor. And, from 3),
we have the second factor. 2

Example 3.5 Let f(x1; x2; x3; x4; x5) be a �ve-vari-
able 2-valued function. If f(x1; x2; x3; 0; 0) is totally
1-undecomposable, then f is 1-undecomposable for � =
12 bipartitions, since k = 1, p = 2, n1 = 3, and n2 = 2.
This is also veri�ed by Example 3.4

Corollary 3.1 Consider an n-variable function
f(XA; XB), where nA = jXAj � k + dlogp ke + 2, and

nB = jXBj � 1. For an assignment ~aB, if (XA;~aB) is
totally k-undecomposable, then we have to check for at
most

�(nA; nB; p; k) =

2
4 kX
i=0

C(nA; i) +

dlog
p
keX

j=0

C(nA; j)

3
5 2nB

bipartitions.

(Proof) There are 2n = 2nA2nB bipartitions.
Among them, �(nA; nB; p; k) bipartitions are k-
undecomposable. So, we have to check at most
�(nA; nB; p; k) = 2n � �(nA; nB; p; k) bipartitions. 2

Example 3.6 Corollary 3.1 shows that when p = 2

and k = 1, the fraction of � to 2n is 
 = �
2n

= nA+2
2nA

.
Therefore, when nA = 3, 
 = 5=8; when nA = 4,

 = 3=8; when nA = 5, 
 = 7=32; and when nA = 6,

 = 1=8.

IV Switching Function Representing

Set of Bipartitions
Functional decomposition is to �nd a bipartition

(X1;X2) such that f(X1; X2) = g(h1(X1); h2(X1); : : : ;
hk(X1); X2). There are 2n di�erent bipartitions in-
cluding trivial ones, and these can be represented by

a switching function of n variables. In this part, we
will introduce such representations. Also, bipartitions
that will not produce decompositions are compactly
denoted by symmetric functions. We also introduce
notations for symmetric functions.

De�nition 4.1 A function f is a totally symmetric
function if any permutation of the variables in f does
not change the function.

De�nition 4.2 The elementary symmetric func-
tions of n variables are

Sn0 = �x1�x2 � � � �xn;

Sn1 = x1�x2 � � � �xn _ �x1x2�x3 � � � �xn _ � � � _ �x1�x2 � � � �xn�1xn;

� � � � � � � � � � � � � � � � � � , and

Snn = x1x2 � � �xn:

Sni = 1 i� exactly i inputs are equal to one. Let A �

f0; 1; : : : ; ng. A symmetric function SnA is de�ned as
follows:

SnA =
_
i2A

Sni :

Example 4.1 f(x1; x2; x3) = x1x2x3 _ x1�x2�x3 _

�x1x2�x3_�x1�x2x3 is a totally symmetric function. f = 1
when all the variables are one, or when only one vari-
able is one. Thus, f can be written as S3

1_S
3
3 = S3

f1;3g.

De�nition 4.3 A set of bipartitions of the input vari-
ables fx1; x2; : : : ; xng is represented by a switching
function bp of n variables. In bp, xi = 1 denotes that
xi is in the bound set, and xi = 0 denotes that xi is
in the free set. The number of true minterms of bp is
denoted by jbpj.

Example 4.2 Suppose that n = 5. The minterm
x1x2x3�x4�x5 denotes that x1, x2, and x3 are in the
bound set, and x4 and x5 are in the free set.

Lemma 4.1 The set of bipartitions for trivial k-
decompositions for n-variable p-valued function is given
by

u0 = Snf0;1;:::;kg _ S
n
fn�dlog

p
ke;:::;ng:

(Proof) When the number of variables in the bound
set is less than k+1, then it is a trivial decomposition.
To be non-trivial k-decomposition, at least 1+dlogp ke
variables must be in the free set. So, if the number
of variables in the bound set is greater than n � 1 �
dlogp ke, then it is a trivial decomposition. 2

Example 4.3 Let n = 10, p = 2, and k = 2, then the
set of bipartitions for trivial k-decompositions is given
by u0 = S10

f0;1;2;9;10g. This is explained as follows: If

the number of bound variables is two or smaller, then



the decomposition is trivial, since the module for H has
two outputs. If the number of variables in the bound
set is 9 or 10, then the number of free variables is one
or zero. By De�nition 2.3, this also corresponds to
a trivial decomposition. Thus, the number of trivial
decompositions is given by

ju0j = C(10; 0) + C(10; 1) + C(10; 2)

+C(10; 9) + C(10; 10) = 67:

The set of non-trivial bipartitions is given by �u0 =
S10
f3;4;5;6;7;8g.

Theorem 4.1 Let f(X) be a p-valued function, and
(XA; XB) be a partition of X. If f(XA;~aB) =

f̂(x1; x2; : : : ; xr) is totally k-undecomposable, then f
has no k-decomposition for the bipartitions

u = Srfk+1;k+2;:::;r�1�dlog
p
keg(x1; x2; : : : ; xr):

(Proof) By Theorem 3.1 and Lemma 4.1, f is k-
undecomposable for these bipartitions. 2

Example 4.4 Consider the case where p = 2, n = 5,
k = 1 and r = 3. If f(x1; x2; x3; 0; 0) is totally 1-
undecomposable, then f is undecomposable for the bi-
partitions

u = S3
2(x1; x2; x3) = �x1x2x3 _ x1�x2x3 _ x1x2�x3:

Note that u denotes the same set of bipartitions as Ex-
ample 3.4.

Example 4.5 Suppose that we have to check whether
the given 2-valued 10-variable function f(x1; x2; : : : ;
x10) can be realized by a network shown in Fig. 4.1.
In this case, the straightforward method needs to check
all possible bipartitions (X1;X2), where jX1j = 5 and
jX2j = 5. This set of bipartitions is represented by
S10
5 (x1; x2; : : : ; x10), and the number of bipartitions to

consider is jS10
5 (x1; x2; : : : ; x10)j = C(10; 5) = 252.

However, if f(x1; x2; x3; x4; x5; 0; 0; 0; 0; 0) is totally 2-
undecomposable, then we need not check for C(5; 3) �
C(5; 2) = 100 bipartitions. This fact is explained as
follows: From Theorem 4.1, the set of bipartitions that
will not produce 2-decomposition is given by

u1 = S5
3(x1; x2; x3; x4; x5)S

5
2(x6; x7; x8; x9; x10):

In u1, the �rst factor selects three variables from
fx1; x2; x3; x4; x5g as bound variables, and the second
factor selects two variables from fx6; x7; x8; x9; x10g
as bound variables. For example, suppose that
fX1g = fx1; x2; x3; x6; x7g is selected as a bound
set, and fX2g = fx4; x5; x8; x9; x10g is selected
as a free set. This bipartition (X1;X2) does
not produce 2-decomposition, since fx1; x2; x3g is
in the bound set and fx4; x5g is in the free

X1
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h2

f(X1;X2) = g(h1(X1); h2(X1);X2)

Figure 4.1: 2-decomposition of 10-variable function.

set, and f(x1; x2; x3; x4; x5; 0; 0; 0; 0; 0) is totally 2-
undecomposable. Note that ju1j = C(5; 3)C(5; 2) =
10� 10 = 100.

In a similar way, if f(0; 0; 0; 0; 0; x6; x7; x8; x9; x10)
is also totally 2-undecomposable, then the following bi-
partitions need not be checked:

u2 = S5
3(x6; x7; x8; x9; x10)S

5
2(x1; x2; x3; x4; x5):

u2 denotes C(5; 3)�C(5; 2) = 100 bipartitions for that
no 2-decomposition exist. So, we need only to check for
the following bipartitions:

bp = S10
5 (x1; x2; : : : ; x10) �u1 �u2:

Since u1 and u2 are mutually disjoint, we have only to
check

jbpj = jS10
5 (x1; x2; : : : ; x10)j � ju1j � ju2j

= C(10; 5) � 100� 100 = 52

bipartitions. In this case, we can reduce the search
space into one �fth by �nding two subfunctions that
are 2-undecomposable.

Theorem 4.2 Let f(x1; x2; : : : ; xn�1; a) be totally k-
undecomposable, where a 2 P . Then, f(x1; x2; : : : ;
xn�1; xn) is totally k-undecomposable i� f is undecom-
posable for the following C(n�1; dlogp ke)+C(n�1; k)

bipartitions: Sn�1
fn�1�dlog

p
keg (x1; x2; : : : ; xn�1)�xn _

Sn�1
k (x1; x2; : : : ; xn�1)xn.

Example 4.6 Consider the case where n = 6, p = 2,
and k = 2. Suppose that f(x1; x2; x3; x4; x5; 0) is
totally k-undecomposable. To show that f is totally
undecomposable, we need the followings: For x6 =
0, we have to check for the bipartitions denoted by
S5
4(x1; x2; x3; x4; x5)�x6. Fig. 4.2(a) shows an example

of C(5; 4) bipartitions. For x6 = 1, we have to check
for bipartitions denoted by S5

2(x1; x2; x3; x4; x5)x6.
Fig. 4.2(b) shows an example of C(5; 2) = 10 bipar-
titions.
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V Number of Totally

k-Undecomposable Functions
When n is su�ciently large, almost all functions

are totally 1-undecomposable [19]. In this part, we
will show that almost all functions are also totally k-
undecomposable.

5.1 p-valued case

Lemma 5.1 Let Nd(n; p; k) be the number of n-
variable p-valued k-decomposable functions. Then,

Nd(n; p; k) �

n�1�dlog
p
keX

n1=k+1

C(n; n1)p
kpn1+pn�n1+k :

(Proof) Suppose that a function f has a disjoint k-
decomposition shown in Fig. 1.1. First, consider the
module H . The number of ways to select bound vari-
ables is C(n; n1). Since H has n1 inputs and k out-

puts, the number of functions for H is pkp
n1

. Next,
consider the module G. Since G has n2 + k inputs
and single output, the number of functions for G is

pp
n2+k

= pp
n�n1+k

. Hence, we have the lemma. 2

Theorem 5.1 Let Nud(n; p; k) be the number of n-
variable p-valued totally k-undecomposable functions.
Then,

Nud(n; p; k)

pp
n

! 1 as n!1:

(Proof) Since Nud(n; p; k) +Nd(n; p; k) = pp
n

, we will
show that

Nd(n; p; k)

pp
n

! 0 as n!1: (5.1)

From Lemma 5.1, we have

Nd(n; p; k) �

n�1�dlog
p
keX

n1=k+1

C(n; n1)p
kpn1+pn2+k : (5.2)

Since C(n; n1) < 2n, the right-hand-side of (5.2) is less
than

2n
n�1�dlog

p
keX

n1=k+1

pkp
n1+pn2+k = 2n

n�1�dlog
p
keX

n1=k+1

pA(n1);

(5.3)

where A(n1) = kpn1+pn2+k. Note that A(n1) takes its
maximum when n1 = k + 1 and n1 = n� 1� dlogp ke,

and the values of A(n1) are kp
k+1 + pn�1 and pn�1 +

kpk+1, respectively. Thus, A(n1) � pn�1+C, where C
does not depend on n. So, (5.3) is less than

D(n) = 2n(n� 1� dlogp ke � (k + 1))pp
n�1+C :

Let us take the logarithm of D(n), and we have

logpD(n) = n logp 2+logp(n�k�dlogp ke�2)+p
n�1+C:

Since
log

p
D(n)

pn
!

1
p
as n ! 1, we can conclude that

(5.1) holds. 2

5.2 Two-valued case

When n � 4 and p = 2, most functions are totally
1-undecomposable. For k = 1, we obtained the values
of Nud(n; p; k) by exhaustive enumeration:

Nud(3; 2; 1) = 104;

Nud(4; 2; 1) = 57; 240; and

Nud(5; 2; 1) = 4; 290; 002; 448:

When n = 5, there are 22
5

= 232 = 4; 294; 967; 296
functions. Thus, 99.9% of the functions are totally
1-undecomposable. The case of k = 2 is interesting,
since some FPGAs have LUTs with two outputs [3].
The decompositions must satisfy the relation:

jX1j � k + 1 and jX2j � 1 + dlog2 ke:

This requires that jXj = jX1j+ jX2j � k+2+dlog2 ke.
Thus, when k = 2, only the functions with n � 5 are
interesting. For n = 5, the only case is n1 = 3 and
n2 = 2, and we have Nud(5; 2; 2) = 3; 744; 402; 432.
Thus, 87.2% of the 5-variable functions are totally 2-
undecomposable.

VI Conclusion and Comments
In this paper, we de�ned totally k-undecomposable

logic functions, and showed a systematic method to
�nd a set of bipartitions that will not produce disjoint
k-decompositions. Key contributions are:

1) Generation of a set of k-undecomposable bipar-
titions from totally k-undecomposable subfunc-
tions.

2) Representation of k-undecomposable bipartitions
by an n-variable switching function.

3) Enumeration of totally k-undecomposable func-
tions.

The presented method can be extended to the case of
incompletely speci�ed functions. This method can be
combined to existing decomposition methods to reduce
search space.



When n = 3 or 4, p = 2 and k = 1, totally k-
undecomposable functions are easily detected by BDDs
and look-up tables [17]. By using this method, we
can show the undecomposability of randomly gener-
ated functions very quickly.

We decomposed more than four thousand bench-
mark functions including functions with 256 inputs and
245 outputs [16, 17]. Experimental results for p = 2
and k = 1 show that for 1-undecomposable functions,
the computation time were reduced to up to one hun-
dreds. Currently, we are developing a system for k-
decompositions with k = 2.

Even if the given functions have two-valued inputs
only, functional decompositions with multi-valued in-
puts seems to be useful. This is explained as fol-
lows: Suppose that a completely speci�ed two-valued
input function has a k-decomposition of the form
f(X1;X2) = g(h1(X1); g2(X1); : : : ; gk(X1);X2), and
that �(f : X1;X2) < 2k. In this case, assigning
�(f : X1; X2) di�erent binary vectors to the k out-
puts ofH produces don't care conditions for function g.
This makes decomposition problem very di�cult [21].
However, if we do not assign the binary vectors to the
output of h, but assume that h produces a multiple-
valued output, then no don't cares are generated. In
this case, the decomposition problem is easier.
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