
Ternary Decision Diagrams

{ Survey {

Tsutomu Sasao

Department of Computer Science and Electronics

Kyushu Institute of Technology

Iizuka 820, Japan

Abstract

This paper surveys seven types of TDDs:
General TDD, SOP TDD, ESOP TDD, AND TDD,
prime TDD, EXOR TDD, and Kleene TDD. We give
new de�nitions for SOP TDDs and ESOP TDDs and
introduce unifying terminology. After showing some
theorems on complexities, we compare the sizes of these
TDDs using benchmark functions. Finally, we review
important works on TDDs.

1 Introduction

Various methods exist to represent logic functions.
The truth table is the most straightforward method.
A sum-of-products expression (SOP) is an another
method; it can be converted directly into an AND-
OR two-level logic network. A binary decision diagram
(BDD) is suitable for representing a complex logic func-
tion with many variables [1, 3, 5, 11, 54].

This paper surveys ternary decision diagrams
(TDDs). TDDs are similar to BDDs, except that each
non-terminal node has three children. Because di�er-
ent TDDs were introduced by di�erent people, there
is a need for a unifying terminology applicable to all
TDDs. This paper introduces such a terminology.

Section 2 de�nes seven types of TDDs:
General TDD, SOP TDD, ESOP TDD, AND TDD,
prime TDD, EXOR TDD and Kleene TDD. A gen-
eral TDD represents an arbitrary ternary function; an
SOP TDD represents an SOP; an ESOP TDD repre-
sents an ESOP; an AND TDD represents the set of
all implicants; an EXOR TDD represents an extended
truth vector, which is used in the optimization of AND-
EXOR expressions; a prime TDD represents the set of
all the prime implicants; and a Kleene TDD represents
a Kleene function, which is useful for logic simulation
in the presence of unknown inputs. Section 3 analyses
the complexity of TDDs. Some theorems and experi-
mental results show the complexities of various TDDs.
Section 4 introduces our current research on TDDs.
Finally, Section 5 reviews important works on TDDs.

f

f0 f1

0 1

Figure 1.

BDD.

g g g

(a) Rule 1.

(b) Rule 2.

Figure 2. Reduction rules.

2 Various Decision Diagrams
2.1 BDDs

A binary decision diagram (BDD) represents a two-
valued logic function f . Let f = �xf0_xf1 be the Shan-
non expansion of f with respect to variable x. Then,
the sub-graphs of the BDD represent f0 and f1, as
shown in Fig. 1. Note that a path in the BDD from
the root node to a terminal node represents an assign-
ment of values to the variables. The value of the leaf
node is the function value for that assignment. In this
paper, we assume that the ordering of the input vari-
ables is the same for all paths from the root node to
a leaf node, i.e., only ordered decision diagrams (DDs)
are considered. We can reduce the DD, i.e., eliminate
nodes, by using two rules:

Rule 1: Share equivalent sub-graphs (Fig. 2 (a)).

Rule 2: If descendent nodes of a node � are the same,
then delete � and connect the incoming edges of
the deleted node to the corresponding successor
(Fig. 2 (b)).

Suppose that we have a complete binary decision tree.
The BDD reduced by using only Rule 1 is a quasi re-
duced ordered BDD (QROBDD). The BDD reduced by
using Rule 1 and Rule 2 is a reduced ordered BDD

1 1 1

1 1 1

1x

2x

3x

Figure 3. Example function.

1

f

x 1x

2x

0 1 1 1 1 1 1 0

2x 2x 2x

3x3x3x3x3x3x3x3x

Figure 4. Complete binary decision tree.

(ROBDD). The QROBDD and ROBDD are canonical,
i.e., unique QROBDD and ROBDD exists for a given
function. In this paper, unless noted, both reduction
rules are used in DDs. Fig. 3 shows the three-variable
function that will be used as examples throughout the
paper. Fig. 4 shows the complete binary decision tree
for Fig. 3. After reduction, we have the QROBDD
and ROBDD shown in Fig. 5 and Fig. 6, respectively.
A path from the root node to the constant 1 node

is called a 1-path. 1-paths in a QROBDD represent a
sum-of-minterms expression (Fig. 7 (a)), while 1-paths
of an ROBDD represent a disjoint sum-of-products ex-
pression (DSOP) (Fig. 7 (b)). In a QROBDD of an
n-variable function, any path from the root node to the
terminal nodes will visit exactly n non-terminal nodes.
The SOP represented by a QROBDD is the same re-
gardless of the order of the input variables, while the
SOP represented by an ROBDD depends on order. The
size of a DD is the number of nodes in the DD. In the
case of a ROBDD, the size is O(2n=n) [29, 65].

10

3x
3x

2x 2x 2x 2x

1x 1x

3x
3x3x

3x

Figure 5.

QROBDD.

1

f

x 1x

2x

0 1

2x
2x

2x
3x

3x
3x

3x

Figure 6.

ROBDD.

1 1 1

1 1 1

1x

2x

3x

(a) Sum-of minterms.

1 1 1

1 1 1

1x

2x

3x

(b) DSOP.

Figure 7. SOPs

represented

by QROBDD and

ROBDD.

f

f0 f1

0 1

f2

2

Figure 8.

General TDD.

1x

2x

1 2

1 1

0

2

2 2 2

1

0

2

1 20

1 20 1 20 1 20

f

0 21 1 21 2 22

1
20

max{ }1x , 2x

1x

2x

(a) map for

(b) complete tree

f

1
2

0 0,1

2

f

0 1 2

1
20

(c) ROTDD

1x

2x

1 2

1 1

0

2

2 2 2

1

0

2

1 20

(d) SOP represented by ROTDD

Figure 9. Representation of a three-valued

function.

2.2 General TDDs

A general TDD is a natural extension of the BDD to
the three-valued case. Let f = x0f0_x

1f1_x
2f2 be the

three-valued version of the Shannon expansion of an ar-
bitrary three-valued function f : T n ! T , T = f0; 1; 2g.
Then, the sub-graphs of the general TDD represent f0,
f1 and f2 as shown in Fig. 8. As with BDDs, TDDs are
reduced to obtain an ROTDD (reduced ordered TDD).
An ROTDD is unique for a given function, i.e., the rep-
resentation is canonical for a given order of the input
variables. Fig. 9 (a) shows a map for the max function
of two ternary variables. Fig. 9 (b) shows the complete
ternary decision tree; and Fig. 9 (c) shows an ROTDD;
and Fig. 9 (d) shows the expressions represented by the
0-paths, 1-paths and 2-paths.

The size of the complete ternary decision tree is
O(3n). But, after reduction, the size of the TDD be-

2

come O(3n=n). A general TDD is a special case of a
multiple-valued decision diagram (MDD).

2.3 SOP TDDs

An SOP TDD represents a set of products in a sum-
of-products expression (SOP). In this paper, a lower
case f represents a two-valued logic function, an upper
case F represents a three-valued input function, and
the script F represents a logical expression. F is a
mapping Tn ! B, where T = f0; 1; 2g and B = f0; 1g.
Let � = (�1; �2; : : : ; �n), �i 2 T be a ternary vector.
Then,

x�11 x�22 � � �x�n
n

(1)

represents a product of an n-variable function, where

x� =

8<
:

�x when � = 0;

x when � = 1;

1 when � = 2:

F (�) = 1 i� the product is in the SOP. For exam-
ple, � = (1;0; 2) corresponds to the product x11x

0
2x

2
3 or

x1�x2. There are 3n di�erent products, and the form
(1) can represent any one.

For example, consider the SOP F = �x1x3 _ x1�x2 _
�x2x3. To represent the set of products, we can use the
following array of cubes:

x1 x2 x3
0 2 1

1 0 2

2 0 1

In this array, 021 denotes �x1x3, 102 denotes x1�x2, and
201 denotes �x2x3. The complete ternary tree in Fig. 10
with the terminal values in the row of SOP in Table 1
represents F . There are 33 terminals each of which can
be 0 or 1. A 1 shows that the product associated with
a path from the root node to a terminal node.

In the case of the above example, there are three
terminal nodes labeled 1: f7, f11 and f19. After re-
duction, we have the ROTDD in Fig. 11. Here only
1-paths are shown, i.e., the 0 terminal nodes are omit-
ted. This RO SOP TDD has only three 1-paths, and
each 1-path corresponds to a product in the SOP. In
general, we can say the following: For a function f , an
RO SOP TDD is not unique, since, in general, more
than one SOPs exist for a function. However, for an
SOP F , the RO SOP TDD is unique. Given an SOP
F = �xF0 _xF1 _ 1F2, the SOP TDD is constructed as
shown in Fig. 12: The sub-graphs for F0, F1, and F2

are SOP TDDs for F0, F1, and F2, respectively.

2.4 ESOP TDDs

An ESOP TDD represents a set of products in an
ESOP. ESOPs are products combined with EXOR op-
erator. On the average, ESOPs require fewer prod-
ucts than SOPs [44, 51]. An ESOP TDD is similar in
concept to an SOP TDD. An ESOP TDD represents
a mapping F : Tn ! B, F (�) = 1 i� the product
x�1
1
x�2
2
� � �x�n

n
is in the ESOP. Consider the ESOP:

f

1

1 20

2

1

0 0

2 1

2x

3x

1x

Figure 11.

RO SOP TDD.

x x 1

0 1 2

Figure 12.

SOP TDD and

ESOP TDD.

f

1

1 20

0

0

1 2

1 2

2x

3x

1x

Figure 13. RO ESOP TDD.

F = �x1�x2�x3 � x1x2x3 � 1. This ESOP is represented
by the set of cubes:

x1 x2 x3
0 0 0

1 1 1

2 2 2

000 denotes �x1�x2�x3, 111 denotes x1x2x3, and 222 de-
notes the constant 1.

The tree in Fig. 10 with the terminal values in the
row of ESOP in Table 1 represents F . It has three
non-zero terminals: f0, f13, and f26. Fig. 13 is the RO
ESOP TDD, where only 1-paths are shown. There are
three 1-paths, and each 1-path corresponds to a prod-
uct in the ESOP. In general, we can say the following:
For a given function, the RO ESOP TDD is not unique,
since many ESOPs may exist for a function. However,
for a given ESOP, the RO SOP TDD is unique. Given
an ESOP F = �xF0 � xF1 � 1F2, ESOP TDD is con-
structed as shown in Fig. 12: The sub-graphs for F0,
F1, and F2 are ESOP TDDs for F0, F1, and F2, re-
spectively.

2.5 AND TDDs

An AND TDD represents the set of all the impli-
cants of a two-valued logic function. An AND TDD
represents a mapping F : Tn ! B, where F (�) = 1 i�
the product x�1

1
x�2
2
� � �x�n

n
is an implicant of f . Since

3

0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2

0
1

2

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26

2x

3x

1x

Figure 10. Complete ternary tree for n = 3.

Table 1. Functions represented by F .

x1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

x2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

x3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26

SOP 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

ESOP 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

AND 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0

Prime 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

EXOR 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0

Kleene 0 1 2 1 1 1 2 1 2 1 1 1 1 0 2 1 2 2 2 1 2 1 2 2 2 2 2

f0 f1

f

f0 f1

0 1 2

Figure 14.

AND TDD.

1 1 1

1 1 1

1x

2x

3x

(a)

1 1 1

1 1 1

1x

2x

3x

(b)

Figure 15. Prime

implicants

an AND TDD represents the set of all the implicants, it
is a special case of an SOP TDD. The ROAND TDD is
unique for f . An AND TDD is constructed as shown
in Fig. 14. Here the rightmost sub-graph represents
the logical AND function of f0 and f1. An AND TDD
is used to produce a prime TDD, which is explained
later. For example, consider the function of three vari-
ables in Fig. 3. There are 6 minterms (Fig. 7(a)), and
6 prime implicants (Fig. 15(a) and (b)). So, in to-
tal, there are 12 implicants. The tree in Fig. 10 and
terminal values in the row of AND in Table 1 show
the set of all the implicants. Fig. 16 shows the Quasi-
Reduced AND TDD (QR AND TDD). A QR TDD is
obtained from a complete ternary tree by using only

the reduction Rule 1. In the QR TDD of an n-variable
function, all the paths from the root node to the ter-
minal nodes visit exactly n non-terminal nodes. In an
AND TDD, each 1-path corresponds to an implicant
of f . In general, RO AND TDDs do not represent all
the implicants, while the QR AND TDDs represent all
the implicants.

2.6 Prime TDDs

A prime TDD represents all the prime implicants
(PIs) [4, 13, 39, 42] of a two-valued logic function f . A
prime TDD represents F : T n ! B, where F (�) = 1 i�
the product x�11 x�22 � � �x�n

n
is a PI of f . A prime TDD

is a special case of SOP TDDs and is unique for each
f . By using prime TDDs, we can e�ciently generate
all the PIs. The prime TDD can be derived from the
AND TDD. Consider the function in Fig. 3. There are
6 PIs as shown in Fig. 15(a) and (b). The tree in Fig. 10
with the terminal values in the row of Prime in Table 1
shows the set of PIs. For example, the path for (012)
reaches to a constant 1. This shows that �x1x2 is a PI of
the function. Fig. 17 shows the RO prime TDD with
all 0-paths omitted. There are 6 paths from the root
node to the constant node, and each corresponds to a
PI.

2.7 EXOR TDDs

An EXOR TDD represents the extended truth vec-
tor of a two-valued logic function f . The extended
truth vector EXT (f : �) for an n-variable function
consists of 3n elements, and is useful for optimization
of AND-EXOR expressions [9, 12, 44, 46, 48, 54, 58].

An EXOR TDD represents a mapping F : TN ! B,
F (�) = 1 i� EXT (f : �) = 1. The RO EXOR TDD

4

1

0,1,2 0,1,2 01

0 1 2

0,2 1 0
1,2

0
1

2x

3x

1x

Figure 16.

QR AND TDD.

1

0 1 2

1
2

1
20 0

0
1

2

Figure 17.

RO Prime TDD.

f

f0 f1

0 1 2

f0 f1

Figure 18.

EXOR TDD.

1

0 1 2

1
2 112

0

0,20,11,2

0 0 2

1x

2x

3x

Figure 19.

RO EXOR TDD.

is unique for f . The EXOR TDD is constructed as
shown in Fig. 18, where the rightmost sub-graph rep-
resents the EXOR of f0 and f1. The tree in Fig. 10
with the terminal values in the row of EXOR in Table 1
shows the extended truth vector for the three-variable
function. Fig. 19 shows the RO EXOR TDD for the
three-variable function.

2.8 Kleene TDDs

A Kleene TDD represents the Kleene function F :
Tn ! T , T = f0; 1; 2g of a two-valued logic function
f: Bn ! B. Let � be a ternary vector. A(�) is a set
of all the binary vectors that are obtained by replacing
all the 2's with 0 or 1.

F (�) =

8<
:

0 if f(A(�)) = f0g

1 if f(A(�)) = f1g

2 if f(A(�)) = f0; 1g

In other words, if all the vectors in A(�) are mapped
to 0, then F (�) = 0; if all the vectors are mapped to
1, then F (�) = 1; and if some vectors are mapped to
0 and others are mapped to 1, then F (�) = 2. In this
case, 2 denotes unknown input values or output values,
and is often represented by u (unknown). The Kleene
function represents the behavior of logic function in the
presence of unknown input values. For a given two-
valued logic function, the Kleene function is unique.

f

x1

x2

x3

Figure 20. AND-

OR network for

Fig. 15(a)

f

f0 f1

0 1 u

f0 f1

Figure 21.

Kleene TDD.

To explain an application of Kleene TDDs, con-
sider the three-variable function in Fig. 3. When
(x1; x2; x3) = (0;0; 0), the value of f is zero. When
(x1; x2; x3) = (1; 0; u), the value of f is one, since x1�x2
is an implicant. However, when (x1; x2; x3) = (1; 1; u),
the value of f is u. When (x1; x2; x3) = (1; u; 0), the
value of f is 1. A problem arises when we apply a
naive ternary logic simulator to the circuit in Fig. 20.
For the input (x1; x2; x3) = (1; u; 0), a naive logic simu-
lator produces u at the output; the correct output is 1.
However, if we use the Kleene function, such a problem
will not occur. A Kleene TDD is easy to construct as
shown in Fig. 21. The rightmost sub-graph represents
the alignment of f0 and f1, where

alignment(x; y) =

�
x if x = y

u if x 6= y:

Alignment is the 3-valued operator de�ned by
Kleene[27]. The tree in Fig. 10 with the terminal val-
ues in the row of Kleene in Table 1 shows the Kleene
function. This is the only TDD that has three di�erent
terminal nodes f0; 1; ug.

2.9 Relations among TDDs

Table 2 compares the properties of various DDs.
The last column shows whether the DD is canonical
or not. SOP TDDs and ESOP TDDs are not canon-
ical, since many expressions may exist for a function.

1-paths of the Kleene TDD and the AND TDD
represent sets of all the implicants. 2-paths of
the Kleene TDD represent the set of input values
that make unknown output values. 1-paths of the
prime TDD represent the set of all the PIs.

3 Complexity of TDDs
Even if the TDDs have useful properties, they be-

come impractical when they are too large to construct.
A complexity analysis in this section reveals the limit
of the approach.

3.1 Theoretical analysis

For the DSOP F represented by the BDD for f ,
consider an SOP TDD and an ESOP TDD that repre-
sent F . In this case, the size of the SOP TDD and the
ESOP TDD are not greater than that of BDD. Thus,
the sizes of minimum SOP TDD and ESOP TDD are
not greater than that of BDD. Table 3 compares the

5

Table 2. Comparison of various DDs.

1-paths

represent

Applications

ROBDD Disjoint SOP Representation of

logic functions

C

QR AND TDD Complete

sum-of-

implicants

Generation of

implicants

C

Prime TDD Complete

sum-of-prime

implicants

Generation of prime

implicants

C

QR Kleene TDD Set of

implicants

Logic simulation in

the presence of un-

known inputs

C

SOP TDD SOP Representation of

SOPs

N

ESOP TDD ESOP Representation of

ESOPs

N

C: Canonical

N: Non-canonical

Table 3. Size of DDs.

TDD type

BDD AND, EXOR SOP,
Prime, Kleene ESOP

General O(2n=n) O(3n=n) O(2n=n)
function

Symmetric O(n2) O(n3) O(n2)
function

size of BDDs and TDDs. N (BDD : f) denotes the
size of the BDD for the function f . For TDDs, similar
notations are used. As for the size of selected DDs, we
have the following:

Theorem 3.1

N (BDD : f) = N(BDD : �f);

N (EXOR TDD : f) = N(EXOR TDD : �f);

N (Kleene TDD : F) = N(Kleene TDD : �F):

However, in general,

N(AND TDD : f) 6= N (AND TDD : �f);

N(prime TDD : f) 6= N(prime TDD : �f):

Theorem 3.2

N(BDD : f) � N (AND TDD : f)

� N(EXOR TDD : f)

� N(Kleene TDD : f)

N(AND TDD : f) � N(Kleen TDD : f):

Theorem 3.3 If f is a parity function, then

N(BDD : f) = N (AND TDD : f)

= N(EXOR TDD : f)

= N(Kleene TDD : f)

= N(prime TDD : f):

If f is a unate function, then

N (BDD : f) = N(AND TDD : f):

For most functions f , N(BDD : f) <
N(prime TDD : f). However, for some cases,
N(BDD : f) > N (prime TDD : f).

Example 3.1 For f = x1xp+1 _ x2xp+2 _ � � � _ xpx2p,

N(BDD : f) = 2p+1, but N(prime TDD : f) = 2p2 +
2. (End of Example)

3.2 Experimental results

Fig. 22(a), (b), and (c) show the sizes of BDDs,
Kleene TDDs and EXOR TDDs for randomly gener-
ated functions with 14 variables, respectively. For
a given number of true minterms, we generated one
logic function randomly. In each graph, the horizon-
tal axis denotes the number of true minterms of f ,
and the vertical axis denotes the size of DDs. The
graphs are approximately symmetric with respect to
the center, which is supported by Theorem 3.1. For
BDDs and EXOR TDDs, size is largest when the num-
ber of true minterms is 2n�1. On the other hand,
Kleene TDDs has a local minimumwhen the number of
true minterms is 2n�1, and have their maximum sizes
for two points, either side of the central minimum.
This is a very interesting property of Kleene TDDs.
Fig. 23(a) and (b) show the sizes of AND TDDs and
prime TDDs for randomly generated functions with 14
variables, respectively. In these cases, the plots are not
symmetric with respect to the center lines. The sizes
of these TDDs take their maximum when the number
of true minterms is near to 2n. It is known that the
number of implicants or PIs reaches their maximum
value when the number of true minterms is near to 2n

[7, 33]. Thus, the sizes of TDDs are large for these
points. Table 4 compares the sizes for various DDs of
benchmark functions [66]. As shown in Theorem 3.2,
BDDs are not larger than AND TDDs, EXOR TDDs,
and Kleene TDDs. However, prime TDDs can be
smaller than corresponding BDDs. For example, the
prime TDD for apex2 is smaller than the corresponding
BDD. For 9sym and rd84, which are symmetric func-
tions, the DDs are relatively small. For xor5, which
is a parity function, the sizes of all the DDs are the
same, which is veri�ed by Theorem 3.3. Note that
BDDs, AND TDDs, EXOR TDDs, and Kleene TDDs
are represented as shared DD [32], while prime TDDs
are represented as multi-terminal DDs [6]. Also, the
sizes of prime TDDs include the constant nodes, while
sizes of other DDs do not. Orderings of the input vari-
ables were obtained by a heuristic algorithm that re-
duces the sizes of BDDs.

6

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 n
od

es

of minterms

(a) BDD

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 n
od

es

of minterms

(b) Kleene TDD

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 n
od

es

of minterms

(c) EXOR TDD

Figure 22. Size of BDDs and TDDs.

4 Ongoing Research
4.1 SOP TDD

For a given function f , there exists an SOP TDD,
which is not greater than the corresponding BDD. For
many functions, we can generate SOP TDDs that are
smaller than the corresponding BDDs. Table. 5 com-
pares the sizes of BDDs and SOP TDDs, where the
orderings of the input variables are not optimized.

4.2 Kleene TDD

We have developed a Kleene TDD package. Un-
fortunately, Kleene TDDs are much larger than cor-

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 n
od

es

of minterms

(a) AND TDD

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000 14000 16000

of

 n
od

es

of minterms

(b) Prime TDD

Figure 23. Size of TDDs.

Table 4. Size of various DDs.

AND EXOR Kleene Prime
function in out BDD TDD TDD TDD TDD

9sym 9 1 33 60 70 94 62
apex1 45 45 1332 6249 47814 18401 15210
apex2 39 3 410 542 3575 3500 215
apex3 54 50 935 3161 34574 7119 |
apex5 117 88 1078 3039 3282 4204 |
cordic 23 2 75 83 153 271 210
cps 24 109 987 1457 4808 5653 |
duke2 22 29 336 522 2176 2555 3800
e64 65 65 1379 1379 1379 2693 1371
ex5 8 63 278 381 444 628 3599
misex1 8 7 36 45 70 92 64
misex2 25 18 81 81 138 204 253
misex3 14 14 542 1219 3644 3262 10632
pdc 16 40 560 1024 2321 3031 48837
rd84 8 4 59 79 72 121 87
sao2 10 4 85 114 216 305 170
seq 41 35 1248 3873 67414 18745 |
spla 16 46 581 717 2237 2315 30024
t481 16 1 32 48 43 66 357
vg2 25 8 194 399 865 961 1340
xor5 5 1 9 9 9 9 11
z5xp1 7 10 68 79 75 158 721

| represents memory over ow.

7

Table 5. Size of BDDs and SOP TDDs.

in out BDD SOP TDD

accpla 50 69 5632 1566
apex1 45 45 5024 1433
apex2 39 3 652 311
b2 16 17 4472 939
clip 9 5 260 196
duke2 22 29 1006 523
ex4 128 28 1319 679
in1 16 17 4472 939
in2 19 10 2405 414
in4 32 20 1310 535
in6 33 23 540 299
mainpla 27 54 3360 2694
misex3 14 14 1316 907
p1 8 18 354 193
signet 39 8 2965 293
ti 47 72 6260 828
tial 14 8 1363 964
ts10 22 16 4408 183

responding BDDs. We can decompose a logic function
into two such that the corresponding decomposition
of Kleene function will produce the correct result as
shown below [18] .

Theorem 4.4 Let a function f be represented as
f(X) = h(g(X1); X2). F , the Kleene function for f ,
is represented as F (X1; X2) = H(G(X1); X2), where G
and H are Kleene functions for g and h, respectively.

A bi-decomposition is a special case of a functional de-
composition, having form f(X) = h(g1(X1); g2(X2)).
The detection of a bi-decomposition is quite easy [57].

5 Various Works on TDDs
Higuchi-Kameyama [16, 23, 24] considered the real-

ization of ternary logic functions F : Tn ! T by using
T -gates. A T -gate [28] is a three-valued multiplexer,
and corresponds to a node in a general TDD. They
showed optimization methods for ROTDDs and free
TDDs to simplify T -gate networks. In the free-TDDs,
ordering of input variables may be di�erent for each
path.

Thayse-Davio-Deschamps [63] presented the concept
of MDDs in 1978, calling them \multiple-valued deci-
sion algorithms." They used MDDs to realize multi-
valued logic function using multiplexers, to realize se-
quential circuits using multiple-valued ROMs and mul-
tiplexers, and to transform and to optimize micro-
programs.

Mukaidono [37] de�ned B-ternary logic function,
which is the same as the Kleene function. He found
a canonical representation of Kleene functions. Later,
he used the Kleene functions for evaluation of logic
functions in the presence of unknown input values [38].

Papakonstantinou [40] used EXOR ternary decision
trees to minimize ESOPs with up to four variables.

Srinivasan-Kam-Malik-Brayton [62] developed algo-
rithm to manipulate MDDs. They also showed appli-
cations of MDDs to channel and switch box routing as
well as hardware resource scheduling.

Sasao [45, 50] used EXOR TDDs to minimize
pseudo-Kronecker expression, a class of AND-EXOR
two-level expressions. Prime TDDs were used to gen-
erate all the prime implicants [49, 61]. This method is
much faster than conventional ones [64, 43], although
yet faster methods exist [8]. The program in [49] gener-
ated thousands of PIs within 10 seconds. At the same
time, he presented the concept of AND TDDs and
SOP TDDs, and analyzed their complexities. Later his
group successfully minimized FPRM, a class of AND-
EXOR two-level logic expressions, with more than 90
input variables by using EXOR TDDs [60].

Heap-Rogers-Mercer [15] used EXOR TDD to sim-
plify ESOPs. Miller
[34] implemented an MDD reduction algorithm, where
he considered \unary cycling operations" to simplify
MDDs [35]. McGeer-McMillan-Saldanha-Sangiovanni-
Vincentelli-Scaglia [31] used MDD in cycle-based logic
simulation. They grouped k binary input variables to
form a single 2k-valued variable. By this, the num-
ber of memory access to evaluate an MDD is reduced
by a factor of k. They showed that BDD-based logic
simulation is much faster than conventional ones. The
extensions are in [14, 56].

Yasuoka [67, 68] developed algorithms for manip-
ulating ESOP TDDs. Miller-Thomson-Bradbeer [36]
used ESOP TDDs to implement multi-level networks.
Jennings [20] presented a Kleene TDD for logic sim-
ulation in the presence of unknown input values.
The extensions are in [19, 21, 30, 22]. Perkowski-
Chrzanowska-Jeske-Sarabi-Schafer [41] de�ned various
canonical and non-canonical TDDs. Their work shows
many other di�erent TDDs exist. Kamiura-Satoh-
Hata-Yamato [25, 26] used general TDDs to imple-
ment ternary cellular arrays. Iguchi-Sasao-Matsuura
[17] compared the complexities of Kleene TDDs with
BDDs, AND TDDs and EXOR TDDs.

Acknowledgments
This work was supported in part by a Grant in Aid

for Scienti�c Research of the Ministry of Education,
Science Culture and Sports of Japan. Prof. J. T. But-
ler carefully reviewed the manuscript. Mr. Matsuura
worked for drawing pictures and edited the Latex �les.

References
[1] S. B. Akers, \Binary decision diagrams," IEEE Trans.

Comput., Vol. C-27. No. 6, June 1978, pp. 509-516.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and

A. L. Sangiovanni-Vincentelli, Logic Minimization Al-
gorithms for VLSI Synthesis, Kluwer Academic Pub-

lishers, Boston, 1984.

[3] K. S. Brace, R. L. Rudell and R. E. Bryant, \E�cient

implementation of a BDD package," Proc. 27th Design

Automation Conference, June 1990, pp. 40-45.

[4] F. M. Brown,Boolean Reasoning: The logic of Boolean
equations, Kluwer Academic Publishers, Boston, 1990.

[5] R. E. Bryant, \Graph-based algorithms for Boolean

function manipulation," IEEE Trans. Comput.,
Vol. C-35, No. 8, Aug. 1986, pp. 677-691.

8

[6] E. M. Clarke, M. Fujita, and X. Zhao, \Multi-terminal

binary decision diagrams and hybrid decision dia-

grams," Chapter 4 in [54].

[7] A. Cobham, R. Fridshal, and J. H. North, \A statis-

tical study of the minimization of Boolean functions

using integer linear programming," IBM Research Re-

port RC-756, June 1962.

[8] O. Coudert, \Implicit and incremental computation

of primes and essential primes of Boolean functions,"

in Proc. of DAC'92, June 1992. Also, in Sasao (ed.),

Logic Synthesis and Optimization, Kluwer Academic

Publisher, pp. 33-57, 1992.

[9] M. Davio, J-P Deschamps, and A. Thayse, \Discrete

and switching functions," McGraw-Hill International,

1978.

[10] R. Drechsler and B. Becker, \OKFDD: Algorithms,

applications and extensions," Chapter 7 in [54].

[11] M. Fujita, H. Fujisawa, and N. Kawato, \Evaluation

and implementation of Boolean Comparison method

base on binary decision diagrams," ICCAD-88, Nov.
1988, pp. 6-9.

[12] D. Green,Modern Logic Design, Addison-Wesley Pub-

lishing company, 1986.

[13] M. A. Harrison, Introduction to Switching and Au-

tomata Theory, McGraw-Hill, 1965.

[14] Ha�z Md. Hasan Babu and T. Sasao, \A method to

represent multiple-output switching functions by us-

ing binary decision diagrams," the Sixth Workshop

on Synthesis And System Integration of MIxed Tech-
nologies (SASIMI'96), Fukuoka, Japan, Nov. 1996,

pp. 212-217.

[15] M. A. Heap, W. A. Rogers, and M. R. Mercer, \A

synthesis algorithm for two-level XOR based circuits,"

IEEE 1992 International Conference on Computer

Design: VLSI in Computers and Processors. ICCD
'92, pp. 459-462, 1992.

[16] T. Higuchi and M. Kameyama, \Ternary logic system

based on T-gate," Proc. International Symposium on

Multiple-valued logic, pp. 290-304, May 1975.

[17] Y. Iguchi, T. Sasao and M. Matsuura, \On proper-

ties of Kleene TDDs," Asia and South Paci�c Design

Automation Conference, ASP-DAC'97, Jan. 1997,

pp. 473-476.

[18] Y. Iguchi, T. Sasao and M. Matsuura, \A logic sim-

ulation by using Kleene TDD and its evaluation," (in

Japanese), FTC Workshop, Jan. 23, 1997.

[19] G. Jennings, J. Isaksson, and P. Lindgren, \Ordered

ternary decision diagrams and the multivalued com-

piled simulation of unmapped logic," Proc. IEEE 27th

Annual Simulation Symposium, pp. 99-105, 1994

[20] G. Jennings, \Symbolic incompletely speci�ed func-

tions for correct evaluation in the presence of indeter-

minate input values," Proceedings of the 28th Hawaii

International Conference on System Sciences, pp. 23-
31 Vol. 1, 1995.

[21] G. Jennings, \Accurate ternary-valued compiled logic

simulation of complex logic networks by OTDD com-

position," Proceedings of the 28th Annual Simulation

Symposium, 303-310, 1995.

[22] G. Jennings, \Using redundancy to side-step the

OBDD variable ordering problem: K-feasible de-

composition by Kleenean-strong ternary decision di-

agram," the Sixth Workshop on Synthesis And Sys-

tem Integration of MIxed Technologies (SASIMI'96),
Fukuoka, Japan, Nov. 25-26, 1996, pp. 205-211.

[23] M. Kameyama and T. Higuchi, \Synthesis of multiple-

valued logic based on tree-type universal logic mod-

ule," IEEE Trans. Comput., Vol. C-26, pp. 1297-1302,

Dec. 1977.

[24] M. Kameyama and T. Higuchi, \Synthesis of optimal

T-gate networks in multiple-valued logic," Proc. Inter-

national Symposium on Multiple-valued logic, pp. 190-
195, May 1979.

[25] N. Kamiura, H. Satoh, Y. Hata, and K. Yamato, \De-

sign in fault isolating of ternary cellular arrays using

ternary decision diagrams," Proceedings of the IEEE

Third Asian Test Symposium, pp. 201-206, 1994.

[26] N. Kamiura, H. Satoh, Y. Hata, and K. Yamato, \On

ternary cellular arrays designed from ternary decision

diagrams," IEICE Trans. Inf. Syst. (Japan), Vol. E78-

D, No. 4, 326-335, April 1995.

[27] S. C. Kleene, Introduction to Metamathematics,

Wolters-Noordho�, North-Holland Publishing, 1952.

[28] C. Y. Lee and W. H. Chen, \Several-valued logic com-

binational switching circuits," Trans. AIEE, Vol. 75,

No. 1, 1956, pp. 278-283.

[29] H-T. Liaw and C-S. Lin, \On the OBDD representa-

tion of generalized Boolean functions," IEEE Transac-

tions on Comput., Vol. 41, No. 6, June 1992, pp. 661-
664.

[30] P. Lindgren, \Improved computational methods and

lazy evaluation of the ordered ternary decision dia-

gram," Asia and South Paci�c Design Automation

Conference, pp. 379-384, Aug. 1995.

[31] P. C. McGeer, K. L. McMillan, A. Saldanha,

A. L. Sangiovanni-Vincentelli, P. Scaglia, \Fast dis-

crete function evaluation using decision diagrams," In-
ternational Workshop on Logic Synthesis, Lake Tahoe,

May, 1995, pp. 6 1-6 9. Also in International Conf. on

Computer Aided Design, Nov. 1995, pp. 402-407.

[32] S. Minato, N. Ishiura, and S. Yajima, \Shared bi-

nary decision diagram with attributed edges for ef-

�cient Boolean function manipulation," Proc. 27th
ACM/IEEE Design Automation Conf., June 1990,

pp. 52-57.

[33] F. Mileto and G. Putzolu, \Average values of quan-

tities appearing in Boolean function minimization,"

IEEE Trans. Elec. Comput., Vol. EC-13, No. 4, April

1964, pp. 87-92.

[34] D. M. Miller, \Multiple-valued logic design tools,"

Proc. of International Symposium on Multiple Valued
Logic, May 1993, pp. 2-11.

9

[35] D. M. Miller, \Spectral transformation of multiple-

valued decision diagrams," Proc. 24th International

Symposium on Multiple-Valued Logic, Boston, pp. 89-

96, May 1994.

[36] J. F. Miller, P. Thomson, P. V. G. Bradbeer, \Ternary

decision diagram optimisation of Reed-Muller logic

functions using a genetic algorithm for variable and

simpli�cation rule ordering," Evolutionary Comput-

ing. AISB Workshop. Selected Papers, 181-90, 1995

[37] M. Mukaidono, \On the B-ternay logic function: A

ternary logic considering ambiguity," Trans. IECE
Japan, (in Japanese), Vol. 55-D, No. 6, pp. 355-362,

June 1972.

[38] M. Mukaidono, \Evaluation methods of logic functions

for uncertain input values," (in Japanese), Informa-

tion Processing Soceity of Japan, DA-18, 1983.

[39] S. Muroga, Logic Design and Switching Theory, John

Wiley & Sons, 1979.

[40] G. Papakonstantinou, \Minimization of modulo-2 sum

of products," IEEE Trans. Comput., C-28, pp. 163-

167, 1979.

[41] M. A. Perkowski, M. Chrzanowska-Jeske, A. Sarabi,

I. Schafer, \Multi-level logic synthesis based on Kro-

necker decision diagrams and Boolean ternary decision

diagrams for incompletely speci�ed functions," VLSI

Des. (Switzerland), Vol. 3, No. 3-4, 301-313, 1995.

[42] W. V. Quine, \A way to simplify truth functions,"

Amer. Math. Mon., Vol. 62, Nov. 1955, pp. 627-631.

[43] B. Reusch, \Generation of prime implicant from sub-

functions and a unifying approach to the covering

problem," IEEE Trans. Comput., Vol. C-24, No. 9,

Sept. 1975, pp. 924-930.

[44] T. Sasao and P. Besslich, \On the complexity of MOD-

2 Sum PLA's," IEEE Trans. on Comput., Vol. 39.

No. 2, pp. 262-266, Feb. 1990.

[45] T. Sasao, \Optimization of multiple-valued AND-

EXOR expressions using multiple-place decision dia-

grams," ISMVL-92, May 1992, pp. 451-458. Also, in

Sasao (ed.), Logic Synthesis and Optimization, Kluwer

Academic Publisher, pp. 33-57, 1992.

[46] T. Sasao (ed.), Logic Synthesis and Optimization,

Kluwer Academic Publishers (1993).

[47] T. Sasao, \Logic synthesis using EXOR logic gates,"

Chapter 12 in [46].

[48] T. Sasao, \AND-EXOR expressions and their opti-

mization," Chapter 13 in [46].

[49] T. Sasao, \Ternary decision diagram and their appli-

cations," International Workshop on Logic Synthesis,

Lake Tahoe, May 1993, pp. 6C-1{6C-11.

[50] T. Sasao, \Optimization of pseudo-Kronecker expres-

sions using multiple-place decision diagrams," IEICE

Transactions on Information and Systems, Vol. E76-

D, No. 5, May 1993, pp. 562-570.

[51] T. Sasao, \EXMIN2: A simpli�cation algorithm

for exclusive-OR Sum-of-products expressions for

multiple-valued input two-valued output functions,"

IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, vol. 12, No. 5, May

1993, pp. 621-632.

[52] T. Sasao and J. T. Butler, \A design method for look-

up table type FPGA by pseudo-Kronecker expansion,"

Proc. of International Symposium on Multiple Valued

Logic, Boston, MA, May 1994, pp. 97-106.

[53] T. Sasao and J. T. Butler, \Planar multiple-valued

decision diagrams," Proc. of International Symposium

on Multiple Valued Logic, Bloomington, Indiana, May

23-25, 1995, pp. 28-35.

[54] T. Sasao and M. Fujita (ed.), Representations of Dis-
crete Functions, Kluwer Academic Publishers (1996).

[55] T. Sasao and J. T. Butler, \Planar multiple-valued

decision diagrams," Multiple-valued Journal, Vol. 1,

No. 1, pp. 39-64, 1996.

[56] T. Sasao and J. T. Butler, \A method to represent

multiple-output switching functions by using multi-

valued decision diagrams," IEEE International Sym-

posium on Multiple-Valued Logic, Santiago de Com-

postela, Spain, May 29-31, 1996, pp. 248-254.

[57] T. Sasao and J. T. Butler, \Bi-decompositions of logic

functions and their applications," IPSJ SIG Note,

Vol. 96, Information Processing Society of Japan, Dec.

1996.

[58] T. Sasao, \Representation of logic functions using

EXOR operators," Chapter 2 in [54].

[59] S. Stankovic, T. Sasao, and C. Moraga, \Spectral

transforms decision diagrams," Chapter 3 in [54].

[60] T. Sasao and F. Izuhara, \Exact minimization of

FPRMs using multi-terminal EXOR TDDs," Chapter

8 in [54].

[61] T. Sasao, \Ternary decision diagrams and their appli-

cations," Chapter 12 in [54].

[62] A. Srinivasan, T. Kam, S. Malik, and R. K. Bray-

ton, \Algorithm for discrete functions manipulation,"

Proc. ICCAD-90, pp. 92-95, Nov. 11-15, 1990, Stanta

Clara, CA.

[63] A. Thayse, M. Davio, and J.-P. Deschamps, \Op-

timization of multiple-valued decision diagrams,"

ISMVL-79, Rosemont, IL. May 1978, pp. 171-177.

[64] P. Tison, \Generalization of consensus theory and ap-

plication to the minimization of Boolean functions,"

IEEE Trans. Electron Comput., Vol. EC-16, August

1967, pp. 446-456.

[65] I. Wegener, \The size of reduced OBDD's and op-

timal read-once branching program for almost all

Boolean functions," IEEE Trans. on Comput., Vol. C-

43, No. 11, pp. 1262-1269, Nov. 1994.

[66] S. Yang, \Logic synthesis and optimization benchmark

user guide, Version 3.0," MCNC, Jan. 1991.

[67] K. Yasuoka, \Ternary decision diagrams to represent

ringsum-of-products forms," IFIP WG. 10.5 Work-

shop on Applications of the Reed-Muller Expansions
in Circuit Design, August 1995.

[68] K. Yasuoka, \Ternary decision diagrams," Proc. SPIE

- Int. Soc. Opt. Eng., Vol. 2644, pp. 489-496, 1996.

10

