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Abstract
This paper presents an optimization method for
pseudo-Kronecker ezpressions of p-valued input two-

valued output funclions by using mulii-place decision
diagrams forp = 2 and p = 4. A conventional method
using eztended truth tables requires memory of O(3")
to simplify an n-variable expression, and is only prac-
tical for functions of up to n = 14 variables when
p = 2. The method presented here utilizes multi-
place decision diagrams, and can optimize consider-
ably larger problems. FEzperimental results for up to
n = 39 variables are shown.

I Imtroduction

Increasing complexity of LSIs has made human de-
sign of bug-free logic circuits very difficult. Thus, var-
ious automatic logic synthesis tools have become in-
dispensable in LSI design. Most of the logic synthesis
tools use the design theory for the circuits consisting
of AND, OR, and NOT gates. As for control circuits,
these tools produce good circuits comparable to the
human design. However, they are not so good at the
design for arithmetic circuits, error correcting circuits
and circuits for tele-communication: such circuits can
be simplified when EXOR gates are effectively used.
Therefore, in order to develop a logic synthesis tool for
such circuits, a design theory utilizing EXOR gates is
very important.

In this paper, we consider the most basic design
problem using EXORs, i,e., a simplification of AND-
EXOR two-level logic circuits. Various classes ex-
ist in AND-EXOR type logical expressions. Among
them, ESOP (Exclusive-or sum-of-products expres-
sion) is the most general class, and requires the fewest
products to represent given functions. However, no
efficient minimization method is known. This paper
considers the minimization of the AND-EXOR. type
expressions called PSDKROs (pseudo-Kronecker ex-
pressions), which require fewer products than fixed
polarity -Muller expressions to represent given
functions, and the minimization is relatively easy. A
conventional minimization method for PSDKROs uti-
lizes an extended truth table with 3" elements, and is
practit[:nl]for functions of up to n = 14 variables when
p=2[28].

This paper presents & minimization method for PS-
DKRO using a MDD (multi-place decision diagram)
instead of the extended truth table. The memory re-
quirement of the new method is O(3"/n). Experimen-
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tal results up to n = 39 variables are shown.

II Definitions and Basic Properties

An arbitrary logic functions can be represented by
an AND-EXOR expression. In this part, pseudo-
Kronecker ressions (PSDKROs) and exclusive-
or sum-of-p::gucts expressions (ESOPs) are defined.
Also, some basic properties of two-valued input func-
tions are shown.

Theorem 2.1 (Expansion Theorem)
An arbitrary logic functions f can be represented as

either
f=1-fo@X-fr, —1)
f=X-f®1-fi, —(2)or
f=X-fo0X-fi, —(3)
where

ho= f(o’Xth"")Xn)» h= f(lsXZ,xs"“y-Xn)’
and fr=fo® fi.

(Proof) f can be represented as f = XfoVXHf. Be
cause two terms are mutually disjoint, we have (3).
Replacing X with 19 X in (3}, we have
f=(180X)fooXfi=1-fo®X(fo® ) =1-fo®X fa.
Replacing X with 1@ X in (3), we have
F=Xfo®(16X)fi =1-fo®X(fo®f1) = X-f201-f1.
(QED.)

Definition 2.1 Pseudo-Kronecker ezpressions (PSD-
KROs) of n-variable two-valued functions are defined
recursively as follows:

1) Constants 0 and 1 are PSDKRO:s.

2) Literals X,, and X,, are PSDKRO:s.

3) Let Go(Xu+1, Xi43,* 2 Xn) and G1(Xi+1, Xit2,
<++, X,,) be PSDKROs, then Go® X,G1, X1 Go®
G1, and X4,Go ® X3G, are PSDKROs.

4) The only ezpressions given by 1), 2) or 3) are
PSDKROs.

A PSDKRO for the function f is said to be minimum
if it contains the minimum number of products.

For two-valued input functions, PSDKROs may
have both true and complemented literals of each vari-
able. When the order of the variables for expansion is
fixed, an n-variable function has at most 32" differ-
ent PSDKRO expansions [8]. A minimum PSDKRO of




the given function can be obtained from the extended
truth table with 3" elements [8] : an ordinary work-
station can minimize PSDKROs with up to n = 14
variables (28].

If the ordering of the input variables is permuted,
the number of products in a PSDKRO may change.
So, to obtain the minimum expansion, we need to con-
sider n! different combinations, which is impractical
for large n.

Definition 2.2 An ezpression obtained by EXORing
arbitrary logical products is called ezclusive-OR sum-
of-products ezpression (ESOP). An ESOP for f is
minimum if it contains the minimum number of prod-
ucts.

PSDKROs form a proper subset of ESOPs. For ex-
ample, X @Y @& XY is an ESOP, but not a PSD-
KRO. ESOPs require not more products then PSD-
KROs [28].

No efficient minimization method for ESOP is
known, and iterative improvement methods are used
to reduce the number of products in the ESOPs.
The memory requirement of the iterative improvement
method is O(nr), and the computation time is O(nr?)
or O(nr®), where n is the number of the input vari-
ables and » is the number of the products.

Iterative improvement methods cannot prove the
minimality, and tend to be time consuming [4, 9, 10,
20, 13, 22, 25, 26]. Because minimum PSDKROs are
relatively easy to obtain, they can be used as initial
solutions for ESOPs [28].

III PSDKROs with two-valued inputs

3.1 Binary Decision Diagram

Binary Decision Diagrams (BDDs) have gained
widespread use in the logic synthesis. We first de-
ﬁr]le BDD and reduced ordered BDD (ROBDD) as in
5].

Definition 3.1 A BDD is a rooted, directed graph
with node set I' containing two types of nodes:

A nonterminal node v has as atiributes an argu-
ment -indez indexs;r) € {1,..,n}, and two children
low(v), ﬁfl h(v) e V.

A terminal node v has attributes a value value(v) €
{0,1}.

The correspondence between BDDs and Boolean func-
tions is defined as follows:

Definition 3.2 4 BDD G having root node v denotes
a function f, defined recursively as:
1. If v is a terminal node:
(a) If value(v) = 1 then f, = 1.
(%) If value(v) = 0 then f, = 0.
2. If v is a nonterminal node with indez (v) = i then
fo i3 the function:
f”(zl! "t t'.) =% flow(v()(zli te 120)
Vz; - fhigh(v)(zh ceeyn)e
-2; is call the decision variable for node v.
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Figure 3.1: A 4-variable function

Jt‘h reduced ordered BDDs (ROBDD) is the BDD such
at:

1) For any nonterminal node v, if low(v) is also
nonterminal, then indeﬁ) < indez(low(v)).
Similarly, if high(v) is also nonterminal, then
index(v) < index(high(v)).

2) low(v) # high(v) for any node v, and no two sub-
graph in the BDD are identical.

3.2 Principle of minimization

For example, consider a PSDKRO for a 4-variable
function f(X,Y, Z,W). As shown in Theorem 2.1, the "
function f(X,Y,Z, can be expanded in one of the
following:
f(X,Y,2,W)=1-fo(Y,Z,W)®X- (Y, 2,W), -(1)
f(X,Y,2,W) =X f,(Y,Z,W)®1-f1(Y, 2,W), —(2)
filxr Y»Z’ W) = X'fo(l’, Z, W)@X'f1}Y Za W),—(3)
where 1o(Y,7,W) = {(0,Y,Z,W) I(Y,z,W;) =
SLY, 5 W), and f2(¥,2,W) = fo(¥,2,W) @ (Y,

Si’xnila;ly, fo, f1, and f3 are expanded as follows:
Jo=Y - foo®Y -for=1:foo®Y - foa
Y- foa®1: fory foz = foo ® for,

=Y f10@0Y - fuu=1-fio®Y - fra
=Y -f12801: fu, fiz= fr0® fu1,

f2=Y f2000Y -fa1=1:f20@Y - faz
=Y f2®1- fa1, faz = fa0 ® fa1.

Definition 3.3 A ternary decision tree is a tree with
vertez set I' containing two lypes of nodes:

A nonterminal node v has as atiributes an argu-
ment indez index(v) € {1,.--,n}, and three children
low(v), high(v), exor(v) € V. A terminal node v has
atiributes a value value(v) € {0,1}. The correspon-
dence between ternary decision trees and Boolean func-
tions is defined similar to Definition 3.2.

Example 3.1 The §-variable function in Fig.3.1 can
be represented by the ternary decision tree in Fig.3.2.
A PSDKRO requires two sub-functions among the
three. In order to reduce the number of the products in
a PSDKRO, we have to chose two sub-functions with
as few products as possible.

For the ezpansion of fo, the PSDKROs for the three
sub-functions are foo = W, for = Z@W, and fora = Z.
Because the PSDKRO for fo, has the largest number
of products, we use the type (1) ezpansion:

fo=foo®Y foz = (W)@ Y(Z).
Nezt for the ezpansion of f1, the PSDKROs for sub-
functions are fio = ZOW, fii=Z,and fia = W.




f(X,Y,2,W)

W ZoW Z2ZeoWZ WZ WZeW

Figure 3.2: Ternary decision tree for 4-variable func-
tion

Because the PSDKRO for fio has the largest number
of products, we use the type (2) ezpansion:
. H=Yfa® fu=YW)e (2).

Finally for the ezpansion of fa, the PSDKROs for the

sub-functions are fao = Z, f21 = W, and f23 = Z0OW.

Because the PSDKRO for f33 has the largest number

of products, we use the type (3) ezpansion:

H=Yf0Yf,=Y2Z)oY(W).

So, the numbers of the pmdu(gs) in }SBKROJ for

for f1, and fy are all 2 in this case. If we use the

type (3) ezpansion for f, we have the PSDKRO with

4 products:

f(X,Y,2,W)=Xfo @ Xf,
=X(WeY(Z)eX(Y(W)e2Z)
=X-WoX.Y.-Z0X- Y- WoX.Z.

Note that in this case, foa = flz, fo;_ = fzz, and

J11 = fao. Because the same sub-functions have the

isomorphic sub-trees, only one sub-tree is necessary for

each sub-function to dertve the minimum PSDKRO.
(End of Ezample)

8.3 Representation of functions by TDDs

Definition 3.4 A Reduced Ordered Ternary Deci-

sion Diagram (ROTDD) of f is an acyclic directed

graph obtained by reducing the isomorphic sub-trees
the complete ternary decision tree for f.

ROTDDs can be generated by a similar a,.rliorithm to
a ROBDD 55, 2, 11, 16]. When the number of the
input variables is large, ROBDDs require less memory
than truth tables or cube representations. Similarly,
R(g;I‘DDs require less memory than extended truth
tables.

The number of nodes in a complete ternary decision
tree for an n-variable function is:

1431432 4+...43" 1 = (3" - 1)/2.
However, in the ROTDD, only one sub-graph is real-
ized for the same sub-functions. Thus, the number of
nodes can be reduced.

Lemma 3.1 All the functions of n or less variables
are represented by a BDD with 22" nodes.

%Proof ) The proof is done by mathematical induction.
or n = 0, all the functions (constants 0 and 1) are
represented by a BDD with 2 nodes. For n = 1, all
the functions (constants 0,1, X, X) are represented by
a BDD with 4 nodes as shown in Fig.3.3. Suppose
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Figure 3.4: A BDD representing all the functions of k
or less variables

that all the functions of (k-1) or less variables can be

represented by a BDD with 22*~" nodes.
From here, we consider the case of n = k.

An arbitrary k-variable function can be represented as
f = XfaVX fy, where f, and f, are functions of (k-1)
or less variables. Consider the BDD shown in Fig.3.4.
An arbitrary n variable function can be realized in the
upper part of Fig.3.4. Thus, the BDD in Fig.3.4 repre-
sents all the functions of k or less variables. Note that
the number of k-variable functions to generate in the
upper part of Fig.3.4 is 22° — 22*™*, since 22" func-
tions are already generated in the lower block. Hence,
all the functions of k or less variables are realized by
the BDD shown in Fig.3.4. Note that the total number

of nodes is 22" (QE.D.)

Lemma 3.2 All the functions of n or less variables
can be realized by a TDD with 22" nodes.

(Proof) Suppose that the TDD for all the functions of
n or less variables is derived from the BDD shown in
Fig.3.4. Since all the functions of k or less variables
are already realized in the BDD, the numbers of nodes
will not increase. (QE.D.)

Theorem 3.1 An arbitrary n-variable function can
be represented by a TDD with at most

N(n) = minf_, (2572 +27") nodes.

(Proof) Consider the TDD in Fig.3.5, where the upper
block is the complete ternary decision tree of k vari-
ables, and the lower block generates all the functions
of (n — k) or less variables. The complete ternary de-
cision tree for a k-variable function has
1+3'+3%24...4 8% = (3*+ ~ 1)/2 nodes.

By Lemma 3.2, the lower block has 22"~ nodes.
Hence, we have the theorem. (Q.E.D.)

Corollary 3.1 An arbitrary n-variable function can
be represented by a ROTDD with O(3"/n) nodes.

(Proof) Set k = n — logg n in Theorem 3.1. (Q.E.D.)




Complete ternary decision| 3**:-1 | 4.
tree of k variables 2
TDD for all the functions gn—m
2 nodes

with (n — k) or less variables

Figure 3.5: Representation of an n-variable function
by TDD
S(k) 2k+1 _ 2 nodes

Sa Sy
| -1 1 |
A BDD representing all

the symmetric functions
of (k — 1) variables

2% —2(k-1)-2
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Figure 3.6: BDD representing all the k-variable sym-
metric function

3.4 Symmetric functions and TDD
Deflnition 3.8 An n-varisble fundamental symmet-
ric function S(n, k) takes the value 1 iff the number of
1’s in the inputs is ezactly k (k = 0,1,2,...,n).

Lemma 3.3 All the symmetric functions of n vari-

ables can be represented by a BDD with 2°+%2 —2n -2
nodes.

g;roof) The proof is done by mathematical induction.
r n = 0, all the symmetric functions (constants 0
and 1) are realized by a BDD with 2 nodes. Forn =1,
all the symmetric functions (constants 0 and 1, X,
X) are realized by a BDD with 4 nodes as shown in
Fig.3.3. Suppose that all the symmetric functions of
(k — 1) variables can be represented by a BDD with
2843 _ 2k — 2 nodes.

There are 2*+! — 2 different symmetric functions of
k variables and each of them can be represented as

S(k) =X+ Sa(k— 1)V X, - Sy(k — 1),

where S, (k—1) and S;(k —1) are symmetric functions
of (k—1) variables. Therefore, S(k) can be represented
by the BDD in Fig.3.6. Note that the total number of
nodes is

b+l _ 9 4 o+l _9(k —1) -2 =282 2k -2,

(Q.ED.)

Lemma 3.4 All the symmeiric functions of n vari-

ables can be represented by a TDD with 2*% - 2n—2
nodes.

(Proof) Similar to the proof of Lemma 3.2. (Q.E.D.)

Theorem 3.2 An arbitrary n-variable symmetric
function can be represented by a BDD with

BN(n) = min, { $X)G42) 4 on-b+2 _ 5(5 — k) — 2}
nodes.
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Fiﬁure 3.7 BDD for symmetric function of n vari-
ables.

(Proof) Consider the BDD shown in Fig.3.7. The
nodes in the lowest level of the upper block correspond
to fundamental symmetric functions S(n,k), (k =
0,1,---,n). Fig.3.7 shows that the total number of
nodes is BN (-rlS (Q.E.D.)

Theorem 3.3 An arbilrary n-variable symmetric
function can be represented by a TDD with
T N(n) = min, { 20048 4 (k4 1)

+27*+2 _ 2(n — k) — 2}
nodes.

SeProof ) Consider the complete ternary decision tree of
variables. The different number of functions gener-
ated in the lowest level of the tree is derived as follows:

1. Because f is completely symmetric, the permu-
tation of the subscripts of f will not change the
function: ie., foz1120 is equal to foo1122- So the
different number of k-variable functions generated
by the complete ternary decision tree is equal to
”the number of ways to select k objects from 3
distinct objects”.

2. ”The number of ways to select k& objects from p

distinct objects” is C(p+ k& — 1,k) [14] .
. So the number of the different symmetric func-
tions is (k + 1)(k + 2)/2.

The tot,;.al number of nodesh lllul+tll)leh +l_150TDD is
1Y ho(i+ 1) +2) = M 4 (k4 1),

Consider the TDD shown in Fig.3.9, which generates
all the symmetric functions of (n — k) variables. By
combining the ROTDD derived from Fi5.3.8, and the
TDD in Fig.3.9, we can derive a TDD which represents
an arbitrary symmetric function of n variables. Hence
the theorem. (QED.)

Corollary 3.2 An arbitrary symmetric function of n

variables can be represented by a TDD with O(n®)
nodes.

(Proof) Set k = n in Theorem 3.3. (Q.E.D.)




j:m Jor foz fio fu fia fao fu f?:
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Figure 3.8: Complete ternary decision tree for k-
variable function.

TDD for all the symmetric
functions of (n — k) variables

k42 _2n -2
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Figure 3.9: TDD for all the symmetric functions of
(n — k) variables.

8.5 Minimization Algorithm (p = 2)

A minimum PSDKRO for a given function can be
recursively obtained from the minimum PSDKROs for
all the sub-functions.

Algorithm 3.1 (Minimization of PSDKRO for p = 2)

1. Construct the ROTDD for the given function.
Let the node i represent the function f;.
Compute the cost of each node. COST(f;) is de-
fined as follows:

COST (the constant function 0) = 0; -

COST (the constant function 1) = 1; and

COST(f;)

= Y j=0 COST(f;:§) — max3_, COST(f::j),
here

2.

w
COST\(f;:0), COST(f;:1), and COST\f;:2) de-
note IEI{e )C”OSTa 12: P)SDKRO forﬂ{he )aub-
{;‘”‘;ﬁm £i(0), £:(1) and fi(0) ® fi(0), respec-

- tively.

. For each node, delete a sub-tree with the mazi-
mum COST among the three.

4. Ezpand the remaining decision diagrams, and ob-

tain the PSDKRO.

An m-output function is represented by a function
whose values takes m-bit binary vectors: A 2-valued
input 2™-valued output function.

IV Extension to multiple-valued cases

4.1 PSDKROs with multiple-valued in-
puts

Definition 4.1 Let P = {0,1,---,p— 1}, p > 2 and

B = {0,1}. f: P* — B is a multi-valued input two-

valued output function. From here, the term function

means a multiple-input two-valued output function.

Definition 4.2 Let S C P. X% is a literal of X,
where
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s_J) 0 X¢Ss

X = { 1 (xEs
When S contains only one element, X} is denoted by
X%, A product of literals Xf‘X,s’ v+« X3 is a product
term. A sum of products

V(shsﬂv'"vsn) xf‘x:’ o Xf"

is a sum-of-products expression (SOP). Where
V(81,52,++Sw) denotes the inclusive-OR of some tuples
of (81,52, ++,5,). An ezclusive-OR of products

) @(sn.sm-",sn) 'Xfl Xfa v X5n
is an exclusive-OR sum-of-products

(ESOP).

Definition 4.3 An SOP for f is a minimum SOP
(MSOP) for f, if it has the minimum number of

ucts. An ESOP is a minimum ESOP (MESOP) if it
has the minimum number of the products.

expression

Lemma 4.1 An arbitrary n-variable function f(X,,
X3, +++, X,) can be uniquely represented as

f= v(uuc:,-.-,cu) f(a1,83,-+,00) X3 X3% - - X3,
where V(ay,a3,.+,an) TePTEsEnts the inclusive-OR for all

the combinations such thata; € P, and f(ay,a32,+"+,ay)
=0or=1.

Lemma 4.2 An arbitrary n-variable function f(X;,
X3, +++, X,) can be uniquely represented by an ez-
pression:

f= E @(a;,a;,-",an) .f(al, L TRAR %)XT'X;' ee X:"’

where Y ®(¢h¢=,"wn) represents ezclusive-or for all
the combinations of a; € P.

Definition 4.4 Let S be subseis of P = {0,1,---,p—

1}. Let
B i¢gsS
«={ 1 {3 .
then, @ = (ag,ay,:-+,a,_y) is called a characteristic
vector of S.

Lemma 4.3 An arbitrary n-variable function f(X1,
X3y -++y Xy) can be um'guely represented as

f =S @i Xi - f(iy X2+, Xa).
This is a multiple-valued version of Shannon’s expan-
sion theorem.

Theorem 4.1 (Expansion Theorem) An arbitrary
function P* — B can be uniquely represented in the
form
F=X% - ho® X5 by ®--- @ X501 by (41)
dg
a
if and only if M is non-singular, where M = :1 ,
dp1
and @;(i = 0,1,.--,p—1) are the characteristic vectors
Of S,' .

(Proof) By rewriting (4.1), we have
f= E@;;DXSI' *hj.




On the other hand, by Shannon expansion of f, we

have L ws
f = 2@?=0‘X, * fJ'
Let I be the unit p x p matrix. The relation of the
above two equations can be written as
[hOvhlv"'vh;—ll ‘M= [nyfh"')fp—I] I
When M is non-singular, the inverse matrix M~! ex-
ists, and the function can be uniquely represented as
[ho, h13 .. °., hp-l] = [fo: flv R ) fp-l] ‘M-
When M is singular, [he,h1,---,hp—1] cannot be
uniquely represented. (QE.D.)

Deflnition 4.8 Pseudo-Kronecker expression (PSD-
KROs) of n-variable p-valued functions are defined re-
cursively as follows:
1) Constants 0 and 1 are PSDKROs.
2) A literal X3(S C P) is a PSDKRO.
3) Let Gj(-xh+1sxh+2: i "Xn)v (j =0,1,2,+++,p -
1) be PSDKROs, then

f= 2 e;;.('l) ij ‘ Gj(X),+1,X),+3, <oy Xn)
is also PSDKRO if the matriz M defined in The-
orem {.1 is non-singular.
4) The only exzpressions given by 1), 2) or 3) are
) PSDKROs. b 2) or 9)

A PSDKRO for the function f is said to be minimum
if it contains the minimum number of the products.

4.2 Minimization algorithm (p = 4)
From here, we consider the case where p = 4.

Theorem 4.2 (Expansion Theorem for p = 4)
Let A,B,C,D, A", B',C',D' C P, and P = {0,1,2,3}.
Let 3,b,¢,d,d',0,é and di be the characteristic vec-
tors of A,B,C,D,A',B',C' and D', respectively.

a
Let M = (4] R =[¢",§",8" 3" ,and M-R=1

(unit matriz). Then, an arbitrary §-valued input two-
valued output function f can be uniquely represented
in the forms

£r= X% fiy @ X1 £, @ X 13}, flay @ X frq

=XA-fA'$XB'fB'QXc'fC'$XD'fD',
where
o =X @ica fiy 80 =Y. Bicp Fiy
for =YX @ice fiy for = X Bicp fiip-

(Proof) Obvious from the proof of Theorem(4.1. )
QE.D.).
Now, we consider the simplification method for PS-
DKRO. In the case of p = 2, we considered three sub-
functions. In the p-valued case, we have to consider
(2 — 1) sub-functions. Especially for p = 4, we have
to consider the following 15 sub-functions:
Foors Fays Fays Fsn
01} = f0)}®F 1)) Fros} = Foy®F (2} Frosy = FrorOF s
fasy = @ f), frasy = f}q@f{:)- fas) = f1210f(s)s
Jio13} = froy @ F1y ® fray, Frorsy = Frop © Fruy @ Fis)s
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Figure 4.1: Example of a 4-valued input function
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Figure 4.2: Expansion tree having 15 branches,

fro1s) = fio} ® f}:} @ f}:},.f(m} = iy © fa3 © fiays
fo12s} = fro) @ r}@ 3} @ fis)-

Also in the mu txple-vaiued cases, 8 minimum PS-
DKRO for a given function can be recursively ob-
tained from the minimum PSDKROs for all the
sub-}f"ﬁctions. The following examples illustrate the
method.

Example 4.1 Consider the §-valued input function
f shown in Fig.{.1, which was obiained by pairing
the variables in Fig.3.1. Fig.{.2 shows the ezpan-
sion tree for the function f with respect to X;. Note
that this tree has 15 branches. Table {.1 shows the
sub-functions, and the numbers of products to rep-
resent in PSDKROs. The numbers of the products
to represent the sub-functions are 0 for fioa3), and
1 for other functions. The characteristic vectors
for the { sub-functions fiozsy fays fiay and fisy are
(1011),(0100),(0010), and (0001), respectively. Note
that these vectors are linearly independent from each
other. Hence, f can be uniquely represenied by these
4 sub-functions. Because

e )
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can be represented as
f=X{ - fa®XP-fo @ XC - for ® XP - fo
- Xi[l} .Xio,s} q)XI{o,z} . X;“"} exl{o.s)» .xio,x}_
(End of Ezample)

Definition 4.6 Reduced Ordered Penta-decimal De-
cision Diagram (ROPDD) of f is an acyclic directed
graph obtained by reducing the isomorphic sub-trees
from the complete penta-decimal decision tree for f.

Table 4.1: Sub-functions in Example 4.1.

T 0J172/3/)01J02J03/12/13)23/012J013J028/128J0123
TUUIT U I I I1ITO0OTIT T 0 U0 U0
ZOUTIOO0 I 011100 1T 0 1 1T
JTOUTIOC T 0 0 T 01 0 1T 0 1 0
TITITT T TTTIT1 0 1T I T 1




Table 5.1: Number of products to realize arithmetic
functions

2-valued 4-valued

Data PSD PSD

Name 2]5[ SOP [ KRO | ESOP | SOP | KRO | ESOP
adrd [255] 15| 34 I 17| 14 1T
log8 |255| 123| 128 96| 98| 115 94
mip4 |225] 121 81 61 85 63 52
nrm4 [255] 120] 105 71| 70| 72 56
rdm8 [255| 76| 41 31| 52| 30 26
rot8 |255| 571 44 35| 38| 32 28
sqr8 12551 180 146 112| 147 125 112
wgt8 |255| 255| 107 54| 34 25

Algorithm 4.1 (Minimisation of PSDKRO with p = 4)

1. Form the ROPDD of the given function f. Let
node ¢ denote the function f;.
2. Let COST\ f:-), be the cost of the function f; recur-
sively defined as follows:
COS1\the constant function0) = 0 and
COST\the constant functionl) = 1.
COS1\(f;) = COST\f;: A) + COST\f;: B)
+COST\f;:C) + COST\f:: D),
where COST\(f;: A) denotes the cost of sub-
Junction fia, etc., and let the sets A,B,C and
D satisfy the conditions of Theorem 4.2, and the
value of the COST\(f;) be minimum.
3. For each node, delete the redundant sub-tree.
4. Ezpand the remaining decision diagram, and ob-
. tain the PSDKRO.

V Experimental Results

We developed minimization programs described in
III and IV, and optimized various functions. The pro-
grams are coded in C language and run on a SPARC
station 1+.

5.1 Number of products in PSDKROs
Table 5.1 compares the numbers of the products to
represent arithmetic circuits, where |f| denotes num-
ber of the products in the origi.m.l data. The num-
bers of the products tend to decrease in the follow-
ing order: |f|, SOP, PSDKRO, ESOP. These arith-
metic functions were generated by a computer pro-
ram. They also appear ESPRESSO Eﬂ or MCNC
F30] benchmarks. But, some are renamed as follows:
nrm4=dist, rdm8=f51m, rot8=root, and wgt8=rd84.
Table 5.2 compares the number of the products for
other benchmark functions. In this tables, only the
functions whose ESOP realizations require fewer prod-
ucts than SOPs are shown. We could not minimize
some functions when p = 4 because of memory over-
flow. In these experiments, SOPs are simplified by
QM or MINI2 [24], ESOPs are simplified by EXMIN2
[]29], and 4-valued input functions are generated by a
euristic algorithm for pairing input variables [24].
5.2 Ordering of the input variables
The ordering of the input variables in the expansion
influences the number of the products in PSDKROs.
To obtain the minimum PSDKRO for all the order-
ings, we have to consider n! different combinations.
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Table 5.2: Number of products to realize arithmetic
functions

| Products

Z-valued mmput | 4-valued mput
[Data [IN|OUT ‘PSDTE§OPISOF'PSDE§UP

KRO KRO

[5xpl K 1 10| 47| 34| 47 J4 27
add6 (12| 7| 355| 132] 127 37| 34/ 23
bc0 [26] 11| 177] 180 168| 143 - 140
cold |14 1| 14| 14] 14| 14 7 7
duke2 |22 29| 86| 108 81| 76 A 72
in2 [19] 10| 134] 117 113 84 - T
in7 [26f 10| 54| 42| 35| 44 -| 35
inc 71 9 20| 31 30 28] 27 24
misex3|14| 14| 690| 754 585| 4571 -| 454
rd53 | 5| 3] 31| 20 15 12] 10 9
ed73 | 7| 3| 127] 63| 42| 37 25| 18
lsac2 |10] 4| 58 41} 29| 38 28 25
t481 (16| 1| 481] 13} 13| 32| 9 8
tial [14] 8| 579 939 506 282 - 190
x6dn [39] 5| 81| 104] 95| 63 A4 s

- : Memory overflow

Table 5.3: Distribution of the number of products in
PSDKRO for function (LOG8) when the order of the

input variables is changed.
PTTCOUNTPT CAS%'N

PTTCOUNIPTTCOUN
119 101126 1346133 35981140 908’
120 32(127| 1824]134| 3402141 626
121 118128| 2166135| 3190]142 388
122 1901129 2410(136| 2586143 266
123 504|130 2816(137| 2188|144 152
124 6921131 3112(138| 1744145 58
125]) 1036|132] 3592|139| 1256|146 10
PT : Number of the products

COUN : Number of the combinations

For example, LOGS (logarithm function of 8 bits) has
8 inputs, and the number of the combinations to con-
sider is 8! = 40320. Table 5.3 shows the distribution
of the number of the products. In this function, the
number of the products is between 119 and 146.

VI Conclusion and Comments

In this paper, we presented minimization algo-
rithms for PSDKROs by using MDD. We simplified
expressions for various functions, and compared the
number of products. PSDKROs require more prod-
ucts than ESOPs, but they are easier to minimize than
ESOPs. For p = 2, the memory requirement for the
optimization by TDD is O(3"/n). Minimal PSDKROs
can be used as initial solutions for ESOPs. The ex-
perimental results for the functions up to 39-variable
functions are shown.
The remaining problems are:

1. Simplification method of ESOPs by using TDDs.
2. Ordering of the input variables which minimizes
the number of the products in a PSDKRO.

3. Pairing of the input variables which minimizes the
number of the products in a PSDKRO.
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