A transformation of multiple-valued input two-valued output
functions and its application to simplification of exclusive-or
sum-of-products expressions

Tsutomu SASAO
Department of Computer Science and Electronics
Kyushu Institute of Technology
lizuka 820, Japan

Abstract

This paper presents a transformation for p-valued in-
put functions. The number of products in minimum
ezclusive-or sum-of-products ezpressions (ESOPs) is in-
variant under this transformation. Algorithms for re-
ducing the number of product terms in ESOPs using
this transformation are presented for p = 2 and p = 4.
Arithmetic functions are simplified to show the ability
of this approach.

1 Introduction

Recently automatic logic synthesis tools are extensively
used in VLSI design. Most logic synthesis tools use
AND and OR gates as basic logic elements, and they
derive multi-level logic circuits from AND-OR two-level
circuits. Thus the minimization of sum-of-products ex-
pressions (SOPs), which corresponds to the minimiza-
tion of AND-OR two-level circuits, is vitally important
in such tools. It is known that arithmetic and error cor-
recting circuits can be realized with many fewer gates
if EXOR gates are available as well as AND and OR
gates. Such circuits can be derived from AND-EXOR
two-level circuits. So the minimization of Exclusive-
OR sum-of-products expressions (ESOPs), which cor-
responds to the minimization of AND-EXOR two-level
circuits, is also important. It has been long conjectured
that ESOPs require fewer products than SOPs to rep-
resent same functions [4, 11, 13]. Our recent research
shows that ESOPs require fewer products than SOPs
to realize randomly generated functions and symmetric
functions [18, 16]. To realize an arbitrary function of 6
variables, an ESOP requires only 16 products, whereas
an SOP require 32 products [8]. As for the 4-variable
functions, ESOPs require, on the average, 3.66 prod-
ucts, whereas SOPs require 4.13 products [7]. Although
there exists a class of functions whose ESOP realization
require more products than SOP’s [15], we believe that
t!le ESOP’s will be important tool in efficient logic de-
sign.

The number of products in AND-OR two-level circuits
can be reduced by adding decoders to the inputs (i.e.,
AND-OR PLAs with two-bit decoders)[17]. In a similar
way, the number of products in AND-EXOR two-level
circuits can be reduced by adding decoders to the inputs

CH3009-8/91/0000/0270/$01.00 © 1991 |EEE

270

Table 1: Number of AND gates and connections to real-
ize arithmetic functions by AND-OR and AND-EXOR
circuits

of AND gates # of connections
Data | AND-OR [AND-EXOR] AND-OR [AND-EXOR]
Name [Tbit [2bit [Ibit| 2bit | 1bit | 2bit | 1bit| 2bit
ADR4] 75 1 31 111 423 139 168 9
LOGS8| 123 98 96 9411019 1162 785 109
MLP4| 121 85 61 52 889 910, 441 46
INRM4| 1200 70 73 56(887 799 602 61
RDMS8| 76 52 31 260 406] 431 181 20
ROTS8| 57| 38 35 28 389 414] 280 35
SQRS8| 180(147 114 11211398 1675 809 1181
WGTS8| 255 54 54 25 2078 530 356 20

(i.e., AND-EXOR PLAs with two-bit decoders)[16, 12].
Tablel compares the number products and literals to
represent arithmetic functions of 8-inputs by AND-OR
circuits and AND-EXOR circuits with one and two-
bit decoders, where a one-bit decoder generates true
and complemented variables. This table implies the
circuits based on ESOP require fewer gates than the
ones based on SOPs. The minimization of AND-EXOR
PLAs with decoders can be done by the minimization
of ESOPs with p-valued inputs (p > 2) [16, 12]. So,
an efficient minimization algorithm for ESOPs is use-
ful for the design of such circuits. However, no effi-
cient method is known for deriving minimum ESOPs
(MESOPs) even for the two-valued case. Several heuris-
tic algorithms have been developed for near minimum
ESOPs [14, 5, 6, 18, 16, 2, 3].

The first topic of this paper is an L-transformation
which is useful for minimizing ESOPs. Suppose that
F; is an ESOP of a logic function, and G, is obtained
by the transformation. Let F,, be an MESOP of F;.
Then, a MESOP for G is obtained by applying the same
transformation to Fy (Fig.1). Fig.2 shows an example of
L-transformation. Let F; be an given expression, which
is not so simple to minimize. If we interchange literals
1 and z in Fj, then we have expression G;. Because
z2-y®z-y=(2®z)-y=1-y =y, Gy is simplified

ESOP MESOP
minimization
R = Fn
1 L-transformation [
G 1 = Gm
minimization

Figure 1: Concept of L-transformation

ESOP MESOP
Fi=z-101-y®z-y = Fo==z-3
t R !

G1=1'10z y0z-y=>G=10y=>G, =173
Figure 2: Example of L-transformation

to G, and finally, to G,,, which is MESOP. And if we
interchange literals 1 and # in G, then we have expres-
sion F,,, which is MESOP for F;. The L-transformation
produces an equivalence relation, and the numbers of
products in MESOPs are the same for the functions
in the same equivalence class. Therefore, any function
in an equivalence class can be minimized to obtain the
MESOP:s for other functions in the class. Because some
functions are easier to minimize than others in the same
equivalence class, we can transform the given function
into another one to make the function easier to mini-
mize.

The second topic of this paper are fast simplification
methods for ESOPs. We present algorithms to reduce
the number of non-zero outputs for p = 2 and p = 4.
Because these algorithms are simple and fast, they can
be used for generating initial solutions for (near) mini-
mal ESOPs. They produce ESOP’s with fewer products
than other method such as [1].

This paper is organized as follows:

2 defines the ESOPs and shows basic properties. 3 in-
troduces the L-transformations and shows several ex-
amples. 4 presents fast transformation algorithms to
reduce the number of non-zero outputs for p = 2 and
p = 4. 5 shows simplification results of arithmetic func-
tions for p = 2 and p = 4. 6 discusses the applications
of L-transformation to logic minimization .

2 Definition and Basic Properties

In this section, we show some definitions of multiple-
valued input two-valued output functions and basic
properties of ESOPs.

Definition 1 Let P, = {0,1,---,p; — 1}, p; > 2(i =
1,2,---,n), and B = {0,1}. f: x?,P — 5 a
multiple-valued input two-valued output function . For
simplicity we assume that P, = P and p; = (i =

27

1,2,---,n). A multiple-valued input two-valued output
function is simply called a function .

Definition 2 Suppose that S C P. X% is a literal of

X, where
s_J0o (X¢8
X —{1 éXeS%

When S contains only one element, X 1} is sometimes
denoted by X*. A logical product of literals

Xlsxxzsz .. 'X'fn

8 a product term. An ezclusive-or sum-of-products

Z @Xf‘X-f’---X,f"
(51,83,°+,5n)

is an exclusive-or sum-of-products expression(ESOP),
where 2(51, SayenSp) @ denotes the ezclusive-or for tu-

Ples (Sli321 R } Sn)'

Deflnition 3 An ESOP for a function f with the min-
imum number of products is minimum ESOP(MESOP)
for f. The number of products in an ESOP F is denoted
by T(F). The number of products in MESOP for f is
denoted by 7(f).

When p = 2, MESOP is also called a minimal mod 2
sum-of-products11]. No minimization method is known
except for the exhaustive method {3, 7] even for p = 2.

Lemma 1 An arbitrary n-variable
function f(Xi,X,,-+-,X,) 15 uniquely represented by
the ESOP

f =
(a1,82,"4an)

@f(auaz, "'yan) ‘X;‘IX;z - Xam,

where Y @ denotes the ezclusive-or for all the combina-
iions}ofa; € P(i =1,2,---,n), and f(a1,82,*++,a,) €
0,1

Definition 4 Let S be a subset of P = {0,1,---,p~1}.

d = (ag,ay,++,ap_1) is called a characteristic vector of
S, where
=J0 (i¢S$)
%4=11 (ieS).

Lemma 2 An arbitrary
n variable function f(X,X,,---,X,) can be uniquely
represented as

p-1 .
f=) ®X{f(j, X, Xn)

=0
This is a Shannon expansion of p-valued logic function.

Example 1 Consider the {-valued input function
shown in Fig.3. The Shannon ezpansion of this function

18’
X0 xP"eoxt x¥ g x2. x2, 1)

X,
0123
0 [TT0T0TU
1[T[T{0[0
X, 2[0[I]T
3 [0]0]0]0]

Figure 3: Example for 4-valued input function

3 L-Transformation

In this section, we introduce L-transformation under
which the number of products in MESOP’s are invari-
ant.

Theorem 1 (Expansion Theorem)
A necessary and sufficient condition for an arbitrary
function P® — B to have a unique representation of

f=X%-h@ X5 -hi@---®X5 1 by (2)

ay
.

a

is that the matrizc M = be regular, where

Qp-1

a@; (i=0,1,---,p— 1) is a characteristic vector of S;.

(Proof) By rewriting (2), we have

r—1
F=) @®X%.h
3=0

A Shannon expansion of f is

p—1 .
f = Z@XJ . fj.
Jj=0

Let I be a p X p unit matrix. Then the above two
relations can be expressed as

[h07h1""ahp—1]'M: [vafla"':fp—l]‘I'

When M is regular, the inverse matrix M ~! exists, and

[hO’hly"'ahP—l] = [.anfly"’?fp-l] : M_l'

This shows that [hg,h,,:- 1] is uniquely repre-
sented. If M is not regular, fo cannot be represented
uniquely. (Q.E.D.)

Example 2
1) Consider an ezpansion of a §-valued input function:

F=X"ho®X' - h1®X? ha®X>- ha.
1000
0100
0010
0001
ezpression has a unique representation. For ezample,

Because the matriz M = 18 reqular, the above

2n

the function shown in Fig.3 can be shown as (1).
2) Consider another ezpansion of a {-valued input func-
tion:

f=Xho® X' - hy® X% - hy® X112} . by,

0
In this case, the matriz M = g is not regqular,
0

and the above ezpression cannot represent the function
uniquely. In fact, The function in Fig.3 can be repre-
sented as either

f=x2-x{"eoxt x{" M ox] x{* N ox M. x3,
or
f=x0.x*ox! . x" e x?. x20x" 0.
Definition 8 Let a function f be ezpanded as
p-1
f= Z@Xj - f.
i=0

Consider the following transformation which converts

sub-functions [fo, fh -y fo-1] into [go, g1, 1gp—1] by
a regular matrz
g0 Jf'o "ﬁ:o
g1 1 m -
. =M- : = . ‘ [f]‘ (3)
gp—-1 fp—l m;—l
Then
r—1
9= oX’.g
i=0
i an L—transformed function generated by M, where
5 = 1y . [fmfls s fo-1]
Definition 6 Let
F=) o X%.F() (4)

keBr k#0

be an arbitrary ESOP, where Sy is a subset of P, and E
is the the characteristic vector of S;. Let L be a matriz
with p rows and 2° — 1 columns, where each column
denotes the characteristic vector of a literal. Then,
L,=M-.L=M-[L(0), L(1),---,L(27 - 1)]

18 a matriz showing the literals after transformation.
The ESOP

G= Y exs®.F®F),

kEeBrk#0

(5)

is an L-transformed expression generated by M, where
La(k) represents a column vector k transformed by M,
and SL,(k) denotes a literal S;; transformed by M.

Lemma 3 Let f be an arbitrary function, and g be an
L-transformed function. Let F be an arbitrary ESOP
for f, and G be the L-transformed ezpression generated
by the same matriz. Then, G represents g.

(Proof) Let (4) be an ESOP for f. Let C;(j =
0,1,---,p — 1) be the set of the column vectors of the
matrix I, whose j-th component is 1. Because F repre-
sents a function f,

FX=j)=fi=) oF(k).

I:ECj

(6)

From here, we will show that (5&

represents the function
g- By (3) and (6), the relation
by

etween g and f is given

g9; = 7?'3' . [.fO’ fl!"'a fp-l]t
#;-[Y ®F(ko), Y. ®F(Fy),-,
ko€Co kiec,
Z eF(EP-l)]t
Ep—xEC,-—x
=mjo(Y ®F (ko)) @mji(Y ©F(ks) -

Roeco kiec,
Yo @F(R1)= Y. oF(k)
;- L(k)=1

’:,—160 -1

Omp_1(

On the other hand, the function represented by G is

D

Lu(i)z(ov“‘g 1 s0oy0)*

j

2

M-L(E)2(0,+,_ 1 ,--,0)t

> eF(k)

mj-L(k)=1

G(X =j)= OF (k)

OF(F)

I

Therefore, G(X = j) represents the function g;. Hence
G represents the function g. (Q.ED.)
Lemma 3 shows that the transformation defines a new
function independently of the representation of the orig-
inal function. Thus, we have the following:

Theorem 2 (Transformation Theorem) Let R
and F, be ESOPs for a function f. Let Gi and G4 be
ESOPs which are obtained by an L-transformation from
F; and F,, respectively. Then G, and G, represent the
same function.

This is a multiple-valued extension of the two-valued
transformation theory [3, 15].

21

Theorem 3 Let F be an ESOP for a function f. Let
G be the ESOP obtained by an L-transformation from F

by a regular matrizc M. Let g be a function represented
by G. Then r(f) = r(9)-

SProof By Theorem 2 , G represents a function g in-
ependently of the representation of F. G is an ESOP
obtained by an L-transformation from F, and the num-
ber of the products in the two ESOPs are the same, i.e.,
7(F) = 7(G). Therefore, if F is an MESOP, then G is
also an MESOP. Hence 7(f) = (g). (Q.E.D.)
Because an L-transformation for a variable corresponds
to a regular p X p matrix, it is associative. For liter-
als corresponding to different variables, the transforma-
tion is commutative. The total number of different L-
transformations for p-valued n-variable functions is

(# of different regular p X p matrices)?.

Figs.1 and 2 illustrate the above theorem.

Example 3 When p = 2, f represents an ordinary
two-valued logic function f : B — B. A Shannon
ezpansion of f is

f(X1, Xs, 0, X)) = XD fo @ X} fr.

1) When M, = [% (1)] is the transformation matriz, we

(2] = [24]-[2]

From above, we obtain go = fo and g1 = fo @ f1. Nezt,
by the Shannon ezpansion of g, we have
g(X11-X2)"'1-Xn)= X?g()@Xclgl
=xXho X} o f)=xI"" foXxif
The above ezpression shows that interchanging the lit-

erals X? and Xfo’l} in the ESOP for f gives the ESOP

for g. Let L = [(1) (1) i] be a matriz representing the

have

22 — 1 different literals. A matriz representing the liter-
als after the L-transformation is given by

~f10] [101] _[101
My L= [11]’[011] = [110]-
This equation shows that literals are transformed as
X2 o X1, Let

F=Xho® X!hy & X{®" . by

be an arbitrary ESOP for f.
transformation M, to F, we have

By applying the L-
My(F) = X1 ho © X} hy @ X2 - by

Because F represents a function f, we have fo = F(X =

0) = ho® kg and f; = F(X = 1) = hy ® hy. By the

definition of g, we obtain

9=Xfo® X} (fo® f1).

1 1

0101 0jojot}o

Xyf1]0f1{o0 Xg{0]0]1]0
01({0]1|X; 0]1j0[1] X3

1/0]1(0 0j0f1]0

X, X,

(a)Original (b)Transformed

function function

Figure 4:

From this, we have
9=X2(h0® hy) ® X} (ho ® hy)
= X{{O,l.} . ho@X.-l . h]_ @X,o . h2 = MI(F)'

This also shows that the ESOP obtained from F with
the L-transformation M, represents function g.

2) When M, = [(1] %] is the transformation matriz, we

have
_f11] [101] _[110
M- L= [01] ' [011] = [011]'
This equation shows that literals are interchanged as

X! o Xi{o'l}. If X* is represented by = and X {01}
is represented by 1, then we have the L-transformation
in Fig.2.

Example 4 When M; = [i [1)] is the transformation

matriz, we have
11 101 11
Ms-L= [10] : [011] = [10
This shows that literals are interchanged as

X0 — X,-{o’l} — X} — X?.

Consider the function f shown in Fig.{(a). The

MESOP is
f — .X; .Xz(O,l) 'X§0,1} . X‘;{O,l}
@Xfo’l} le 'Xéo’l} . Xio:l}
@Xfoil} '-Xz{O‘l} . .X; . Xiovl}
ox (o0 . xfou . xfo . x1

However, it is not easy to find the MESOP from the
map. Apply transformation Ms to the variables of f,
and we have

9=X7-X;-X}-X;o X! X2 X} X}
®X]-X; X3 -X}® X! X} X} X3

Fig.4(b) shows the map for g, which has fewer minterms
and is easier to minimize than f.

274

Example 5 When p = 4, f denotes a §-valued input
function f* : P — B, where P = {0,1,2,3}. Let

L=

OMOD
LN —N—N—]
(= —~]

0
0
1
1

— e D

1
0
1
1

e

1
1
1
0

—_e oM
o=
—

0 11
1 10
0 01
0 00

COOM

be the matriz representing the 2* — 1 different literals.
0100

1) When M, = (1) 8 g g is the transformation matriz,
0001

we have

0
0
M4.L= 1
0

1
0
0
0

OO

This equation shows that the function g is obtained by
replacing the literals in the ESOP for f as follows:

X{o} — X{l},X{lvz} “ X{0,2}’
X{l.s} PN X{0,3)’andx{0,2,3} - X{I,Z,S)-

1000
0100
6010
1001

literals are transformed as follows:

2) When Ms

is a transformation matriz,

X{o} — X{0,3}’X{0,1) — X{oll»s)’
x{o2} X{°’2'3},and x{on2} , x{01,2,3}

4 Transformation Algorithms

4.1 General Strategy

L-transformations classify a set of logic functions into
equivalence classes. All the functions in an equivalence
class have MESOPs with the same number of products.
An MESOP for a function is easily obtained from an
MESOP for another function in the same equivalence
class. Because some functions are easier to minimize
than others, we can transform a given function into an-
other one which is easier to minimize.

Deflnition 7 Two functions f and g are L-equivalent
if g can be obtained from f by a series of IL-
transformations.

Example 6 The set of two-variable two-valued logic
functions can be classified into 3 classes by IL-
transformations as follows:

e Class 0: 0

e Class 1:
X1 X3, XPX3, X1 X3, X0X3, X}, X9, X3, X2,1

X, X, X,
012 012 012
ofo]T)|n ofojmfo AR
X, 1{1flo] X, 1[@[w]o] x,-1{njule
2 \yfolly 2{W{ofo 2[yfofi].
(a) () D)

Figure 5: Example 4.2
e Class 2: X! ® X}, X?® X}, X} X9 @ X9,
X1Xlo X9, X0X10 X2, X0X0 @ X1.

Note that the functions in the Class i require i products
in MESOPs.

For p = 2, the number of different regular matrices is
6, and the number of n-variable functions which are L-
equivalent to a given function is at most 6. For p = 3,
the number of different regular matrices is 168, and the
number of n-variable functions which are L-equivalent
to a given function is at most (168)*. For p = 4, the
number of different regular matrices is 20160, so the
number of n-variable functions which are L-equivalent
to a given one is up to (20160)™ .

Example 7 1. Consider the 3-valued 2-variable func-
tion shown in Fig.5(a). The ESOP with three
products is easy to derive:

f= X1{0} -Xz{l‘Z} @Xfl} .Xéo,l} @Xl{z} _Xio,z}‘
However, it is not easy to find a two-product solu-

tion from this map.

100
2. Nezt, consider the L-transformation [0 1 0] ,
111

Xl{O} o Xl{o,z}’Xl{l} o X1{1,2}’Xf0,1} o Xl{o,l,z).
The above function is transformed to
g= Xf“} 'X-P'z} $Xl{1,z} -X,fo'l} o x? . x o
= x{%. x{1? g x {1} xfou)
@sz) . (X2{1,2} o x{o1 g X;o.z})
= x{0 . x {12 g x 1} x o,

Fig.5(b) is the map for g, which shows that g re-
quires only two products.

3. Finally, consider the reverse transformation:
Xfo} - Xl{o.z}’xl{l} - Xl{l’z},Xi[o’l} o Xi[o,l,z}_
The previous ESOP is transformed to

f= Xfo,z} .X;!{l,z} $X1{1'2} 'Xz{o,l}.
Fig.5(c) shows the map of the reduced ESOP.

In general, it is not an easy task to obtain a simpli-
fied ESOP from the given ESOP. Also, it is not easy
to find a good transformation for a given ESOP (or a
function?. From here, we assume that truth tables of
n-variable functions are given. In this case, the ESOPs
are canonical and the numbers of non-zero outputs are
at most p" . We also assume that functions with fewer
non-zero outputs are easier to minimize than ones with
more non-zeros.

Definition 8 An optimal transformation is one which
minimizes the number of non-zero outputs in the truth
table.

The optimal transformation generates an ESOP which
is relatively easy to minimize by heuristic AND-EXOR
minimizers such as EXMIN [16].

4.2 Algorithm for p=2

For p = 2, there are 6 different transformations. But
only three transformations need to be examined. Other
three can be obtained by negating the variables of the
first ones. The three transformations to be examined
are:

identical , X{1} & X101} | and x{9} ~ x{01},

For a given function, generate 3" different truth tables
and find one with minimum non-zero outputs, and we
can get the optimal L-transformation. To find such
transformation is essentially same as the minimization
of pseudo-Kronecker expansion [3, 9, 10]. Therefore,
a similar algorithm can be used. It is clear that L-
transformation will produce ESOPs with fewer products
than the method shown in {1}, since the latter consid-
ers only 2" different combinations. The following algo-
rithms find an optimal L-transformation in a reasonable
computation time up to 14 variables by a SUN-4 work-
station. The computation time is proportional to n-3",
and memory requirement is proportional to 3.

Algorithm 1 (Extended truth table) 1. Letn be
the number of inputs and m be the number of out-
puts, respectively. Let f be a truth table of 2™ ele-
ments, where each element is an m-bit vector. The
indeces of f are represented by n-bit vectors, and
they run from (0,--,0) to (1,---,1).

2. Obtain the eztended truth table g with 3™ ele-
ments as follows: The indeces of g are represented
?y n-trit vectors, and they run from (0,---,0) to
2,..+,2).

(a) For the entries with indez vectors consisting
of either 0 or 1:

g(a1,---,a,) — f(ay,--- 1@n)s
where a;, € {0,1} (k=1,2,--+,n).

(b) The remaining 3™ — 2" entries are obtained as
follows: For the entries with the indez vectors
where only one digit, say i-th, is 2:
g(al’...,z’...,an
- y(al’...,0’-..’%)@g(al’-..’l,.-.’a")‘
where a; € {0,1}(k = 1,2,+++,n,k # 1), and
@ denotes bitwise ring sum operation.

Table 2: Extended truth table and Extended weight
table

Ay KXo X3

SN
oy

A

qm.&a«:.&;mmmmmmmqmmmmqqhmmmmqmmg

s e Y e
OO =ID U O DI = OO0 =T OB YN - O

»-u-u-oo—n—u—aon-u-aon-lonn—»-n-doou-n-cn-u-lcn-u—-ﬁ
P—‘HNONND—'NHNHNONNNHO—‘HNNQNNHD—‘Ng

NN =i el = - O OO OO O
NN = -HOOONNNN- - HOOONNN O OO
Ry e PRy PNy Iy POy _ [eyey— FORSy_ Fegey—
CHMOMHOOOOCOQOQOCOCOEOOOHHOHMHOOO
HOHOOOHOHEHEOEHOHHHEHEOOO OO - O -k
R G GO R BN SO I DN O G B SO R W DN G GO B b i BN O

21
22
23
24
25
26
(c) For the entries with the indez vectors where
two digits, say i-th and j-th, are 2:
glar,seey 2 ,0ee, 2 ,00eia,)
i J
— g(al,..., (')) 2' ’...’an)
‘ 3
@g(al,“-h 1,0 2 ,1"'1an)a
i J
1_0)here a, € {0,1} (k= 1,2,-++,n,k £ i,k #
7).

(d) For the entries with the index vectors where
3, 4,-++, n-th digits are 2: Similar way to the
above.

Example 8 The derivation of the extended truth table
by Algorithm 1 for the function in Fig.6(a) is illustrated
in Table2.

2.a) For the rows 0,1,3,4,9,10,12,and 13, the entries
of (fo, f1) in Table2 are the same as that of Fig.6(a).
2.b) The eniry for the row 2 is obtained by EXORing
the entries of rows 0 and 1: (0,1) @ (0,1) = (0,0). The
entries for the rows 5,11,14, etc., are obtained in a sim-
tdlar way.

2.c) The entry for the row 8 is obtained by EXORing
the entries of rows 2 and 5: (0,0) & (0,0) = (0,0). The

276

entries for the rows 17, eic., are obtained in a similar

way.
2.d) The eniry for the row 26 is obtained by EXORing
the entries of rows 8 and 17: (0,0) & (0,1) = (0,1).

Algorithm 2 (Extended weight table)

1. For i=0to 3" do
{w1(?) — 0 if g(i) = 0 else wy(s) — 1}

2. For k=1 to n do
{ For j=0to 3*~! -1 do
{ For i=0to 3"~ * -1 do
{io < 3"7*(3j +0) +3;
i — 3" %35 +1)+14;
iy — 3" k(35 +2) +4;
wa(%0) wi(io) + wi(i2);
wzéﬁg —w (i) + leizg;
wa(is 1) }

} — wy(i0) + w1 (i1
For i=0to 3" do {w;(i) — wa(i) }

be the index wvector with the
minimum weight. Obtain the L-transformed
function as follows: If a; 0 then replace
f(al:"'n 1 ,a"'va'") by f(ah"'v‘ 0 ,1"')an) (52

f(al,...’ 1 ’..-,a")

3. Let (a1,---,a,)

If a; = 1 then replace f(ai, ++, 0 ,-++,a,) by

f(ah"'a‘ 0)

Ifa; =2 th‘en do not change.

"'1an)$f(a11""

Example 9 Table2 illustrates the derivation of the ez-
tended weight table for the function in Fig.6(a).

1. For the column W,: W, (i) — 1 iff (fo, f1) of the
i-th row is non-zero.
For the column W;: W;(0) «— W,(0) + W,(18),
Wb(l) — Wa(l) + Wa(lg)) vl
For the column W.: W_(0) «— W,(0) + W,(6),
W (1) — Wy (1) + Wi (T7), ---
For the column Wy: Wy(0) — W.(0) + W,.(2),
Wc(l) — Wb(l) + Wb(Z), oee

2. The minimum weight are § and they are in rows
7 and 22. If we use the row 7, the indez vec-
tor is (0,2,1). For =, replace f(1,z2,23) with
f(0,23,23) @ f(1,22,23) Fig.6(b) shows the func-
tion after this operation.

For z,, do nothing.

For z3, replace f(z1,22,0) with f(z1,%2,0) @
f(=1,22,1

Fig.6(c) shows the transformed function, which has
only § non-zero outputs.

X, X X,
01(11/01/00 01]11 10[01 00(00/00/01
X3{01]11j01{01] Xg|01|11 IOIOO X3|01111(10{00

X2 X, Xz

(a) (b) (c)

Figure 6: Example of L-transformation for p=2

4.3 Algorithm for p—=4

For p = 4, there are 20160 different L-transformations.
However, only 20160/(4!) = 840 need to be examined
among them. This number is still too large for exhaus-
tive examination: in principle, we need to check up to
(840)" different functions if we use the same approach
as p = 2. So, for p = 4, we will give up the exhaustive
method and consider only the subset of the transforma-
tions. For each variable, we find an L-transformation
which maximally reduces the number of non-zero out-
puts. We iterate this procedure until no reduction is
possible. This approach does not produce the optimal
one for some functions, but requires computation time
proportional to n-4" . So, it is much faster than Algo-
rithm 1 for the functions represented by the truth tables
of the same size.

Algorithm 3 (Optimal Expansion for p=4)
1. Ezpand the given function as
9=X"- 900X g, ®X%- 9,0 X>. gs.

2. Compute the following functions: go; = go ® g1,
go2 = go D g2, go3 = Go ® g3, g12 = 91 O g3,
913 = g1 D g3, 923 = g2 D gs, go12 = go D g1 @ g2,
go1s = 90 @ 91 O gs, go23s = Go @ g2 ® g3, and
go123 = go @ g1 @ g2 D gs. Also count the number
of non-zero outputs of these functions |g4|, where
AC P, and P = {0,1,2,3}. Let ga,gB,9c, and
gp be the functions which have smallest non-zero
outputs, where A,B,C,D C P. Let a,b,c and d
be the characteristic vectors of A, B,C, and D, re-
spectively. Choose these sets so that the matriz

M= be regular.

AL OO

3. Ezpand the function into

9=X* .0, 0X% 950X . gc® X? - gp,

= (M1

)
3
a
r——
CILYEJEN

b

90 91 92 93 9012913 91 Gos
o[T T]T] O T
1 TTI]T] 1 T11
2T 1 2| T
SITTT T 3 1
(a) (b)

Figure 7: Example for Optimum Expansion for p = 4
Algorithm 4 (L-Transformation for p=4)

1. Let f be the given function. g «— f.
M; — I (Unit matriz of 4 x 4)(i = 1,2, ...,n).

2. do 3 and { until the number of the non-zero outputs
cannot be reduced.

3. For i=1,...,ndo 4.
4. Ezpand the function into
9= Xuo *Gio @Xil * g4y e'Xzz * gi, eth *Gis-
Obtain the optimal ezpansion by Algorithm 2:
g=X* 910X 950X -9c0 X" - gp,

fetg‘—X?'.‘lA@X.-l'yB ®X2-gc®X? gp, and
et

M —

KL O o 8y

where @,b,¢, and d are characteristic vectors of
A,B,C, and D, respectively. Let M; — M - M;.
Compute |g| and check if the number of non-zeros
are reduced.

5. Obtain an ESOP for f from M;(i = 1,2,...,n).

Example 10 Let’s obtain an optimal ezpansion by us-
ing Algorithm/.

1. Suppose that the 4-valued 2-variable function
9=X7 900X} 910X} 9,0 X7 - g5

is given where go,g1,92 and g3 are shown in
Fig.7(a). Note that this function has 11 non-zero
outputs.

2. Compute the functions as shown in Fig.8 . Also
count the number of non-zero outputs in the func-
tions, Fig.8 shows that go zhas the smallest num-
ber of non-zeros, g13 and goz3 are the next. The
characteristic vectors for go12,913 , and go23 , are
(1,1,1,0), (0,1,0,1) and (1,0,1,1), respectively. Be-
cause they are linearly dependent, we choose g; in-
stead of gozs to make the set of vectors linearly in-
dependent. Similarly, we choose goz which has two

0919293901902903912913923901290139023912390123

IMMITIITITITITOO0OCDO O 0O 0 1 1
2M010T 0T TO0OT1T 0 1T 0 1 0
SITIT0T 01 01 01 0 T 0 0 1

32333 223 1T 2 0 2 1 2 3
‘W:number of non-geros

Figure 8: Example for optimum expansion for p=4

non-zeros. The transformation matriz, its inverse,
and its transpose are

3100 0010 th
M= [0100] M= [1101 (M) = [1101] .
1001 0110, 1010

Therefore, @ = (0,0,1,0), ¥ = (1,0,1,1), & =
(1,1,0,1), and d’' = (1,0,1,0), and we have A' =
{2}, B'={0,2,3}, C' = {0,1,3}, and D' = {0,2}.

3. The optimal ezpansion is
X {2} g1, X 1023} g 50 X {013} g, @ X {02} o5,
The transformed function is
X% . go, @ X1 . g3 X1 . g @ XT3 . go.

Fig.7(b) shows the map of the transformed func-
tion. Note that it has only 5 non-zero oulputs.

5 Experimental Results

To investigate the ability of L-transformation, we de-
veloped transformation programs, and simplified arith-
metic functions. These programs treat multiple output
functions. They are coded in FORTRAN, and run on
SUN-4 work stations.

5.1 Benchmark Functions

Table 3 shows 8 arithmetic functions used in this exper-
iment, which also appeared in Table 1. All the function
have 8 inputs and multiple outputs, and originally have
255 or 225 product terms.

ADR4 is a 4 bit adder:X + Y; MLP4 is a 4
bit multiplier:X x Y; LOGS8 is a 8 bit logarithm
circuit:log, (X + 1); NRM4 calculates the distance of
two 4-bit numbers: SQRT(X? + Y2); RDMS is an 8
bit random number generator:(5X +1) mod 256; ROT8
is an 8-bit root circuit: SQRT(X); SQRS8 is an 8-bit
square circuit:X2; WGT8 counts the number of 1’s in
X and represents it in a binary number.

5.2 Transformations for p=2

For each function, we checked 3% different truth tables.
Table3 also shows the number of non-zero outputs af-
ter transformation. The computation time is about 240
milliseconds for each function. MIN shows the number
of products in near minimal ESOP obtained by EXMIN
(186, 2]. For example, ADR4 is an 8 input 5 output func-
tion and originally has 255 products. Algorithm 1 found
a 11‘14 product solution, but EXMIN found a 31 product
solution.

278

Table 3: Number of Products for Arithmetic circuits

INPUT DATA p=2 p=4
NAME |IN |OU | PT | TRNS | MIN | TRNS | MIN
ADR4 | 8| 51255 34| 31 76| 11
LOG8 | 8| 8]255 171 96 167 94
MLP4 | 8] 8225 97 61 77| 52
NRM4| 8{ 5255 157| 73 118, 58
RDMS8 | 8{ 8(255 56| 31 37| 27
ROT8 | 8| 5255 83| 35 53| 28
SQR8 | 8| 16255 168 | 114 255 | 112
WGT8| 8| 4255 107| 54 62| 25

IN : # of inputs OU : # of outputs

PT : # of non-zeros in the original truth table
TRNS : # of products after transformation

MIN : # of products after AND-EXOR minimization

5.3 Transformations for p=4

For each function, near optimal pairs of the input vari-
ables were obtained by a heuristic method [17] and a
function with p=4 was generated. For each variable, Al-
gorithm 3 checked 15 different literals to find a near op-
timal L-transformation. Table 3 also shows the number
of non-zero outputs after L-transformation. The compu-
tation time is about 200 milliseconds for each function.
For example, Algorithm4 found a 76 product solution
for ADR4, but EXMIN obtained a 11 product solution.
As for SQRS, it could not found better transformation
than the canonical one.

6 Conclusion and Comments

In this paper, we presented the L-transformation for p-
valued input two-valued output functions. The number
of products in MESOPs is invariant under this trans-
formation. Also, we showed that the L-transformation
produce different functions with different minimization
properties.

We defined the optimal L-transformation be one which
transforms a given function into another one with mini-
mum non-zeros. For p=2, we proposed an algorithm to
find an optimum L-transformation. For p=4, we pro-
posed a heuristic algorithm to find a near optimum L-
transformation. By using these algorithms, we simpli-
fied eight arithmetic functions.

The first application of L-transformation is to obtain ini-
tial solutions for near minimum ESOPs. When the func-
tion is given as a truth table, both algorithms quickly
reduce the number of products in ESOPs, although they
cannot obtain the minimum. After this, EXMIN can be
used to obtain the near minimum solutions. We could
reduce about 20% of computation time for the functions
shown in Table 3 by using this method.

The second application is to obtain very high quality
solutions. Because L-transformations produces different
functions with different minimization properties, we can
obtain very high quality solution by generating equiv-
alent functions iteratively. First, minimize the given
ESOP by a heuristic minimizer such as EXMIN until the

number of products cannot be reduced any more. Then,
transform the ESOP to obtain an L-equivalent function.
Thirdly, minimize the new ESOP again by EXMIN to
obtain a better solution. Continue this procedure while
we can improve the solution. A non-deterministic algo-
rithm has been developed [2] where L-transformations
are generated pseudo-randomly. This algorithm ob-
tained better solutions than any other method for the
functions in Table 3.

The third application is for parallel processing. Suppose
that we have k processors. First, generate k functions
which are L-equivalent to the given function. Then min-
imize each ESOP independently by using the parallel
processors. Lastly, identify the ESOP with the mini-
mum number of products, and obtain the ESOP for the
original function.

The fourth application is the classification of logic func-
tions. The L-transformations produce an RP equiva-
lence classes . For p=2 and n=5, the number of the
representative functions is 6936. We simplified all the
representative functions, and verified that 9 products
are sufficient to realize any functions of 5 variables. A
straightforward investigation needs 232 ~ 4.3 x 10° min-
imization. By using more sophisticated method, we also
prove that 16 products are sufficient to realize any func-
tion of 6 variables|8].

The fifth application is to prove the minimality of the
given ESOP. We found a method to derive the lower
bounds on the number of products in MESOPs. By us-
ing this method, we proved the minimality for about 30
percents of 5 variable functions [15].

Acknowledgements

This work was supported in part by Grant in Aid for
Scientific Research of the Ministry of Education, Sci-
ence and and Culture of Japan. I thank Prof. Jon
T.Butler for his kind help during my stay in Monterey.
Mr.N.Koda and Dr. D. Brand provided me very useful
comments. Professors P.Besslich, M.Davio, M.R. Muk-
erjee and J.Muzio sent me their latest papers.

References

[1] P.W. Besslich. Efficient computer method for
ExOR logic design. IEE Proc., 130:203-206, 1983.
Part E.

[2] D. Brand and T. Sasao. On the minimization of
AND-EXOR expressions. IEICE Technical Report,
VLD 90-88, Dec. 1990.

[3] M. Davio, J-P Deschamps, and A.Thayse. Dis-
crete and Switching Functions. McGraw-Hill Inter-
national, 1978.

(4] S. Even, I. Kohavi, and A. Paz. On minimal

modulo-2 sum of products for switching functions.

IEEE Trans. on Comput., 16:671-674, Oct. 1967.

H. Fleisher, M. Tarvel, and J. Yeager. A com-

puter algorithm for minimizing Reed-Muller canon-

ical forms. IEEE Trans. on Comput., C-36(2):247-

250, Feb. 1987.

M. Helliwel and M. Perkowski. A fast algorithm

to minimize multi-output mixed-polarity general-

ized Reed-Muller forms. Proc. Design Automation

Conference, 427-432, June 1988.

(5]

29

[7) N. Koda and T. Sasao. Four-variable AND-EXOR
minimum expressions and their properties. IEICE
Technical Report, FTS89(25):, Oct. 1989.

N. Koda and T. Sasao. On the number of prod-
uct terms of AND-EXOR minimum expressions.
IEICE Technical Report, FTS 91:, July 1991. (in
Japanese, to appear).

P.K. Lui and J. Muzio. Boolean matrix transforms
for the parity spectrum and the minimization of
modulo-2 canoncial expansions. University of Vic-
toria, (DCS-135-IR):, July 1990.

M.R. Mukerjee. Minimization of ring-sum expan-
sion of mixed polarity. AMSE Sympo. on Modelling
and Simulation, Oct. 1990.

A. Mukhopadhyay and G. Schmitz. Minimization
of exclusive OR and logical equivalence of switching
circuits. IEEE Trans. on Comput., C-19(2):132—
140, Feb. 1970.

M. Perkowski, M. Helliwell, and P. Wu. Minimiza-
tion of multiple-valued input multi-output mixed-
radix exclusive sum of products for incompletely
specified boolean functions. Proc. Int. Sympo. on
Multiple- Valued Logic, 256-263, May 1989.

J.P. Robinson and Chia-Lung Yeh. A method for
modulo-2 minimization. IEEE Trans. on Comput.,
C-31(8):800-801, Aug. 1982.

[14] K.K. Saluja and E.H. Ong. Minimization of Reed-
Muller canonic expansion. IEEE Trans. on Com-
put., C-28(7):535-537, July 1979.

T. Sasao. Exclusive-or sum-of-products expres-
sions: their properties and a minimization algo-
rithm. IEICE Technical Report, VLD 90(87), Dec.
1990.

T. Sasao. EXMIN: A simplification algorithm
for exclusive-or- sum-of-products expressions for
multiple-valued input two-valued output functions.
Proc. Int. Sympo. on Multiple-Valued Logic, 128—
135, May 1990.

T. Sasao. Input variable assignment and output
phase optimization of PLA’s. IEEE Trans. on
Comput., C-33(10):879-894, Oct. 1984.

T. Sasao and P.W. Besslich. On the complexity
of MOD-2 sum PLA’s. IEEE Trans. on Comput.,
C-32(2):262-266, Feb. 1990.

(8

[9]

(10]

(11]

12]

(13]

(18]

[16]

(17]

(18]

