EXHIN: & Simplification Algorithm for Exclusive-OR-Sun-of -Products Expressions
for Nultiple-Valued Input Two-Valued Output Functions.

Tsutonu SASAD

Department of Computer Science and
Electronic Engineering,
Kyushu Institute of Techmology
Iizuka 820, Japan

Abstract: Minimization of AND-EXOR PLA’s with input
decoders corresponds to minimization of the nusber of
products in Exclusive-OR Sum-0f-Products expressions
(ESOP’s) for multiple-valued input tvo-valued output
functions. This paper presents a simplification
algorithm for ESOP’s. The algorithm is based on an
iterative improvement. Seven rules are used to
replace a pair of products with another one.

We simplified many AND-EXOR PLA’s for arithmetic
circuits. In most cases, AND-EXOR PLA’s required fewer
products than AND-OR PLA’s.

L. Introduction

An ordinary programmable logic array (PLA) has an
AND-OR structure shown in Fig.1. Because PLA’S can be
designed automatically, easily tested, and easily
nodified, they are extensively used in modern LSI’s.

By replacing the OR array with the EXOR array in’
the PLA, we have an AND-EXOR PLA shown in Fig.2. AND
-EXOR PLA’s have several advantages over AND-OR PLA’ s.
Firstly, AND-EXOR PLA’s often require fever products
than AND-OR PLA’s. Table 1 compares the number of
products for various classes of functions [SAS90].
Secondly, AND-EXOR PLA’s are easier to test than AND-
OR PLA’s. Similar to AND-OR PLA’s [FUJ81], AND-EXOR
PLA’s can be made to be universal testable. However,
AND-EXOR PLA’s require a smaller amount of hardware
and shorter test sequence [SAS87].

Although AND-EXOR PLA’s have such merits, several
problems must be solved before they are used in the
practical designs. The first problem is that EXOR’s
are more expensive and slower than OR’s. The second
problem is that the design of AND-EXOR PLA’s is more
difficult than AND-OR PLA’s.

In this paper, we consider the design problems of
AND-EXOR PLA’s. An AND-OR PLA is represented by a set

i

t|>o—

i

t[>o—

OR EXOR

Fig.1 AND-OR PLA with
1-bit decoders

Fig.2 AND-EXOR PLA with
1-bit decoders

of sum-of-products expressions (SOP’s). Similarly,

an AND-EXOR PLA is represented by a set of exclusive-
or-sum-of-products expressions(ESOP’s). In both cases,
the number of products in a PLA is equal to the number
of different products in the expressions. So, in order
to minimize the size of PLA’s, it is sufficient to
minimize the number of different products inm the
expressions.

Minimization of SOP’s have been studied for more
than 30 years. Various algorithms have been developed
to obtain minimum [MUR 79] and near minimum [HON74,
BRA84, SAS84] PLA’s. However, the minimization of
ESOP’s is much more difficult than that of SOP’s. No
efficient method is known to obtain a minimum ESOP for
a given function. We have developed a simplification
algorithms for both SOP’s and ESOP’s, and designed
various PLA’s [SAS90]. Our computer experiments show
that ESOP’s require fewer products than SOP’s for most
functions. So, AND-EXOR PLA’s usually require fewer
products than AND-OR PLA’s.

It is well known [SAS81] that AND-OR PLA’s with
decoders shown in Fig.3 require fewer products than
AND-OR PLA’s without decoders (or AND-OR PLA with one-
bit decoders) shown in Fig.1. By replacing the OR
array with the EXOR array in the PLA in Fig.3, we have
an AND-EXOR PLA with decoders shown in Fig.4. This PLA
structure usually requires fewer products than AND-
EXOR PLA’s without decoders (or AND-EXOR PLA’s with
one-bit decoders). Similar to AND-OR PLA’s with
decoders, AND-EXOR PLA’s with decoders are represented
by ESOP’s for multiple-valued input two-valued output
functions [SAS 88].

Several simplification algorithes for ESOP’s have
been developed for two-valued input functions[EVES7,
PLEB7, HEL38, PAP79, ROB32, SAL79, SAS90, SWA7Z], and
for multiple-valued input functions [PER89, SAS89a].

AND

o
il

OR EXOR

Fig.4 AND-EXOR PLA with
2-bit decoders

Fig.3 AND-OR PLA with
2-bit decoders

128

In particular, [HEL88] presents an algorithm and
minimization results for various AND-EXOR PLA’s for
nultiple-output functions. In [PER89], they extended
the algorithm to treat AND-EXOR PLA’s with input
decoders.

This paper considers the same problem as [PER89],
but uses a different approach. The preliminary version
of this paper has been published as [SAS89al, and done
independently of [PER89].

This paper is organized as follows:

In I, multiple-valued input two-valued functions
and their ESOP’s are introduced. Then, the design
problem of multiple-output AND-EXOR PLA’s with input
decoders is formulated.

In W, a simplification algorithm for ESOP’s is
presented.

In IV, experimental results are shown and they
are compared with the results of [HEL38].

II. ESOP’s for Multiple-Valued Input
Two-valued Qutput Functions

An AND-OR PLA with r-bit decoders realizes a SOP

with 2T -valued input two-valued output function
[SAS88]. Similarly, an AND-EXOR PLA with r-bit decoder

realizes an ESOP with 2T-valued inputs [SAS89a,
PER89].
Definition 2.1: A multiple-valued input two-valued

output function (function for short) is a mapping
f(xl,xZ, cee ,Xn) - Pl Xsz'" XPn")B,

where X; is a multiple-valued variable,

Pi=(0,1,---,pi-l) is a set of values that this

variable may assume, B={0,1}, and p;=1.

Definition 2.2: Let X be a variable which takes one of ‘

values in P={0,1,...,p-1). For any subset SCP, XS is
a literal representing the function that

S = { 1 if Xes
0 if XeS
S
Definition 2.3: A product of literals xll-xgz---xnsﬂ is

said to be a product term (also called term or product
for short). A sum of product terms

1.y52....x5n

is a Exclusive-or sum-of-products expression (ESOP).

When S; =P;, a literal ;1 denotes a constant 1, and
so the literal is omitted from the products.

Theorem 2.1: An arbitrary multi-valued input two
valued output function can be represented by an ESOP
of the form (2.1).

(Proof) Let (aq,ag,--,a;) be an element in B" such

that f(al,az,-",an)=1. Then f can be represented by
xa yla...., (e
(a),ags---5ay) n
This expression is an . (Q.E.D.)
For a given function, there exist many ESOP’s.

Definition 2.4 For a given function, an ESOP is
ninimum if there exist no ESOP representing the same
function with fewer products.
Example 2.1: Table 2 shows a function

f(xl,xZ,X3): PIXP2XP3—)B,
where P1=P2={0,1) and P3=(0,1,2). Fig.b is a map
representing this function. A minimum ESOP for f is

e=x{0 -l oxi2.

(End of Example)
Note that in the case of ESOP, every minterm of
f must be covered by loop(s) odd times.

Table 2 Function f

X, X-X; | £
000 (O
001 |0
002 |1
01010
0111]0
0121
100 |0
1010
102 |1
110 (1
111 (1
11210

2.2 Multiple-Output Function
When the circuit has more than two outputs,
independent minimization does not always produces
total minimization. In this part, we consider a
;]i‘:%lization method for multiple-output AND-EXOR
s.

Table 1 Complexity of PLA’s to realize various functions
AND-OR PLA AND-EXOR PLA X1 ¥
with 1-bit with 2-bit [with 1-bit with 2-bit 2
decoders decoders decoders decoders 00 01 11 10
Arbitrary a1 1 ,0-1 3 pn-1 1 n-1 0 (1)
functions 2 4 2
Symmetric n-1 1 .n/2 2 .n/2 1 .n/2 X3 1 1
. 2 5°3 5 -3 - 3
functions 3 3 3
Parity n-1 1 .n/2 n 2 G L1
. 2 52 n e
functions 2
n-bit 6-2"-4-n-5 a1 gl !-(n2+3n-2) Fig.5 Map of Table 2
adders 2

129

Definition 2.5 Let an m-output function be
£; (g X957, X,)» where (i=0,1,...,n-1).

A characteristic function for the multiple-output
function is defined as follows [SAS84]:

_1 -
PO XXl) =Xy K- 130,00

where Xl(l.ﬂ denotes the i-th output.

If the combinations of inputs and outputs are allowed
in the original multiple-output function, then P=1,
else F=0, in the characteristic function,

Theorem 2.2: A minimization of a PLA realizing a
multiple-output function corresponds to a minimization
of an ESOP for the characteristic function.

(Proof) Let F be a characteristic function of f;

(i=0,1,..,m-1).Let @7 be a mininum ESOP for F, and t

be the number of products in the ESOP.
When we restrict the domain of the function F into
Xp41=1, ve have the function fi' Now, consider PLA1

where each product line corresponds to each product
tern of <I)1 , and the variable Xnﬂcorresponds to the

output part. Then PLAl realizes the multiple-output
functions (fO’fl’""fn—l)' Note that the number of

product lines of PLAl is ty-

Next, consider a minimum PLA2 realizing a
multiple-output function (fO'fl’“"fn-l)' Let tg be

the number of product lines in PLAZ.
Let @9 be the ESOP representing the function of PLA2.

It is clear that ®, represents a characteristic
function F. Note that ty is equal to the number of
products in @y.

Because @1 is a minimum ESOP for the
characteristic function F, ve have t;= ty. On the

other hand, because PLA2 is a minimum PLA realizing
the multiple-output function, we have tlztz.

Hence, t1= to. Therefore, we can minimize the PLA by
ninimizing an ESOP for the characteristic function.

(Q.E.D.)
Example 2.2: Consider the 2-input 3-output function
(fl’fZ’f3) shown in Table 3. Note that the

characteristic function F is equal to f in Table 2.
A minimum ESOP for F is

r= x{U -l @xi2),
where X3 represents the output part and may assume

three values.
By restricting the above ESOP to X570, X3=1, and

X3= 2, we have minimum ESOP’s for f1, f9, and fg :
g - af-af)
fp = Xfl)-Xﬁl) @1 .

Fig.6 shows the PLA realizing the above expressions.
(End of Example)

and

130

Toble 3 Function (fg,f;,f>)

X|X2 fnf]fe
00j] 001
01001
10{/001
11(110

2 fo
EXOR fl
X ¥— f2

Fig.6 AND-EXOR PLA

. Simplification Algorithm

3.1 Outline of the Algorithm
For absolute minimization of ESOP’s, no efficient

algorithm is known except for the exhaustive method

[KOD8J]. For near minimum ESOP’s, most algorithms use

iterative improvement methods [FLE87, EVES7, HEL3S,

PER39, BES83, SAS90, PAP79]. Some of the above

algorithms use RME’s and others use SOP’s of minterms

for their initial solutions. However, they require
excessive memory space when the number of inputs is
large.

The algorithm is called EXMIN, and has the
following features:

(1) It simplifies ESOP’s for multiple-valued input
two-valued output functions.

(2) As initial solutions, disjoint SOP’s are derived
from simplified ESOP’s. This produces an initial
solution a moderate size.

(3) Seven rules are iteratively used to simplify
ESOP’s .

(4) As for multiple-output functions, total set of
functions are simplified again after each function
is simplified independently.

3.2 Initial Solution

In order to treat large scale PLA’s, the initial

solutions must be small enough to be stored in a

memory of the computer. In this algorithm, the initial

solutions are disjoint SOP’s derived from simplified

SOP’s.

Definition 3.12 & SOP in which each pair of products

is disjoint is called Disjoint Sum-Of-Products

expression (DSOP).

In a DSOP, the OR operators can be replaced with
the EXOR operators without changing the function
represented by the expression. We have developed an
algorithm which converts SOP’s into DSOP’s. Some
heuristics are used to make the resulting DSOP’s have
as few products as possible.

3.3 Rules for Simplification
The algorithm uses the following seven rules:
(1) X-MERGE
) G) xb = x(a@b)
(2) RESHAPE
b @ yoyd = xay(bNd) g xlaUclyd
if (aNc=¢ ,bDd)
(3) DUAL-COMPLEMENT
xayb ® Xch = xcy(bﬂﬁ) <) xGnc)Yb
if(acc,bDd)
(4) X-EXPAND-1
xayb ® xcyd - xay(bUd) ® x(aUc)Yd
= x(aUC)Yb) xcy(bud)
if (aNc=¢ ,bNd= ¢)
(5) X-EXPAND-2
xayb ® Xch = x(aUC)Yb ® x(w(bna)
if (aNc=¢ ,bDd)
(6) X-REDIUCE-1
xayb ® chd = x(anE)yb @ X Y(dnE)
if(adc,bcd)
(7) X-REDUCE-2
xayb ® chd = x(anE)Yb ® ch(bnﬁ)
if(adDec,bDd) Y

PFig.7 illustrates the above seven rules for 4-
valued input functions. Among the seven rules, only X-
MERGE reduces the number of the products in ESOP’s.
The other rules do not reduce the number of products,
but modify the shape of products to make X-MERGE
applicable. RESHAPE is also used to modify the shape
of the products in SOP’s [HON74]. Other rules are
specific to ESOP’s. For some classes of functions,
such as parity functions, X-EXPAND-1 and X-EXPAND-2
are effective to reduce the number of products.
X-EXPAND-1 produces two different results, and DUAL-

COMPLEMENT interchange the two results. Also, note Y

that if RESHAPE (or DUAL-COMPLEMENT) is applied

twice to a pair of products, then the rule produces d

the original pair. X-REDUCE-1 and X-REDUCE-2 are
reverse operations of X-EXPAND-1 and X-EXPAND-Z,
respectively. X-REDUCE-2 produces two different b
results, and RESHAPE interchange the two results.

3.4 Simplification Algorithm

The proposed algorithm relies on X-MERGE to
reduce the number of products. The other rules are
used when X-MERGE is unapplicable. The order of rules
in the algorithm is quite sensitive to the quality of
the solutions. However, the current version of the
algorithm does not use any special heuristics on the
order of the rules and products.

In the case of a two-valued input multiple-output b
function, first ve decompose it into single output
functions, and then simplify each function
independently, and finally simplify the total set of
function again.

X a®b

Y

—>

(2) RESHAPE

(3) DUAL-COMPLEMENT
X aUc

Y

L am

bud 1

(1)
Ll) \L/

X

(1) X-EXPAND-1 a

X aUc

Y

Y

1|1

>
b 1)

\1/ \l_l_)

131

(5) X-EXPAND-2 c

Fig.7 Example for simplification rules

bnd

bnd

X X anc
Y Y
eDEL ®
= —>
N\ voi (|4
9 W
¢ (6) X-REDUCE-1 ¢
X a X antc
Y
Y
- ™\
an bad| MO
—
1
b 1
| ‘ W
¢ (7) X-REDUCE-2 ¢

Fig.7 Example for simplification rules (continued)

In the case of a multi-valued input function, we
have to be careful not to fall into a infinite loop in
the program. That is, the successive application of X-
EXPAND’s and DUAL-COMPLEMENT can make the original
cover, and so the program may not halt.

Example 3.1 Fig.8 illustrates that the successive
application of X-EXPAND-2, DUAL-COMPLEMENT, X-EXPAND-Z
and DUAL-COMPLEMENT will produce the original cover.

(End of Example)
X-EXPAND-2
CIr b EiER
b —>)
] N

4\ DUAL-COMPLEMENT

)

@iiD) <

J X-EXPAND-2, C)_

Pig.8 Example of infinite loop

In order to prevent the program falling into the
infinite loop, we introduce the notion of a volume of
an ESOP.

Definition 3.2 Let ISI denote the number of elements
S1 .S .

in S. The volume of a product Xll-Xzz"--Xin is

IS¢1-15g1--=I1S,1. The volume of an ESOP is sum of

volumes of the products in the ESOP.

132

Next lemmas consider the change of the volume of
an ESOP in applying the rules.
Lemma 3.1 X-MERGE does not increase the volume.

(Proof) Let the original cubes be X2 and Xb.

The volume of the original cubes is V0=lal+ibl.

The volume of the cube after X-MERGE is
Vi=lal+Ibi-laNbl. Hence, VI<VO. (Q.E.D.)
Lemma 3.2: RESHAPE does not change the volume.

(Proof) Let the original cubes be X2YP and X°Yd. The
volume of the original cubes is ¥2=lal-Ibl+lcl-Idi.
The volume of the cubes after reshape is
V3=lal-(Ibl-1d1)+(lal+Icl)-1dI. Hence, ¥2=V3. (Q.E.D.)
Lemma 3.3: DUAL-COMPLEMENT does not change the volume
for two-valued input functions, but may decrease the
volume for multi-valued input functions.

(Proof) The volume of the cubes after DUAL-COMPLEMENT

is VA=lcl-(Ibl-1d1)+(lcl-1al)-1bl. So the difference

of the volume is VA-V2=2{Ibl-Icl-lcl-1dl-lal-Ibl}.

In the case of 2-valued input functions, Ibl=lcl=2,

and lal=IdI=1. So, V4=V2. In the case of multi-valued

input functions, DUAL-COMPLEMENT may decreases the

volume of the cubes as shown in Fig.8. (Q.E.D.)

Lemma 3.4: X-EXPANDs increase the volume.

(Proof) 1) Volumes of the cubes after X-EXPAND 1 are

V5=lal- (Ibi+Idi)+(lal+lcl)-1d), and

V6=(lal+lcl)-Ibl+icl-(Ibl+ldl), respectively.

The differences of the volumes are

15-¥2=2-1al-1d1>0, and V6-V2=2-1bl-Icl>0.

2)The volume of the cubes after X-EXPAND 2 is

V7=(lal+lcl)-Ibl+lcl- (Ibl-1dl). The difference of the

volume is V7-V2=2-lcl-{Ibl-1d1}>0.

Hence, X-EXPANDs increase the volume of the cubes.

(Q.E.D.)

Lemma 3.5. X-REDUCEs decrease the volume.

{Proof) X-REDUCEs are reverse operations of X-

EXPANDs. So, X-REDUCEs decrease the volume of

the cubes. (Q.E.D.)

Example 3.2: Consider the function in Fig.8.

X-EXPAND-2 increases the volume, but DUAL-COMPLEMENT

decrease the volume. This fact implies that the

original ESOP is obtained after applying several
rules. (End of Example)
As shown in the previous example, the application
of DUAL-COMPLEMENT after X-EXPAND’s may produce the
original ESOP. In the case of two-valued input
functions, RESHAPE and DUAL-COMPLEMENT do not decrease
the volume, and X-EXPAND’s increase the volume, so we
can halt the algorithm when no other rule other than

RESHAPE and DUAL-COMPLEMENT is applicable. On the

other hand, in the case of multiple-valued input

functions, DUAL-COMPLEMENT may decrease the volume.

Therefore, we have to be very careful to make the

program not to fall into an infinite loops.

Algorithm 3.1 (EXMIN)

(1) Convert a SOP into a DSOP. Let it be the initial
solution.

(2) Por a multi-output function, decompose it into
single-output functions, and simplify each
function independently by the method below, and
then simplify the total set of functions again.

(2-1) Por each pair of products in the ESOP, check if

X-MERGE is applicable. If so, merge them.

(2-2) For each pair of products in the ESOP, check if
RESHAPE, volume non-decreasing DUAL-COMPLEMENT,
X-EXPAND-1, and X-EXPAND-2 are applicable in
this order. If so, apply the rule. After this,
do the following:

(a) For the products modified by the above rules,
check if X-MERGE is applicable. If so, merge
thenm and go to (2-2).

(b) If X-EXPAND-1 or X-EXPAND-2 is applied in (2-2),
then go to (2-2).

(3) Apply X-REDUCE-1 and X-REDUCE-2.

(4) Simplify total function again by (2-1) and (2-2).

(5) If the number of products is reduced in (4), then

go to (3). Otherwise stop.

3.5 Examples of Simplification

In this section, we illustrate the simplification
algorithm by using the two-valued input 4-variable
function in Fig.9. Note that the SOP is already a
DSOP. Also, note that X-MERGE is not applicable.

So the only process to do in EXMIN is step (2-2).
Example 3.3 will show the simplification by EXMIN,
while Example 3.4 will show the simplification by
the same algorithm except that the order of the rules

are interchanged. X1X2
00 01 11 10

UAD]O)
K3X1 o m
11 @ w
10 @

fig.9 Map for the example function

Example 3.3 : In Pig.10(a), even if we apply RESHAPE,
ve cannot use X-MERGE. Because we canmot apply DUAL
-COMPLEMENT, we try to apply X-EXPAND-1. We have two
options to apply this rule: one is the pair of
products (D,®), and the other is (@,®).If we apply
X-EXPAND-1 to the pair ((D,@), we obtain the ESOP
shown in Fig.10(b). In this ESOP, we combine @ and ®
by X-MERGE, and have the ESOP shown in Fig.10(c).

In this ESOP, however, we camnot apply any rules. So
the algorithm halts, and we have an ESOP with four
products. (End of Example)
Example 3.4: In the ESOP shown in Fig.11(a), we cannot
apply DUAL-COMPLEMENT. Now, we try to apply X-EXPAND-2
instead of X-EXPAND-1. We have three pairs of products
to apply this rule: the first pair is (©,®), the
second one is (@,®), and the third one is (@,H).
If we apply X-EXPAND-2 to the pair (D,®), we have
the ESOP shown in Fig.11(b). In this ESOP, we combine
(D and @ by X-MERGE, and have the ESOP shown in Fig.
11(c). Now, we can combine @ and ® by X-MERGE again,
and have the ESOP shown in Fig.11(d). Here, we cannot
apply the rules anymore. So the algorithm halts, and
we have an ESOP with three products. (End of Example)

133

=10

ClaD)

@

(a)

0
C
o

(b

Ol= -

(c)

Fig.10 Example of simplification I

As shown in the above examples, the order of the
rules in the algorithm is sensitive to the quality of
the solution. In Example 3.4, if we apply X-EXPAND-2
to the pair (@,®), we get the same result as
Example 3.3.

o @ N
¢3®ﬂ oln%@
1\ 1
00N HW[®
(D|@)
® (a)@ Y (b)
G111 U Gl
(). 1
1 LIJ e M1
L)} Y
(c)@I | (d)

Fig.11 Example of simplification II

IV. Experimental Results

Ve coded EXMIN in FORTRAN and implemented it on a
PCI801N (a personal computer utilizing a 10 MHz NEC
V30 microprocessor). We simplified ESOP’s for various
arithmetic functions. Helliwell and Perkowski
developed a simplification algorithm called EXORCISM,
and reported its performance in detail [HEL 838]. They
used ’primary xlinking’ and ’secondary xlinking’ rules
to simplify ESOP’s.

Table 4 compares the number of products and
computation time for two programs. In most cases,
EXMIN produced better solutions in shorter time.

Note that EXORCISK used a 10 MHz IBM-PC AT, which is
faster than PCIB0IN. However, EXMIN require shorter
time than EXORCISM to obtain better solutions.The CPU
time for EXMIN contains I/0 of data.

[PER89] extended the simplification algorithm for
ESOP’s to treat multiple-valued input two-valued
output functions. However, they did not show the
experimental results. So, no statistical data have
been published for the multiple-valued cases.

Table 5 compares the number of products of AND-
OR PLA’s and AND-EXOR PLA’s with one-bit and two-bit
decoders to realize various arithmetic functions
[SAS88]. This table compares the complexity of AND-
OR PLA’s with AND-EXOR PLA’s rather than showing the
performance of EXMIN. We used QM [SAS84] to obtain
absolute minimum solutions. For PLA’s with two-bit
decoders, we used an exhaustive method to find the
optimum input assignments. Therefore, these data are
all absolute minimum. On the other hand, for the AND-
EXOR PLA’s, we used EXMIN several times iteratively
to obtain near minimum solutions. Table 5 lists the
best solutions among several tries. Note that the
solutions may not be minimum for AND-EXOR PLA’s.

From this table, we can see that PLA’s with two-bit
decoders require fewer products than PLA’s with one-
bit decoders for both AND-OR and AND-EXOR PLA’s.
Also, AND-EXOR PLA’s require fewer products than
AND-OR PLA’s except for the case of LOG8. It might
be possible to simplify these PLA’s further, but
currently we have no algorithm to obtain a better
solution.

As for the number of products in these PLA’s, we
have the following results except for a few cases.

A>B>C>D, vhere
A=R of products in AND-OR PLA’s with 1-bit decoders,
B=# of products in AND-EXOR PLA’s with 1-bit decoders,
C=# of products in AND-OR PLA’s with 2-bit decoders,
D=# of products in AND-EXOR PLA’s with 2-bit decoders.

Table 4 Comparison with EXORCISM and EXMIN

Data EXORCISH EXMIN

term ;| time | tern ! time

| sec | _sec

ADR4 347 840 327 108
MLP3 19, 48 18: 11
MLPA4 119\ 7800 66 452
SQR3 7 0 6: 14
SQR6 40 180 39: H

134

Table 5 Number of Products of AND-OR PLA’s and

AND-EXOR PLA’s

Data AND-OR AND-EXOR
PLA PLA
decoders decoders
1bit | Zbit | 1bit | Zbit

ADR4| 75| 17| 32| 12
LOG8 | 123| 93| 105] 105
MLP4] 121] 8] 66| 56
NRM4 | 120| 70| 76| 62
RDMS8 | 76| 47| 31! 28
ROT8 | 57] 37| 37| 32
SQR8 | 180 142| 121 121
WGT8 | 255] 541 68] 26

V.Conclusion and Comments

In this paper, we presented a design method for
AND-EXOR PLA’s with input decoders, and formulated it
as a minimization problem of ESOP’s (Exclusive-or Su»-
0f-Products expressions) for multiple-valued input
two-valued output functions. We developed a
simplification algorithm called EXMIN, which uses
seven rules. We coded it in a FORTRAN program,
simplified various functions, and showed that EXMIN
produces better solutions in shorter computation time
than EXORCISH developed by Helliwell and Perkowski.
We also simplified AND-EXOR PLA’s with tvo-bit
decoders, and showed that in most cases they require
fewer products than AND-OR PLA’s with two-bit
decoders.

M. Acknowledgement

The author thanks Mr. M. Higashida who
implemented the original version of EXMIN.
This work was supported in part by a research adjunct
professorship at the Naval Postgraduate School,
Monterey, California, U.S.A.

VI. References

[BES 83] Ph.W.Besslich,”Efficient computer method for
EXOR logic design,” IEE Proc.,vol.130, Part E, pP-203-
206, 1983.

[BRA 841 R.K.Brayton, G.D.Hachtel, C.T.HcMullen, and
A.L.Sangiovanni-\lincentelli, Logic Minimization
?sl;gzrithls for VLSI Synthesis, Boston, MA. Kluwer,
[DUE 86] G.Dueck and D.M.Miller,”A 4-valued PLA using
the MOD SUM,” Proc. of the 16 th International Sympo.
on Multiple-valued Logic,pp.232-240, May 1986.

[EVE67] S.Even, I.Kohavi and A.Paz,”0n minimral modulo-
2 sums of products for switching functions,”IEEE
Trans. Electronic Computers, Vol.EC-16, pp.671-674,
Oct.1984.

[FLE87] H.Fleisher, M.Tavel and J -Yeager, "A computer
algorithe for minimizing Reed-Muller canonical forms,”
IEEE Trans.Colput.Vol.C-36,No.2,pp.247-250, Feb. 19§7.
[FUJ81] H.Fujivara and K.Kinoshita,”A Design of
programmable logic arrays with universal tests,” Joint

special issue on Design for Testability IEEE Trans.
Comput., Vol.C-30, No.11,pp.823-828; also IEEE Trams.
Circuit and Systems, Vol.CAS-23, No.11, pp.1027-1032,
Nov. 1981.

[HEL88] M.Helliwell and M.Perkowski,”A fast algorithm
to minimize multi-output mixed-polarity generalized
Reed-Muller forms,”25th DAC, pp-427-432, 1988.

[HON74] S.J.Hong, R.G.Cain and D.L.Ostapko, "MINI: A
heuristic approach for logic minimization,” IBM J.Res.
& Develop. pp. 443-458, Sept. 1974.

[KOD 891 N.Koda and T.Sasao, “Four-variable AND-EXOR
minimum expressions and their properties,”The 21 st
Workshop on Pault Tolerant Computing, (in Japanese)
July 4, 1989, also Technical Paper of IEICE Japan FTS-
89-25, Oct. 24, 1989.

[MUK70] A. Xukhopadhyay and G.Schmitz,”Minimization of
Exclusive OR and logical Equivalence of switching
circuits,” IEEE Trans. Comput., c-19,pp-132-140, 1970.
[MUL54] D.E.Muller,”Application of Boolean algebra to
switching circuit design and to error detection,”IRE
Trans. Electron. Comput., EC-3, pp.6-12, 1954.
[MUR79] S.Muroga, Logic design and Switching Theory,
Wiley-Interscience Publication, 1979.

[PAP79] G.Papakonstantinou, "Minimization of modulo-2
sum of products,”IEEE Trans. Comput., C-23, pp-163-
167, 1979.

[PER89]IM.Perkowski, M.Helliwell and P.Wu,”Minimization
of multiple-valued input multi-output mixed-radix
exclusive sum of products for incompletely specified
Boolean functions,” Proc.of the 19 th International
Symposium on Multiple-valued Logic, pp-256-263, May
1989.

[REE54] I.S.Reed,”A class of multiple-error-correcting
codes and the decoding scheme,” IRE Trans. Information
Theory, PGIT-4. pp.38-49, 1954.

[ROB82] J.P.Robinson and Chia-Lung Yeh, "A method for
modulo-2 minimization”, IEEE Trans. Comput., C-31, pp-
800-801,1982.

[SAL79] K.K.Saluja and E.H.Ong, "Minimization of Reed-
Huller canonic expansion,” IEEE Trans. Comput., C-28,
pp-535-537,1979.

[SAS81] T.Sasao, “Multiple-valued decomposition of
generalized Boolean functions and the complexity of
programmable logic arrays,” IEEE Trans. on Comput.,
Vol.C-30, No.9, pp.635-643, Sept.1981.

[SAS84] T.Sasao,”Input variable assignment and output
phase optimization of PLA’s,” IEEE Tramns. Comput.,
Vol.C-33, No.10, pp.879-894, Oct. 1934.

[SAS871 T.Sasao and H.Pujiwara, "A desizn of AND-EXOR
PLA’S with universal tests,” {in Japanese), The IECE
Japan Technical paper, FIS86-25,Feb.23,1987.

[SAS88] T.Sasao, "Multiple-valued logic and
optimization of programmable logic arrays, ” IEEE
Computer, Vol. 21, No.4, pp.71-80, April 1983.
[SAS89a]T.Sasao and M.Higashida,”0n a design algorithm
for AND-EXOR PLA’s with input decoders,”(in Japanese),
The 20 th Workshop on Fault Tolerant Computing, Jan.
24, 1989, also Technical Paper of IEICE Japan VLD-89-
84, Dec. 15, 1989.

[SAS89b] T.Sasao, "On the optimal design of multiple-
valued PLA’s,”IEEE Trans. on Comput. Vol.38. No.4, pp.
582-592, April 1989.

135

[SAS90] T.Sasao and P.Besslich, "On the complexity of
MOD-2 Sum PLA’s,”IEEE Trans. on Comput. vol.32, No.Z,
pp262-266, Feb.1990.

