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Abstract:
array (PLA)

A decomposition of a programmable logic

into two cascaded PLA's is considered.
The problem 1is divided into two subprobiems: a
partition problem which finds the partition of the
input variables and an encoding probiem which finds
an encoding of signals between two rLA's. Multiple-
valued decomposition theory is used to find a good
partition of the input variables. Experimental
results show that the serial decomposition reduce
the total PLA size by 10 to 30 percents.

LIN N

It is well known that an arbitrary logic fun-
ction can be realized by an AND-OR two-level cir-
cuit [MUR 79]. 1In integrated circuits, tiwo-level
circuits are often realized as programmable logic
arrays (PLA's). Because PLAs have regular struc-
ture, they are easy to design, easy to modify, and
easy to test. Thus, recent VLSIs (very large scale
integrations) use large PLAs in their control
parts. However, the larger PLAs, the more sparse
the connections in the arrays: i.e., large PLAs
tend to waste silicon chip area.

One method to alleviate this problem is fol-
ding of PLAs [WOO 79). However, folding of PLAs
makes layout problems complex. Therefore, folding
is not so popular in VLSI design [CHA 87). Another
method to alleviate the problem is decomposition of
PLAs, 1i.e., to realize given functions by using
several smaller PLAs. Decomposition of PLAs can be
classified into two types: serial decomposition and
parallel decomposition.

The first type of the decomposition,
decomposition is shown in Fig.l1(a).
position,
two groups,

a serial
In this decom-
the input variables are partitioned into
and the first PLA realizes intermediate
functions and the second PLA realizes desired fun-
ction. The second type of the decomposition, a
parallel decomposition 1is shown in Fig.l(b). In
this decomposition, the output functions are parti-
tioned into two groups, and each PLA realizes each
group independently. Because both types of deco-
mpositions can make total size of PLAs smaller than
original ones, they are often used in modern micro-
processors [PEN86, CHA87].

In this paper, we consider the serial decompo-
sition of PLA's. The decomposition is effective
when the total size of the decomposed PLA's is
smaller than original one. An optimal decomposition
is one with the smallest total PLA size. Because it
is very difficult to obtain an optimal decomposi-
tion, we divide this problem into two subproblems:
a partition problem and an_encoding problem.

The first problem, the partition problem is to
a partition of the input variables. Suppose
f is the output function of an original PLA,

and f is decomposed in a form f(X)=g(h(X1),X2 ).

We to obtain a partition (X;,X, ) of

variables which makes g and h as simple as possible.

find
that

want input

In this case, we assume that h takes multiple
values. By this assumption, an arbitrary function
can be represented in the above form. The second
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problem,

the encoding problem is to find an enco-
ding of signals between two PLA's. Suppose that f
is decomposed as f=g(h(xl),X2 ). Then, the next
problem is to realize g and h by using as small

PLAs as possible. Note that g has a multiple-valued
input, and h takes multiple valued output. We rep-
resent the multiple-valued signal by a code with
binary signals. In this case, we want to obtain an
encoding which makes both PLAs as small as possible.

In this paper, we solve the above problems and
formalize a decomposition method for PLAs. Experi-
mental results show that the serial decomposition
reduce the total PLA size by 10 to 30 percents.

This paper is organized as follows:

Section Il introduces multiple~valued decompo-
sition theory, which is useful to find a good
partition of the input variables.

Section III shows an algorithm to find a par-
tition of the input variables.

Section 1V formalizes encoding problem. In
this paper, only one-hot encoding and minimum
length encoding are considered.

Section V shows examples for Table 2.1.

Section VI shows the experimental results.

h
x] . PLAl . g
PLA2 .
2 s -

(a) Serial Decomposition

: : PLA1 :
: PLA2 :

(b) Parallel Decomposition

Fig.1.1 Decomposition of PLAs



II. Multiple~-Valued Decomposjition Theory

In this section, we introduce a multiple-
valued decomposition theory, which is a generaliza-
tion of the classical functional decomposition
theory.

Definition 2.1: Let X=(x1.x2,....xn) be input vari

ables. The set of the variables in X is denoted by
{Xy. X=(X1,X2,...,Xr) is called a partition of X,

where (X}={X;} U {X,) U ... U (X} and (X} n (Xj)
=¢ (i#]).

The number of variables in X is denoted by d(X).
Definition 2.2: For a function £(X) and a partition

X=(X1,X2,...,Xr), the decomposition chart with
respect to Xl is defined as follows:
n-n,

n

1) It has 2 1 columns and 2 rows, where the
columns correspond to the input combinations of
X1, and n1=d(xl).

Each column has the distinct binary label of n,
bits.

Each row has the distinct binary label of (n-nl)
bits.

Each entry of the chart corresponds to the truth
value of the function.

Example 2.1: Consider the function f(X) shown in

Table 2.1. Let x=(x1,x2) be a partition of X, where

2)

3)

4)

Xy =(xl 1X, ) and X2=(x3,x4). Then, we have the
decomposition chart with respect to X1 shown in
Fig.2.1.

Definition 2.3: The number of different binary
patterns in the columns of the decomposition chart
is cailed the and denoted by p.
Example 2.2: In Fig.2.1, the column multiplicity

of the decomposition chart is 3.
2.1: Suppose that X=(X1.XZ,.‘.,Xn)

Theorem
partition of the input variables for a given fun-

ction £(X). Let p, and Py be column multiplicities
with respect to X1 and Xz. Then the
multiplicity with respect to X,=(X,,X,)
at most Py°Py-

(Proof) Consider a decomposition chart with res-
pect to Xl. The decomposition chart with respect to

n
2 2

is a

respectively.

column is

XA is obtained by refining each column into

columns. Because the number of different patterns

n
in the 2 2 columns is at most pz, the total number
of different columns is at most PyPy.

X1 =(x1,x2)

00 01 11 10
00] 1 1 1
01 1 1
(x3,x4)
11 1 1
1011 1

Fig.2.1 Function f to be realized
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.and

(Proof) Consider a decomposition chart with res-
pect to Xl‘ The decomposition chart with respect to

n
XA is obtained by refining each column 2 2

columns.

into
Because the number of different patterns

in the 2n2 columns is at most Py the total number
of different columns is at most pl-pz.

Corollary 2.1: Suppose that the column multiplicity
with respect to X is p. Let (XB)=(XA) V] (xk) and
(xk}i (X,). Then the column multiplicity with
respect to XB is at most 2-p,

Theorem 2.2: For a function f(X) and a partition
X=(X1,X2....,Xr), there exist functions g and h
such that f(x)=g(h(xl),X2,....Xr), vwhere

2 r

n n
g PxB “x...xB "= B, *

™
h: B'- P,
B=(0,1}, P=(0,1,...,p-1}, n;=d(X;) (i=1,2,..,r)

p is the column multiplicity of the decomposi-
tion chart of f with respect to Xl.

n
(Proof) For a , b € B 1, define an equivalence

relation ~ such that .
a~b = f(a,Xy,Xq,...,XK)=£(b,Xy,Xg,...,X ).

n
Let II=(Lg,Ly,...,L,; ) be a partition of B 1
induced by ~.

n
The function h:B ! - P is defined as h(a)=i 1ff
a€Ll, (i=0,1,...,p-1). Note that the first variable

i
and h is a p-valued function.

of g takes p values,
Definfjtion 2.4: For the functions f, g and h in
Theorem 2.1, f(X):g(h(xl),Xz,...,Xr) is called a

decomposition of f.

n
When p < 2 1, the decomposition is_non-trivial.

If the function f has a non-trivial decomposition,
f is said to be decomposable.

in the classical decomposition theory, the
function 1is decomposable only if p=2 [(ASH 571].
However, in the multiple-valued decomposition theo~-

n
ry, the function is decomposable if p<2 1. Fig.2.2
shows the ¢ircuit corresponding the decomposition.
The circuit H realize the function h, where h takes
p different values. In general, H has multiple out-

puts.
Definition 2.5: Let X=(X1.X2...,Xr) be a partition
of the input variables of f. If the function |is

invariant under the permutation of variables in (Xl),

then f is partially symmetric with respect to (Xl).

Some arithmetic functions such as adders are
partially symmetric., The following Lemma shows that
partially symmetric functions are decomposable.
Lemma 2.1: 1f the function f is partially symmetric

with respect to (Xl), then the column multiplicity

of the decomposition chart with respect to X
most n +1.

It is well known that partially symmetric
functions can be realized by decomposed circuits
[HUR 85]1. Multiple-valued decomposition theory is
useful not only for partially symmetric functions
but also non-symmetric functions. Therefore, it is
a much more powerful tool than classical decomposi-~
tion theory.

is at




111. Partiti Pro
The final goal of the decomposition 1is to
minimize the total size of PLA's, but it 1is not

easy to find such decompositions. 1In order to make
the problem simpler, we divide the decomposition
problem into two subproblems. In this section, we
consider the first problem, 1i.e., the partition
problem of the input variables.

We assume the following to make the
simpler:
Assumption 3.1:
and the number of the variables in X1 is

Then, ~ the smaller the column multiplicity,
simpler the circuits for g and h.

So, in order to obtain a simple circuit, we
have to obtain a partition with minimum column
multiplicity. For n-variable functions, there are

20 4different partitions. When n is small (say 16),
it is easy to obtain the partition with minimum
column multiplicity by an exhaustive method.
However, when n and n, are large, it is

impossible to obtain a partition with minimum co-
lumn multiplicity by brute force method. A heuris-
tic method which finds a good partition in a reaso-
nable computation time is desired.

The following problems arise when n
large:
1) Because the size of decomposition chart is pro-

portional to 2", the memory size increases expo-
nentially. :

2) Because the number of possible partitions is 2",
the number of combinations to consider increases
exponentially.

To solve the above problems,
wing methods:

1) Represent each column of the decomposition chart
by a logical expression. Let the number of va-
riables in X1 be ng. Then, the number of expres-

problem

Suppose that a function is given,
fixed.
the

almost

becomes

we use the follo-

n
sions in the chart is 2 1. Therefore, when ny is

small, the decomposition chart can be represen-
ted with small memory storage. In Algorithms 3.1
we compute the column multiplicities for n1=2 to

NE. So the total number of combinations to con-
. n n D n
sider is (1) + (2) + + (NE)

An equivalence of two columns are checked as an
equivalence of two logical expressions.

The important thing in the decomposition is to
find a subset Xl with minimum column multiplici-

2

~

ty, when the number of the variables in xX is
fixed. To reduce the computation time, only a
subset xl with minimum column multiplicity is

we obtain the upper
Corollary

obtained. In this case,
bound on the column multiplicity from
2.1.

mh

| [7]]®

[

g(h(X1),Xz,..,X:)

X

Fig.2.2 Generaiized Decomposition

Algorithm 3.1: (Partition of the input variables)

1) Let UP«2.

2) For i=2 to NE do the operations 3) to 8).

3) UP&2-UP

4) For all possible partitions (Xl,Xz) such that
d(Xl)=i. do the operations 5) to 7).

5) Calculate column multiplicity p with
Xy 1f the lower bound on the column

ty is greater than UP, then stop the calculation
for the column multiplicity and go to 4).
6) If (p<UP), then let Bib-Xl, UP«p, and go to 4).

7) 1f (p=UP), then let Bi*--Bl U Xl and go to 4).
8) go to 2).

respect to
multiplici~-

9) For i=2 to NE, do the operations 10).
10)For each XIEB , calculate the sizes of PLAl
and PLA2. Use one-hot encoding to estimate the
size. (Details are shown in 4.1).
11)Let X1 be a subset with the minimum estimated
PLAs.
In 1), UP shows the upper bound on the column

multiplicity. In 3), Corollary 2.1 is used to ob-
tain the upper bound. In 5), column are represented
by logical expressions. In 6), B contains the sets

of input variables X1 with minimum multiplicity,

for d(X1)=i.
1V. Encodi Prob .
Suppose that a partition X=(X1,X2,..,Xr) with
the minimum column multiplicity is found for a

given number n1=d(X1), By Theorem 2.2, we can find
functions g and h such that f(X)=g(h(X1),X2,...,Xr).
Note that h(Xl) takes p different values. In order

to represent a multiple~valued variable, we use a

binary encoding. Then, the next problem is to spe-
cify the code for the output of h. We assign a
distinct binary code for each column pattern of the
decomposition chart, so that the circuits become as

simple as possible. In this case, we have two
alternatives to choose the code: one is a code
which minimize G and the other is a code which

minimize H. The problem to find the encoding which
minimizes H is an optimum output encoding problem,
while the problem to find the encoding which mini-
géz;zl G is an optimum input encoding problem [DEM
We wuse PLAl to realize H and PLA2 to
G. We consider only two types of encodings:
one hot encoding and the other is minimum
encoding.

realize
one is
length

4.1 One Hot Encoding.
Defi .18 -
efinition 4.1: The one-hot code ( Cgr & qysenns 51 )

the value i (1=0,1,...,p-1) is
-,1,0,1,..,1), where only (i+l)=-th bit is O.
From here, we will show that the cascaded
PLA's shown in Fig.4.1 realizes the function
f(X):g(h(Xl).Xz,...,Xr).

Definition 4.2: The functions « i(Xl)(i=0.1....,p—l)

of one-hot code for the decomposition
f(X)=g(h(Xl).X2,...,Xr) are defined as

0 if € L
a;(a) = ( 2 i
1

n
where (Ly,Ly,...,L, ;) is a partition of B !
defined in the proof of Theorem 2.2.

representing
(1,,.

otherwise

P
Note that V
i=0

@, =1 and ‘@ Aa—j=0(1¢j>.



Definition 4.3: Let P=(0,1,...,p-1) be a set of p

integers, S be a subset of P, and X be a variable
which takes a value in P. A literal function

( or literal for short ) x5 is a one-variable pP-
valued input two-valued output function such that
s {11fxes
X® =
0 otherwise
Suppose that PLAl realizes functions a l(xl)’

(i=0,1,...,p~1). Then, these p lines realizing @,

represent a p-valued variable, because for any
input of X1, only one line out of p lines is 0 and
other lines are 1. Let Yl be a variable which takes

p values. Y
Y

can be related to X
ai(xl) =1

as follows:

1 =i -
Therefore, 7;1(x1) corresponds to a literal Y}.
Lemma 4.1: Suppose that PLAl realize « i(xl).
(i=0,1,...,p-1).

Let Yl be a variable which takes p values.

c

T
Then, an arbitrary literal Yll ’ Tl c can be

realized in a column of PLA2.
(Proof) The p lines realizing a; (i=0,1,...,p-1)

represent a p-valued variable Yl' And,
corresponds to Yl . Note that

P,

@y

T —

v vyl o= Ayl
€T, i e (P-Tp

It is easy to see that

corresponds to A [

Ayt i
e (P-T)) 1€ (P-T))

T
Therefore, Yll can be realized by the product of
X (Q.E.D.)

Definition 4.4: Let g=(al,az,...,an) be a constant

a a
in B". X is said to be a minterm of X, and X is
said to be a paxterm of X.

Lemma 4.2: An arbitrary literal XS( scB™ ) can be
represented by the products of some maxterms of X:

s a
X" = A n X .
a €(B” -5
Theorem 4.1: Let £(X)=g(h(X, ),xz.....xr) be a

decomposition of f. Then S(YL'XZ'XS""'xr) can be
written as a sum-of-products expression: s
r

T, §
1,52 )
X2 .o X

Yy 2 .

gV, Xy, enu XD

T8y, 080

(4.1)
If a; (i=0,1,...,p-1) and all the maxterms of )(_i

(j=2,..,r) are produced then an arbitrary product
Tl T2 r
which has the form Y1 Y2 AR
realized in a column of PLA2.
(Proof) By Lemmas 4.1 and 4.2. (Q.E.D.)
Fig. 4.1 shows a decomposed PLA using one-hot
encoding. Note that, in one-hot encoding, compleme-
nted inputs for « i (i=0,1,...,p-1) are unnecessary

in PLA2. From Theorem 4.1, the minimum PLA2 corres-
ponds to minimum sum-of-products expression for g.
Minimization of the expressions for multiple-valued
input two-valued functions can be done by MINI,
MINI-11 [SAS 841, QM, ESPRESSO-MV, or ESPRESSO-
EXACT [RUD 87].

can be
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W1l
nl — —A
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Fig.4.1 Realization using one-hot encoding
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Fig.4.2 Realization using

minimum~length encoding




4.2 Minimum Length Encoding.

The minimum length encoding uses an r-bit code

to represent p different values, where r=[logzp].
It uses fewer connection lines between. PLAl and
PLA2 than one-hot encoding. Let Y be a variable

which takes p values. Suppose that r-bit code
B 8 ..1) is used to represent Y.

Theorem 4.2: Let f(X)=g(h(X1),X2,...,Xr) be a

decomposition of f.
Let g ¢ B B 1reee B r-1+%2+++-,X.) be a function

100

0’
representing g(Yl,xz.....xr) by using above enco-
ding. Then, g, can be represented by a sum-of-
products expression:
B (P gy Boveees By iX2,. 00 ,X0)
T T T S S
= 0, Looooopg =12 v .
=V By -8y B .17 X, X, (4.2)

Fig.4.2 shows a decomposed PLA using minimum
length encoding. Note that each product in (4.2)
corresponds to each column of PLA2. The number of
products of (4.2) is equal to or greater than that
of (4.1). In the case of minimum length encoding,
different encodings produce expressions with
different complexity. It is not easy to find an
encoding which minimize the number of products 1in
(4.2). We wuse the following simple heuristic to
reduce the number of products in PLAl.
Unfortunately, it does not always produce the
optimum solution as will be shown in the example of
5.2.2.

Heuristic 4.1: The most frequently occur column
pattern in the decomposition chart is assigned to
the code (0,0,...,0), and the next most frequently
occur patterns are assigned to codes (1,0,..,0),

(0,1,0,...,0),...,(0,....,1), and so on. The more
frequent the pattern occurs in the decomposition
chart, the more the number of 0's in the code.

Table 2.1 4-variable function

x1 x2 x3 x4 f
0O 0O 0 O 1
0O 0 0 1 0
0 0 1 © 1
0O O 1 1 (o]
0O 1 0 O 1
0O 1 0 1 1
0 1 1 0 0
o 1 1 1 1
1 0 0 O 1
1 0 0 1 1
1 0 1 O 0
1 0 1 1 1
1 1 0 O o]
1 1 0 1 0
1 1 1 0 1
11 1 1 0
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V. Example

In this part, we show the idea of the
decomposition by wusing the function f shown in
Table 2.1.

.1 _Ori P a .

The size of the standard PLA is C1=(2n+m)-W.
From the map of the function, 6 products are
necessary to represent f. Fig.5.1 shows the PLA
with the size Cl=54, vwhere n=4, m=1, and W=6
5. ecom P, rea tion

Let X=(X1,X2.X3) be a partition of
X=(x1.x2,x3,x4), where X1=(xl,x2) X2=(x3). gpd
X3 =(x4). Note that only three different patterns

appear in the column of Fig.2.1, 1i.e., the column
multiplicity of the decomposition chart 1is 3.
Consider the decomposition f(X)=g(h(X1),x2.x3). The

function h shown in Table 5.1 is a two-valued input
three-valued output function. And the function
g(Yl.Xz.Xa) shown in Table 5.2 is multiple-valued
input two-valued output function, where Y1 takes
three values and X2 and X3 takes two values.
6.2.1 One-Hot Encoding

In this case, we use three-bit code
(a 1P %9 @ 3) to represent the three-valued

variable Yl' Table 5.3 shows relation between Y,
and ( @31, @,,a4). PLAl converting (xl,xz) into
Qs a,, a3) has only two products when the output

phase is optimized [SAS 84]. Fig.5.2 is the map of
the function g represented by Yl. X3, and Xy- PLA2

realizing the function g has only three products.
Fig.5.3 shows the decomposed PLA's. The total size
of the decomposed PLA's obtained from Fig.4.1 is
C2=(2-n1¢ p)-w1+(2(n-nl)*p¢m)-w2.

In this case n=4, m=1, ny=2, p=3, U1=2, and H2=3.
So, wc have C2=38.
$.2.2 Minimum Length Encoding

In this case, we use two binary variables, ﬁc
and Bl to represent the three-valued variable Yl'
Table 5.4 shows relation between Y, and (B, B,).
PLAl converting (x;,X,) into ¢ B o ﬂl) has two
products.

Fig.6.4 shows the function g represented by
variables 80, ﬁl.xa, and x,. Note that PLAl never
produces the pattern (1,1). So, the entries for
these inputs are don't cares. PLA2 realizing the
function g has four products. Fig.5.5 shows the
decomposed PLA's. The total size of the decomposed
PLAs given by Fig.4.2 is

C2=(2'nl*r)~wl+(2(n-n1 *r)*m)wz. In this case,
n=4, m=1, nlsz. r=2, H1=2. H2=4. So C2=48

1f we use the encoding shown in Table 5.5,
number of products in PLA2 becomes to
the total size is C2=39. .

then the
three. So,

VI. Experimental Results

The partition and the encoding algorithms were
programmed in FORTRAN, and implemented on a PC98XA,

a personal computer using an 8-Mega Hertz INTEL
80286 microprocessor. For simplicity, we used
single-output functions to show the idea of the

multiple-valued decomposition theory. However, the
decomposition of multiple-output functions can be
formulated similarly. Our program can treat
multiple-output functions.

We investigated many industrial and arithmetic

PLA's [BRA 841,[RUD 871, [SAS 86b). Most PLAs had
non-trivial decompositions. 10 out of 23
decomposable PLA's are more than 10X smaller than



Table 5.1 Function Yi=h(X1)

Function g(Y¥1,X2,X3)

x1]x2|Y1

0|]0]O0

0 1 1

11011

11112

Table 5.2

Y1 X2 X3¢
0O 0 o011
0O 0 11{0
0O 1 o011
0 1 1140
1 0 01
1 0 1¢}1
1 1 0|0
1 1 111
2 0 010
2 0 1]0
2 1 01}1
2 1 1|0

Table 5.3 One-hot Encoding
Y1 al al a2
0 0O 1 1
1 1 0 1
2 1 1 O
Table 5.4 Minimum Length Encoding
Yi{ B0| A1
0 0 1
1 o] ¢]
2 1 o}
Table 5.5 Another Miniamum
Length Encoding
Y1 A Bl
0 o] 1
1 0 0
2 1 1
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Fig.5.3 Decomposed PLA (One-hot encoding)



Table 6.1 Decompositon Result

the original ones. Table 6.1 shows the
results for the nine PLA's.

selected
It is often possible to

. N reduce the size by optimizing the output phase, but
PLA Original PLA Decomposed PLA Size no output phase optimization were done for the
Name T PLA's in Table 6.1. In most cases, one-hot
PLA1 + PLA2 ¢3)] encodings produced smaller PLAs than minimum length
I encodings. So, only the results for one-hot
! . encodings are shown in Table 6.1.
nta L Cl |nli plWl: W2 1C2 c1/c2 For arithmetic functions and special functions
¥ with strong symmetry properties (i.e., ADR4, RDS3,
NXCPLA 9123 43| 1763| 4| 8! 8 311399 :0.79 RD73, RD84, SYM9), the decomposed PLA's are much
! smaller than the original ones. We can extend
I " Theorem 2.2 to treat the decomposition
NAPLA 12010 16} 5441 5 4, b! 14| 47610.88 £(X)=g(hy (X{),hy(Xy), ... ,h (X)) [SAS 81).
] v ! For example, RD84 (also called WGT8 [SAS 86al or
NAPLA1 12, 17 10 310} 3| 3| 4 81 2600.84 SAO1 [SAS 86b]) can be decomposed as
£(X)= g(hl(Xl).hz(Xz)), where X1=(x1.x2,x3.x4) and
NWCOND 11 2 31| 744 3 4 5 23} 5561 0.75 Xo=(Xg.Xg,X7,Xg). In this case, h) and h, are two-
valued input 5-valued output functions, while
BOTH 10 39 81147791 47 9} 9 64 13993 | 0.84 g(Yl .Yz ) is a 5-valued input two-valued output
% function. The size of the original PLA is 6100,
GARY 150111 10714387} 3| 5! 5 99 | 3817 0.87 while size of the decomposed PLA's is only 400 when
we use one hot encoding and 396 when we use minimum
length encoding [SAS 86al.
AUG1 16, 8 5412180} 4| 510 40 | 1610 | 0.75
VII. Conclusio d t Work
ROT8 8| 5 5711197} 3j 5 8 35 788 0.66 In this paper, we formulated a serial
decomposition problem and presented a method to
| = realize logic functions by cascaded PLAs. Ve
LGBMOD 8] 5 38] 7981 41 5] 5 35| 6951 0.87 decomposed various PLAs, and obtained the following
results:
n: number of inputs 1) 10 PLAs out of 23 decomposable PLAs are more
n: number of outputs than 10X smaller then original PLAs.
. i3 2) In most cases, one-hot encoding produced smaller
¥: nuaber of colusns of original PLA circuits than minimum-length encodings.
Cl: size of the original PLA =(2n+m)¥W The present method has several points to be
nl: nueber of inputs for PLAL ;Tp;:ved:l Cthm for th Gt ¢ the input
. e algorithm for e par on o e npu
p: number of outputs of PLAL variables needs exponential computation time,
Wl: number of coluens of PLAl although we have some methods to speed up. We
C2: size of decomposed PLA’s =(2n1+p)W1+(2n-2nl+ptm)W2 need a heuristic method to find a  good
partition more efficiently.
4) In this experiment, minimum-length encodings
produced larger circuits than one-hot encodings.
One reason for this is, we did not optimize the
minimum-length encodings. We need a better
heuristic than Heuristic 4.1 to find a better
encoding.
(B80,81)
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