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Abstract: A lower bound Lp(n,u) and an upper bound
Up(n.u) on Sp(n,u) are derived, where Sp(n,u) is

the average number of the products in the minimum
sum—of-products expression for p—-valued input two-
valued output functions, n is the number of the
inputs, and u is the number of the input combina-
tions which are mapped into 1. The values of
Sp(n.u) are obtained by minimizing randomly gene-

and they are compared with the
These

bounds are useful for estimating the size of prog-—
rammable logic arrays.

Index Terms:

ty, prime implicants, logic minimization, program—
mable logic array, multiple-valued logic.

1. Introduction
A p-valued input two-valued output function f

is a mapping f: P" - B, uwhere P=(0,1,...,p-1) and
B={0,1>, It is a generalization of an ordinary

switching function f:B" = B, A programmable logic
array (PLA) with r-bit decoders directly realizes a

sum—of-products expression (SOPE) of a 27 -valued
input two-valued output function [SAS 81],LSAS 841.
Multiple-valued logic minimizers such as MINI [HON
743, MINI-II [SAS 841, ESPRESSO-MV [RUD 851, QMLSAS
861 and ESPRESSO-EXACT [RUD 88] are used to obtain
the near minimum SOPE’s for p-valued input two-
valued output functions.

rated functions,
calculated wvalues of Up(n,u) and Lp(n,u).

Sum—of-products expression, complexi-

This paper deals with the average number of
products in the minimum SOPE s for p-valued input
two-valued output functions., Because it is wvery

important in the complexity analysis of AND-OR two-
level logic circuits, including standard PLA's and
PLA s with two~bit decoders, many researchers have
spent considerable efforts [PAP 781, Cobham,
Fridshal and North [COB 6é2] obtained the average
number of the products in minimum SOPE’s of swit-
ching functions of up to 8 wvariables by wusing
computer simulation. Mileto and Putzolu CMIL 441
obtained formulas for the average number of prime
implicants and essential prime implicants of swit-
ching functions: their formulas give upper and
lower bounds on the average number of products in
minimum SOPE’s, respectively. Glagolev [GLA 701
obtained an upper bound on the number of products
in minimum SOPE’s for almost all ‘switching fun-—
ctions. Cook and Flynn CCOO0 73] investigated the
average minimum cost of SOPE's and attempted to
relate it to the entropy function. The author
derived the formula for the average number of prime
implicants for p-valued case [SAS 79], and also
obtained the average number of products in minimum
SOPE’s for p=2 and p=4 by using computer simulation
[SAS 80,81]. Recently, Bender and Butler [BEN 861
improved the upper and lower bounds for switching
functions.,
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lower
in  the

we derive an upper and a
average number of products
minimum SOPE’s. They are tighter than any other
bounds reported to date. In Section 2, we show
basic properties of the p~ valued input two-valued
output functions. In Section 3, we derive an upper
bound on the average number of products in minimum
SOPE’s. In Section 4, we derive a lower bound on
the average number of products in minimum SOPE’s.
In Section 5, we show the experimental results.

In this paper,
bound on the

. Definition P

s
Definition 2.1: Let P={(0,1,...,p~1) be a set of
truth values, and X be a variable which takes a

value in P. Let S be a subset of P, then Xs denotes
a 2-valued function P =B such that
0

S = { (when X€&ES)

1 (when XE€S) 4
where B=(0,1). A symbol X° is called a literal.
Definition 2.2: A product of literals is called a
product term Cor

product), and a sum of products is

called a sum—of-products expression (SOPE).
Lemma 2.1t An arbitrary p-valued input two~valued

output function f: P" = B

the following SOPE:

can be represented by

Sz

s s
1,
X7 %X

FUXy 2 Xy oo e X )= et M
T TN n’

where S, S P, (i=1,2,.0.,n).

A p-valued input two-valued output Ffunction

sometimes simply called a function.

Definjtion 2.3¢ An SOPE which represents f is said

to be minimym if the SOPE has the minimum number of

products. The number of the products in the minimum

SOPE of f is denoted by t(f),

Definition 2.4: The set of inputs which are mapped

1 by a function f is denoted by f—l (1). The

number of elements in F-l(i) is called a weight of
f and denoted by ifl. The average number of pro-
ducts in minimum SOPE‘s for n-variable p-valued
input two-valued output functions with weight u is
denoted by Sp(n,u).

Lemma 2.2: Sp(n,u) SMinC u, P 3,
(Proof)

1) An arbitrary function with weight u
represented by an SOPE:

a a a
- 1,72, v
FX Xy eonsX )= \g N R

is

into

can be

where the logical sum is taken for all input combi-
nations a =(a1,a2,.‘.,an) such that f(a)=1. There

are u such combinations and so, we have t{(f) Su.



2) An arbitrary function can be represented by an
SOPE:

ba b3 b,
FOXy o Koy e orsX )= \é 9 Xy X2 Xg3 e x M,

where the logical sum is taken for all input combi-
nations of hF(bl.bz,...,bn) in Pn-i. Therefore, we
have t(f) Spn_:!'

From 1) and 2), we have the lemms. (Q.E.D.)
Definition 2.5: A map of an n-variable p-valued

input two-valued output function consists of p"
cells, Cells that contain 1°s are called l-cells

while cells that contain 0’s are called QO-cells.
Example 2.1¢ Fig.2.1 shows a map of a four-valued

input two-valued output function. The SOPE for this
function having the form (2.1) is

~y(0,1,2,3},(0> {0,2,32,(1>
'F(Xl.Xz)—X1 PErErEIXs v X1 ! X3
{0,1,324€(2> €1, ,(3>
VXl’ X2 VX1 X357
(End of example).
X

1
o 1 2 3
oj1]|1 1 1
1 1 1 1
Xo
211 1 1
3 1

Fig.2.1 4-valued input
two-valued output function

Mileto and Putzolu [MIL 64] derived formulas
for Gé(n.u). the average number of prime implicants

of switching functions with weight u, and Gé(n.u).

the average number of essential prime implicants of
switching functions with weight u, Because
Gé(n.u) < SZ(H'U) s Gé(n.u)’

Gé(n,u) and Gé(n,u) are upper and lower bounds on

Sz(n.u). respectively. Unfortunately, when L|Z2n_1

and n 210, Gé(n.u) is greater than 201 and
Gé(n.u) is very small compared with Sy(n,u).

Therefore, in such cases, these bounds give little
information about the value of Sz(n.u).

3 n he Av e r_of Pro s
in Mininum SOPE’s
In this section, we derive Up(n.u). the upper

bound on the average number of products in minimum
SOPE’s for n-variable p-valued input two-valued
output functions with weight u.

There are F{W)=(¥) different functions with
weitht u, where w=p". Let F§U)be the i—-th function
with weight u (i=1,2,...,F")), By the definition
of Sp(n,u), we have

F(u) (W
_ uwly
sp(n.u>-F—}m- 151 e(F{Y) (3.1)
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Lemma 3.1: An arbitrary n-variable function f can

be represented by an expression:
F(X1.X2...,Xn9= zésPn-k E(a),

a a a
where E(a) =g_(X;,Xps e sX 0 X KTIX 2 x 0

ga(Xl,Xz....,Xk)=F(X1,X2.....Xk,ak+1.-...an) ’

a =(8k+1’ak+2 ,...,an), and aJ-€P (j=k+1,...,n),
E(a) in Lemma 3.1 is called an E-term.
Example 3.1: The function shown in Fig.3.1 can be

represented by an expression:
F(Xy»Xp,Xq,X,)=EC0,0) VE(D,1) VE(1,00VE(L, 1),

where E(0,0)=( 1 );é;h,

E€0,1)=(xq VXp dxgxgs

EC(1,0)=( ;1x2 )xe;a, and

EC€1,1)=C Xy Vxy)xgxg. (End of Example)
By Lemma 3.1, F§U)in (3.1) can be represented as

(u)_
fi50= v n-k Ej(a) .

a€P
Therefore, we have
(u)
t(f’i ) S aEGPn_k t(Ei(i)) -------------- (3.2)
(X 1 XZ)
00 01 t1 10

00|11 (1/1

0t ] 1 1]1
(X3,X4)

1111 1

10 1

Fig.3.1 A 4-variable switching
function

Example 3.2: In the expression of Example 3.1,

+(E(0,0))=1, £(E(0,1))=2, t(E(1,0))=1, and
t(E(1,1))=2, Therefore, the right hand side of
(3.2) is equal to

€§P2 t(E(a))=1+2+1+2=6, On the other hand, the
a

left hand side of (3.,2) is t(f)=4 as shown in
Fig.3.2. Therefore, the relation (3.2) holds in

this example. (End of example).
(X19X2)
00 01 11 10
ol@ 111D
o1 1 a4 @7
(X3’X4) —Nl
nyim ag.
10 1

Fig.3.2 Minimum SOPE for Fig.3.1




By (3.1) and (3.2), we have Sp(n.u)
where

s Up(n.u).

F(u)
Un,u)e—t— = I
’
P FlW 51 aepn
By changing the order of summation, we obtain
(u)
F

ik EE Ca)).

1
U (nyul)s—5—~ Z Z t(E;(a)).
p (W) gEPnk i=1 i
Note that
F(u)
Z t(E, (g)) (3.3)
i=1
denotes the average number of products in minimum
SOPE’s for the functions with weight u having
- B+l Bk+2, . Bn
E;(a)=g; (X1,X2....,Xk) Xk+1 Kig2 et Xy

as E-terms. The value of (3.3) does not depend on a.

9; a(Xl,Xz,...,Xk) .(i=1,2,...,F(U)) are k-variable

k
functions and have pP different patterrs.

Let [Fk ] be the set of all the k-variable
ctions., (3.3) can be represented by the sum
respect to the functions

9; €EFk] and

fun-
with

n-k
=B, 3. .
Up(n.u) e o] ZEFk] t(E(gJ)) Lp(n.gj.u).

a
where E(g;)=9,(X;4Xp, -+ XX K2y,

Lp (n,gj

ctions with weight u having E(g.) as an E-term. Let

,u) denotes the number of n-variable fun-

cq be an E~-term. The volume of g is |gil.
of different
1-cells and

Lp(n,gj.u) is equal to the number

functions with weight u, where Igjl

(p—igjl) O-cells are fixed.

Therefore, L (n.g yu)=(¥

u—lg |)
Because t(E(gj))—t(gj), we have

- pk

Up(n,u)= 9,

w=
kq t(g 1 C1g. 1)

B__
F(u)

GEEF
Definition 3.1 The
following conditions is called VP-equivalence rela-
tion.

1 f ~fF.
2) If
f1=f(...,Xi,..,XJ,..) and f2=f(‘..,XJ,...Xi...).

then fl'v F2' (Permutation of input variables)

relation ~ satisfying the

3) Let 0:P-P be an arbitrary one-to-one mapping.
If F1=F(...Xi,..) and f2=F(.., LA FRFRRY)
then fl"' 'F2.
(Permutation of values in a variable)
Especially, when p=2, VP-equivalence is called NP-
equivalence [HAR 651],[MUR 791].
By using VP-equivalence relation, we can parti-

tion EFkJ into equivalence classes.

Let 91’92""’g‘lbe the representative functions of
the VP-equivalence classes. Then, we have

pnk -k
U (nyud=E '21 tlo)- ulgd-C 5 7R
J=

u-j !

F(U)

where u(gi) is the number oF functions which

are
VP-equivalent to 95
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Next, by classifying 1 different equivalence clas-
es by the weight of the functions, we have

k
- p K
- w-p
Up(n,u) F(U) jfl c(j) ( f ),
where c(j)= = r(g.) t(g.)
lgi =j 4 t

and 912 9oseeer 93 are representative functions

of VP-equivalence classes., Finally, we have the

following:

Theorem 3.1t Let Up(n,u) be an upper bound on the
average number of the products in minimum SOPE’s
for n-variable p-valued input two-valued output
functions. Then

— ok

= w =
Up(n,u) ?TG) Jf clj)- (- J )
where c(j)= z wig.) t(g.),
9i|=.j J :

94190104019 3 are representative functions of VP-

equivalence classes, t(g.) is the number of pro-
i

and M(gi) is the
number of functions which are VP-equivalent to 9;.
Example 3.,3: Suppose that p=2 and k=3, The coeffi-

cients c(j) can be obtained as follows: Table 3.1
shows the representative functions of VP (=NP)-
equivalence classes of three variables. There are
22 classes. By minimizing all the representative
functions, we have the coefficients shown in Table

3.2. (End of example).
Example 3.4: Suppose that p=2 and k=4,
There

are 402 different VWP-equivalence classes of
d~-variable functions. In a similar way, we have the
coefficients c(j) shown in Table 3.3. Logic minimi~
zation of the functions was done by QM [SAS 861, a
modified Quine-McCluskey algorithm for p-valued
input two-valued output functions.(End of example).

Example 3.5: Suppose that p=4 and k=2,

There are 192 different representative
four-valued input two-valued output
Table 3.4 shows the coefficients c(j).

ducts in a minimum SOPE for 95

functions of
functions.
Logic mini-

mization of the functions was done by QM.
(End of example).
4, Lower n_the Average f Prod

in Minimum SOPE’s.
In this section,

bound on the average number of products in minimum
SOPE’s for n-variable p-valued input two-valued
output functions with weight u,

f s Si 2 Sn
Definition 4.1: A product p1=X1 X2 '...-Xn
implicant of £ if p ¢ f. A product Py, is said to
be a prime implicant of f if there is no product
p, such that p, £, pl( P2» and Py #p,.

Let there be k; different Si's such that |Si|=j

for j=1,2,..,p. Then, this product is said to be
k-cube. where k=(kyikoseoaky ).

Example 4.1: Let p=4 and n=4.
x{011:3%.x£0,13.4£1,22. 4400 5o 2 (1,2,1,0)

we derive Lp(n.u). the lower

i= an

~cube,

while
x{0:1,2,3) x (1,23 (2,3 (0. 1,2 4o o (0,2,1,1)-

cube.



Representative Weight Number of Number of
Function Functions Products in
in the class Minimum SOPE
9; |gj| u(gj) t(Qj)
1 0 0 1 0
2 abc 1 8 1
3 ab 2 12 1
a4 a(be Vbe) 2 12 2
S a(bVve) 3 24 2
6 a 4 6 1
7 | abeVabc Vabe 3 8 3
8 abVbcVeca 4 8 3
9 abc Vabc 2 4 2
10 abc VVbe 3 24 2
11 ac Vbe 4 24 2
12 abVacVabc 4 24 3
13 aVbc 5 24 2
14 abVab 4 6 2
15 abVabVac S 24 3
16 aVb I3 12 2
17 a®bDcPH1 a4 2 4
18 |acVabVbeVabe ] 8 a
19 aVbeVbe é 12 3
20 | abVbcVac 3 4 3
21 aVbVe 7 8 3
22 1 8 1 1
Table 3.2 c¢(i) for p=2 and k=3
J 1 2 3 4 5 6 7 8
c(§) 8 44 120 170 152 72 24 i
Table 3.3 ¢(j) for p=2 and k=4
J 1 2 3 4 5 6 7 8
c(§) 16 208 1328 5288 | 14720 | 29872 | 46368 | 54992
J 9 10 11 12 13 14 15 16
c(§) 50992 | 36336 | 19856 | 8056 | 2352 448 64 1
Table 3.4 c(i) for p=4 and k=2
i 1 2 3 4 5 6 7 8
c(y) 16 192 1184 4508 | 12336 | 24248 | 36992 | 42720
J 9 10 11 12 13 14 15 186
c(j) 37072 | 24632 | 13056 5120 1360 240 32 1
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Definition 4.2:
number of prime

G;(n,&.u) denotes the average

k~cubes of n-variable p-valued

input two-valued output functions with weight u.
Theorem 4.1:
(k)

) 7 )
7 b
F

t=0

(k,t)

(e, 1)’

6, (n, k) = (-1t ‘tz 2, 1) (WY ,

W)’
where F(U)=(:). w=p",

=4 k.
cW=any. Nrde 7 g,
1

i=1
p-1 t.
Wi, £)=uwlk) - {1+ ,21 =~
1:
P k. p—~1
wlk)=T (i) Y, 7(k)= X a., a,=k.(p-1),
i=1 i=g 1
t =(t1,t2,...,tp_1) is a partition of t, and
P- ai
Lk, )= T (.1,

i=t
(Proof is shown in [SAS 7%al.)
4.1:

rime cubes. Then,
Vp(n.u) = A/B , where

A E u(g)'G;(n,g,u), and B = E G;(n,g,u)

Lemma Let Vp(n.u) be the average volume of

(Proof) It is easy to see that A denotes the sum of
the average volume of the prime cubes, and that B
denotes the average number of prime cubes. Hence,
A/B denotes the average volume of prime cubes.

(Q.E.D.)
Now, we will make the following assumption.

Assumption 4.1: The average volume of prime cubes

in

a minimal SOPE for f is equal to the average
volume of all the prime cubes of f.
(Note that, in general, there are many minimum

SOPE‘s for a function f.)
By using Assumption 4.1, we have the following:

Conjecture 4.1: Sp(n,u) P Lp(n,u),

where Lp(n,u)=(u~B)/A.

A 2 w(k) G’ (n,k,u), and B = I G (n,k,u)
P k P

=

(Explanation supporting the conjecture)
There are u minterms in f. Because the average
volume of each cube is Vp(n.u). any SOPE for f

requires at least u/Vp(n.u) cubes to cover all the

minterms of f. (End of the explanation)

Consider

Example 4.2: the function shown in
Fig.3.1, where n=4, p=2, and u=11. The number of
prime cubes is 7, and the sum of volumes of all
prime cubes is 22. The average volume of prime
cubes is 22/7=3.14 . If Assumption 4.1 holds, then
the lower bound on the number of products in mini-

mum SOPE for f is 11/3.14=3,5. Fig.3.2 shows a
minimum SOPE for f. Note that only two prime impli-
cants are essential. Therefore, Assumption 4.1
gives a tighter lower bound than the bound given by
the number of essential prime implicants.

(End of example).
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S. Experimental Results
In order to obtain Sp(n,u). functions generated
by a pseudo-random number generation algorithm were
minimized. For each value of density, d=—§; » n and
p, 100 sample functions were generated for (p=2,
n=6 and 8, and p=4, n=3 and 4), and 10 samples were

generated for (p=2, n=10 and p=4, n=5). Then, each
function was minimized by QM.

Table 5.1 shows the values of Sz(n.u) obtained by
the average of the sample fungtions. as well as
calculated values of Gé(n.u). Gz(n,u). U2(n,u), and

8, and 10. from

this table, U2(n,u) and L2(n,u) are, in moast cases,

Lz(n,u) for n=6, As easily seen

tighter bounds than Gé(n,u) and Gé(n.u). respecti-
vely, Table 5.2 shows the case of p=4, _and fqr
n=3,4, and 5. In this case, however, Ga(n.u) is

omitted because no formula is known for it. Valu?s
of Ud (n,u) were calculated by using the coeffi-

cients shown in Tables 3.3 and 3.4.

6. Conclusion

In this paper, we derived an upper bound

Up(n,u) and a lower bound Lp(n,u) on Sp(n.u). the

average number of prime implicants in minimum
SOPE’s for n-variable p-valued input two-valued
output functions using u, the weight of tbe fun-
ctions, as a parameters. Up(n,u{ was derived by

using the statistical data of minimum SOPE's for
all k-variable functions (kSn). On the other hand,
Lp(n,u) was derived by using the concept of the

average volume of the prime cubes. These bounds are
tighter than any other bounds reported to date, and
applicable to any value of p.

+ N-variable pseudo-random functions were
rated as follows LYAI 861
R=1 (random number initial value)
table(1,2,.,..,2%%N)=0 (reset the truth table)
do the followings until the density becomes
specified value.
R=MOD(163%R+656329,12518383)
ADDOR=MOD(R,2%%N)
table (ADDR)=1
end

gene—

the



Table 5.1 Average Numbers of the Prime lmplicants in Minimum SOPE’s

and Their Upper and Lower Bounds (p=2)

p=2, n=86
d=u/2" 1/8 2/8 3/8 4/8 5/8 6/8 /8
u 8 16 24 32 40 48 56

G2(n,u) 6.41{ 12.45; 18.61 | 24.15| 29.16{ 31.13| 26.52
G2(n,u) 6.11 8.86 8.87 7.33 5.34 3.60 2.76
L2(n,u) 5.67 8.52 | 10.21: 10.59} 10.14 8.74 6.23
Ua(n,u) 6.59{ 11.04; 14.47| 16.68 | 17.63 | 17.16 | 14.97
S 2(n,u) 6.14 | 10.32| 12.42| 13.76{ 13.77 | 12.78 | 10.11

p=2, n=8
d=u/2" 1/8 2/8 3/8 4/8 5/8 6/8 7/8
u 32 64 96 128 160 192 % | 224 %

G2(n,u) | 25.68 | 53.99 | 84.11|117.53 | 151.81 | 176.97 | 167.89
Gz(n,u) | 21.74 | 26.41| 20.94 | 12.84 6.42 2.67 1.06
L2(n,u)|{ 20.08 | 30.17 | 34.96 | 35.41 | 33.26 | 27.20| 17.96
Uz(n,u) | 26.09| 44.19| 57.75| 66.28 | 70.05| 68.23 | 58.97
Sz(n,u) | 22.91| 35.99| 43.25| 45.83| 44.13] 39.01 | 28.49

p=2, n=10
d=u/2" 1/8 2/8 3/8 4/8 5/8 6/8 7/8
u 128 ¥ | 256 % | 384 % |512 ¥ | 640 % 768 896
G2(n,u) [ 105.76 | 237.23 | 387.31 | 584.72 | 800.91 | 1039.0 | 1138.1
Ga(n,u) | 77.13 | 76.48 | 46.31 | 20.27 6.60 1.53 0.00
Lz(n,u){ 73.93|110.97{124.75| 126.03 | 115.38 | 92.67 | 58.08
Uez(n,u) | 103.92 | 177.98 | 230.62 | 264.69 | 279.73 | 272.70 | 234.94
Sz(n,u) | 86.1 |133.8 |154.9 | 158.8 | 156.3

n. number of the input variables

u. number of the minterms which are mapped into one.

). average number of the prime implicants )

). average number of the essential prime implicants

). lower bound on Sy(n,u

2+ upper bound on Sp(n,u) ‘ o

). average number of prime the implicants in the minimum SOPE’s
(The values of Sy(n,u) were obtained by taking the average

of ten randomiy generated functions)
¥! near minimal solution
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Table 5.2 Average Numbers of the Prime Implicants in Minimum SOPE’s

and Their Upper and Lower Bounds (p=4)

p=4, n=3
d=u/4* 1/8 2/8 3/8 4/8 5/8 6/8 /8
u 8 16 24 32 40 18 56

Ga(n,u) 5.94 | 11.69| 17.88 | 24.24 1| 29.67| 32.01 | 25.65

L a(n,w) 4.92 6.98 7.87 7.90 7.21 5.87 3.90

U 4{n,u) 6.01 9.43 | 11.70} 12.59 | 12.17 | 10.70 8.37

S a(n,u) 5.47 8.54 9.67 | 10.14 9.55 8.07 5.77

p=4, n=4
d=u/4" 1/8 2/8 3/8 4/8 5/8 6/8 /8
u 32 64 96 128 % | 160 % | 192 % | 224 %

Ga(n,u) | 24.86 | 54.76 | 91.28 | 136.18 | 187.32 | 237.00 | 240.00

La(n,u) | 17.17| 24.49| 27.01( 26.59 | 23.59| 18.51 | 11.36

U4ln,u) | 23.71| 37.68 46.51 | 49.89 | 48.34| 42.56 | 33.31

Saln,u) [ 20.29 | 29.72| 33.57| 33.52| 31.32| 26.69} 17.92

p=4, n=5
d=u/4" 1/8 2/8 3/8 4/8 5/8 6/8 7/8
u 128 *# | 256 % | 384 % |512 % 640 768 896

Ga(n,u) | 107.39 | 256.57 | 464.78 | 756.63 | 1160.5 | 1695.9 | 2203.0

L a(n,u) | 63.32| 89.76 | 97.70{ 95.24 | 83.26 | 63.87| 37.37

Us(n,u) | 94.41 | 151.47 { 185.61 | 199.09 | 193.00 | 170.23 | 133.0

Saln,u) | 74.5 | 106.6 |118.2 |121.6

%. near minimal solution
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