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Abstract: A lowet- bound Lp(n,u) and an upper bound 

Up(n,u) on Sp(n,u) are derived, where Sp(n,u) is 

the average number of the products in the minimum 
sum-of-products expression for p-valued input two- 
valued output functions, n is the number of the 
inputs, and u is the number of the input combina- 
tions which are mapped into 1. The values of 
S,,(n,u) are obtained by minimizing randomly gene- 

rated functions, and they are compared uith the 
calculated values of Up(n,u) and Lp(n,u). These 

bounds are useful for estimating the size of prog- 
rammable logic arrays. 

Jndex Termg: Sum-of-products expression, complexi- 

ty, prime implicants, logic minimization, program- 
mable logic array, multiple-valued logic. 

1. Introduction 

A p-valued input two-valued output function f 

is a mapping f: p n +  0,  uhere P=CO,l,...,p-1) and 
B=CO,i>. It is a generalization of an ordinary 

suitching function f:~"+ B. A programmable logic 
array (PLA) with r-bit decoders directly realizes a 

sum-of-products expression (SOPE) of a 2' -valued 
input two-valued output function [SAS 811,ESAS 843. 
Multiple-valued logic minimizers such as MINI CHON 
741, MINI-I1 CSAS 843, ESPRESSO-MV CRUD 853, QMCSAS 
861 and ESPRESSO-EXACT CRUD 863 are used to obtain 
the near minimum SOPE's for P-valued input tuo- 
valued output functions. 

This paper deals uith the average number of 
products in the minimum SOPE's for p-valued input 
two-valued output functions. Because it is very 
important in the complexity analysis of AND-OR two- 
level logic circuits, including standard PLA's and 
PLA's uith two-bit decoders, many researchers have 
spent considerable efforts [PAP 781. Cobham, 
Fridshal and North [COB 621 obtained the average 
number of the products in minimum SOPE's of suit- 
chine functions of up to 8 variables by using 
computer simulation. Mileto and Putzolu [MIL 641 
obtained formulas for the average number of prime 
implicants and essential prime implicants of suit- 
chine functions: their formulas give upper and 
lower bounds on the average number of products in 
minimum SOPE's, respectively. Glagolev CGLA 701 
obtained an upper bound on the number of products 
in minimum SOPE's for almost all switching fun- 
ctions. Cook and Flynn [COO 731 investigated the 
average minimum cost of SOPE's and attempted to 
relate it to the entropy function. The author 
derived the formula for the average number of prime 
implicants for p-valued case CSAS 793, and also 
obtafned the average number of products in minimum 
SOPE s for p=2 and p=4 by using computer simulation 
CSAS 80,811. Recently, Bender and Butler CBEN 861 
improved the upper and lower bounds for suitching 
functions. 

In this paper, we derive an upper and a lower 
bound on the average number of products in the 
minimum SOPE's. They are tishter than any other 
bounds reported to date, In Section 2, we show 
basic properties of the p- valued input two-valued 
output functions. In Section 3, we derive an upper 
bound on the average number of products in minimum 
SOPE's. In Section 4, we derive a lower bound on 
the average number of products in minimum SOPE's. 
In Section 5, we show the experimental results. 

2. Definitions and Basic Prooerties 

Definition 2.L: Let P=CO,l,...,p-1) be a set of 

truth values, and X be a variable which takes a 

value in P. Let S be a subset of P, then xS denotes 
a 2-valued function P + B  such that 

x s =  { 0 (when X B S )  

1 (when X E S )  9 

uhere B=CO,l). A symbol XS is called a literal. 

Definition 2.2: A product of literals is called a 
product term (or product), and a sum of products is 
called a wm-of-products expression (SOPE). 

b a  2.1: An arbitrary p-valued input two-valued 

output function f: Pn -+ B can be represented by 
the following SOPE: 

f(X1.X2,".'Xn)= v 
(S1S2. . a .  , 'n) 

where Si C P, (i=lS2,...,n). 
A P-valued input two-valued output function is 
sometimes simply called a function. 
Definition 2.3: An SOPE uhich represents f is said 

to be pinimum if the SOPE has the minimum number of 

products. The number of the products in the minimum 
SOPE of f is denoted by t(f). 
Definition 2.4: The set of inputs uhich are mapped 

into 1 by a function f is denoted by f-I (1). The 
number of elements in f-'(l) is called a weight of 
f and denoted by if\. The average number of pro- 
ducts in minimum SOPE's for n-variable p-valued 
input two-valued output functions uith weight u is 
denoted by Sp(n,u). 

Lemma 2.2: Sp(n,u) SMinC u, pn4' I .  

(Proof 
1) An arbitrary function uith weight IJ can be 
represented by an SOPE: 

where the logical sum is taken for all input combi- 
nations a =(a1,a2,,..,an) such that f(&)=l. There 

are u such combinations and so, we have t(f) 5u. 



2) An arbitrary function can be represented by an 
SOPE : 

b b b 
f (XI .X2.. . . .Xn )= \ 'k(~1)~22x33.. . . . . xnn , 

---------- (2.1) 
where the logical sum is taken for all input combi- 

nations of k=(bl ,b2,. . . , bn in pn-l, Therefore, we 

have t(f) Spn-? 
From 1) and 2), we have the lemma. (Q.E.D.) 
Definition 2.5: A map of an n-variable p-valued 

input two-valued output function consists of pn 
c-. Cells that contain 1's are called 1-cells 

while cells that contain 0's are called 0-cells. 

hample 2.1: Fig.2.1 shows a map of a four-valued 

input two-valued output function. The SOPE for this 
function having the form (2.1) is 
f(X X ) = X ~ 0 , 1 , 2 , 3 ) X ~ O ~ ~  XCo,2r3)XCl> 

1'2 1 2 1 2 
v X(0,1r3)X(2>V XC1>.X(3). 

1 2 1 2  
(End of example). 

F i g . 2 . 1  4 -va lued  i n ~ u t  
two-valued o u t ~ u t  f u n c t i o n  

Mileto and Putzolu [MIL 643 derived formulas 
for G;(n,u), the average number of prime implicants - 
of switching functions with weight u, and G;(n,u), - 
the average number of essential prime implicants of 
switching functions with weight u. Because 

GA(n.u) S S?(n.u) 5 Gk(n.u). 
L L L 

G;(n,u) and Gi(n,u) are upper and lower bounds on 

S2(n,u). respectively. Unfortunately, when u22"-' 

and n k 10, G;(n.u) is greater than zn-' and 

G;(n,u) is very small compared with S3(n,u). - - 
Therefore, in such cases, these bounds give little 
information about the value of S2(n,u). 

3, Upper Bound on the Averaae Number of Products 

jn Mininum SOPE's 

In this section, we derive Up(n,u), the upper 

bound on the average number of products in minimum 
SOPE's for n-variable P-valued input two-valued 
output functions with weight u. 

There are F(~)=(:) different functions with 

weitht u, where w=pn. Let fju)be the i-th function 

with weight u (i=1,2,. . . ,F(u)). By the definition 
of S,(n,u), we have 

lemma 3.1: An arbitrary n-variable function f can 

be represented by an expression: 
f(Xl,X2,. . ,Xn,)= V 

where E(a_) =ga(Xl.X 2B..., 'k+lXak+2. . , , . X> - 'k)"k+l k+2 
ga(Xl,X2, ..., Xk)=f(Xl,X2,~..,Xk,ak+l,~..~an~ , - 
g =(ak+lrak+2 ,...,an), and a j E P  (j=k+l,...,n). 

E(g) in Lemma 3.1 is called an E-term. 

Example 3.1: The function shown in Fig.3.1 can be 

represented by an expression: 
f ( X 1 , X 2 , X 3 , X 4 ) = E ( 0 , 0 ) V E ( 0 , 1 ) V E ( l , 0 ~ V E ( l , l ~ ,  

E ( ~ , l ) = ( x ~ V r ; ~  )g3x4. 
- 

E(l,O)=( Ylx2 )x3x4. and 

E(l,l)=( <Vy2)x3x4. (End of Example) 

By Lemma 3.1, fiu)in (3.1) can be represented as 

F i g . 3 . 1  A 4 - v a r i a b l e  swi tch ing  
f u n c t i o n  

Fxample 3.2: In the expression of Example 3.1, 

t(E(O.O))=l, t(E(0,1))=2, t(E(l,O))=l, and 
t(E(l,1))=2. Therefore, the right hand side of 
(3.2) is equal to 

X t(E(a))=1+2+1+2=6. On the other hand, the 
B ~ ~ 2  

left hand side of (3.2) is t(f)=4 as shown in 
Fig.3.2. Therefore, the relation (3.2) holds in 
this example. (End of example). 

F i g . 3 . 2  Miniwum SOPE for F i s . 3 . 1  



By (3.1) and (3.21, we have Sp(n,u) S Up(n,u), 
where 

By changing the order of summation, we obtain 
F(u) 

Z Up(n,u)=- F ( ~ )  =Epn-k Z t(Ei(=)). 
i=l 

Note that 
F(u) 
): t(E.(=)) ----------------- (3.3) 
i=l 1 

denotes the average number of products in minimum 
SOPE's for the functions with weight u having 

as E-terms. The value of (3.3) does not depend on 8. 

k 
functions and have pP different patterrs. 

Let [Fk I be the set of a1 l the k-variable fun- 
ctions. (3.3) can be represented by the sum with 
respect to the functions 

e €CFk1 and 

where E(gj)=gj(Xl,X2, ..., 
Lo (n.9; ,u) denotes the number of n-variable fun- 

ctions Gith weight u having E(gj) as an E-term. Let 

cO be an E-term. The volume of co is lg; 1 .  
Lp(n,gj,u) is equal to the number of different 

functions with weight u, where lg.1 1-cells and 
J 

(p-19.1) 0-cells are fixed. 

Definition 3.1: The relation - satisfying the 

following conditions is called VP-equivalence rela- 

&. 
l ) f  - f .  
2) If 

fl=f( ..., Xi,..,Xj,..) and f2=f( ..., Xj,..,Xi,..). 
then fl-- f2. (Permutation of input variables) 

3) Let o:P+P be an arbitrary one-to-one mapping. 
If fl=f(..,Xi,..) and f2=f(.., o(Xi),..) 

then fl- f2. 

(Permutation of values in a variable) 
Especially, when p=2, VP-equivalence is called NP- 

equivalence CHAR 653,CMUR 793. 
By using VP-equivalence relation, we can parti- 

tion CFk1 into equivalence classes. 

Let gl,g2,...,g *be the representative functions of 

the VP-equivalence classes. Then. we have 

Next, by classifying 1 different equivalence clas- 
es by the weight of the functions, we have 

and gl, Q2,..., g 2 are representative functions 

of VP-equivalence classes. Finally, we have the 
following: 

Theorem 3.1: Let Up(n,u) be an upper bound on the 

average number of the products in minimum SOPE's 
for n-variable p-valued input two-valued output 
functions. Then 

n-k k 
u,(n,u)=e & c( j).(: I 7 1 , 

F(u) j=l 

where c(j)= Z &(g.)*t(gi), 
lgi l=j J 

g1.g2,...,g 1 are representative functions of VP- 
equivalence classes, t(gi) is the number of pro- 

ducts in a minimum SOPE for ei, and /r(gi) is the 

number of fbnctions which are VP-equivalent to gi. 

Example 3.3: Suppose that p=2 and k=3. The coeffi- 

cients c(j) can be obtained as follows: Table 3.1 
shows the representative functions of VP (=NP)- 
equivalence classes of three variables. There are 
22 classes. BY minimizing all the representative 
functions, we have the coefficients shown in Table 
3.2. (End of example). 
Examole 3.4: Suppose that p=2 and k=4. 

There are 402 different VP-equivalence classes of 
4-variable functions. In a similar way, we have the 
coefficients c(j) shown in Table 3.3. Logic minimi- 
zation of the functions was done by QM CSAS 861, a 
modified Quine-McCluskey algorithm for p-valued 
input two-valued output functions.(End of example). 
Example 3.5: Suppose that p=4 and k=2. 

There are 192 different representative functions of 
four-valued input two-valued output functions. 
Table 3.4 shows the coefficients c(j). Logic mini- 
mization of the functions was done by QM. 

(End of exam01 e) . 

4. Cower Bound on the Average Number of Products 

in Minimum SOPE's. 

In this section, we derive Lp(n,u), the lower 

bound on the average number of products in minimum 
SOPE's for n-variable p-valued input two-valued 
o u t ~ u t  functions with weight u. - 

S S 
Definition 4.1: A produst P ~ = X ~ ~ X ~ ~ .  . . . .X> is an 

implicant of f if p < f. A product pi is said to 

be a prime im~licant of f if there is no product 
~2 such that p2 < f, PI < ~ 2 ,  and pi #p2. 
Let there be kj different Si's such that ISil=j 

for j=lr2,..,p. Then, this product is said to be a 
k c u b e  ,. where k=( kp, kp . ... kp) . 
Example 4.1: Let p=4 and n=4. 

XCOll~3~.X(0,1~.XCl,2).XC0) is a (l,2,1,0)-cube, 
1 2 3 4 

while 
Xc0,1,2,3~.XCl,2~.XC2,3~.Xc0,1,2~ is a (0,2,1,1)- 
1 2 3 4 

cube. - - 
where B(gi) is the number of functions which are 



Representative 
Function 

.i 

Jeight 

I9jl 

Table 3.2 c(.i) fo r  ~ = 2  and k=3 

Number of 
Functions 
in the class 
rrcej' 

Number of 
Products in 
Minimum SOPE 

t(oj) 

Table 3.3 c(.i) fo r  p=2 and k=4 

Table 3.4 c(.i) fo r  p=4 and k=2 



Definition 4.2: GA(n,k,u) denotes the average 

number of prime kcubes of n-variable p-valued 

input two-valued output functions with weight u. 
Theorem 4.1: 

& =(t1,t2, ... ,tp-l) is a partition of t, and 

(Proof is shown in CSAS 79al.) 

Lemma 4.1: Let VD(n,u) be the average volume of 

prime cubes. Then, 
Vp(n,u) = A/B , where 
A = X w(k_).~k(n,k_,u), and B = X GL(n,k,u) 

k k 
(Proof) It is easy to see that A denotes the sum of 
the average volume of the prime cubes, and that B 
denotes the average number of prime cubes. Hence, 
A/B denotes the average volume of prime cubes. 

(Q.E.D.) 
Now, we will make the following assumption. 

Assumption 4.1: The average volume of prime cubes 

in a minimal SOPE for f is equal to the average 
volume of all the prime cubes of f. 

(Not: that, in general, there are many minimum 
SOPE s for a function f.) 
By using Assumption 4.1, we have the following: 

(Explanation supporting the conjecture) 
There are u minterms in f. Because the average 
volume of each cube is VD(nru), any SOPE for f 

requires at least u/VD(n,u) cubes to cover all the 

minterms of f. (End of the explanation) 
Example 4.2: Consider the function shown in 

Fig.3.1, where n=4, p=2, and u=li. The number of 
prfme cubes is 7 ,  and the sum of volumes of all 
prime cubes is 22. The average volume of prime 
cubes is 22/7=3.14 . If Assumption 4.1 holds, then 
the lower bound on the number of products in mini- 
mum SOPE for f is 11/3.14=3.5. Fig.3.2 shows a 
minimum SOPE for f. Note that only two prime impli- 
cants are essential. Therefore, Assumption 4.1 
gives a tighter lower bound than the bound given by 
the number of essential prime implicants. 

(End of example). 

5. Experimental Results 

In order to obtain SD(n,u), functions geneyated 

by a pseudo-random number generation algorithmTwere 

minimized. For each value of density, d=% , n and 
L 

p, 100 sample functions were generated for ( ~ ~ 2 9  
n=6 and 8, and p=4, n=3 and 4). and 10 samples were 
generated for (~'2, n=lO and p=4, n=5). Then, each 
function was minimized by QM. 
Table 5.1 shows the values of S?(n,u) obtained by 

L 

the average of the sample functions, as well as 
calculated values of G;(n.u), G$(n,u), U2(n,u), and - - - 

L-,(n,u) for n=6, 8, and 10. As easily seen from 
L 

this table, U2(n,u) and L2(n,u) are, in most cases, 

tighter bounds than Gi(n,u) and G;(n,u), respecti- 

vely. Table 5.2 shows the case of p=4, and for 
n=3,4, and 5. In this case, however, Gi(n,u) is -. 
omitted because no formula is known for it. Values 
of U4 ( n , ~ )  were calculated by using the coeffi- 

cients shown in Tables 3.3 and 3.4. 

6. Conclusion 

In this paper, we derived an upper bound 
U,(n,u) and a lower bound Lp(n,u) on Sp(n,u), the 

average number of prime implicants in minimum 
SOPE's for n-variable p-valued input two-valued 
output functions using u, the weight of the fun- 
ctions, as a parameters. U,(n,u) was derived by 

using the statistical data Lf minimum SOPE'e for 
all k-variable functions (kSn). On the other hand, 
L_(n,u) was derived by using the concept of the 

r- 

average volumq of the prime cubes. These bounds are 
tighter than any other bounds reported to date, and 
applicable to any value of P. 

+ N-variable pseudo-random functions were gene- 
rated as follows CYAI 863: 

R= 1 (random number initial value) 
table(l,2,...,2**N)=O (reset the truth table) 
do the followings until the density becomes the 
specified value. 

R=MOD(l63*R+656329,12518383) 
ADDR=MOD(RI2**N) 
table (ADDR)=I 

end 



Table 5 . 1  Average Numbers o f  the  Prime lmpl i can ts  i n  Minimum SOPE's 
and The i r  Upper and Lower Bounds (p=2) 

n: number o f  the i npu t  va r i ab les  
u: number o f  the minterms which are  mapped i n t o  one. 

Gh(n,u): average number o f  the prime ~ m p l  i can ts  
Gp(n,u): average number o f  the  e s s e n t ~ a l  prlme imp l icants  
Lp(n,u): l ove r  bound on Sp(n,u)  
Up(n,u): upper bound on Sp(n,u) 
S p(n,u): average number of prime the  imp1 i can ts  i n  the  minimum SOPE's 

(The values o f  Sp(n,u) were obtained by t ak ing  the  average 
o f  ten  randomly generated f unc t  I ons) 

t :  near m~n ima l  s o l u t i o n  



Tab le  5 . 2  Average Numbers o f  t h e  Prime Imp1 i c a n t s  i n  Minimum SOPE's 
and T h e i r  Upper and Lower Bounds ( ~ = 4 1  

p = 4 ,  n = 3  

%: near  minimal s o l u t i o n  
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