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Abstract: In this paper, first, two types of multi-

ple-valued PLA’s are presented: 1) PLA s with Min
and Max arrays, and 2) PLA's with AND and OR arrays
followed by encoders. The optimal set of literals
for p-valued PLA's is presented. Logical complexi-
ties and capabilities of two types of PLA’s are
compared. Then, a logic design of the second type
of PLA’s is considered in detail. In that PLA's,
each p-valued input is converted into a set of two-
valued signals. Optimal input and output encoding
problems are presented. Adders are designed for S
different PLA realizations, The PLA’s proposed in
this paper requires much smaller arrays than pre-
viously published ones.

I. Introduction

One of the most pressing problems in present—
day two-valued system is interconriection complexity,
both in—-chip and between chipsfCHUR 841. It is evi-
dent that multi-valued logic (MVL) is useful for
reducing interconnections. Thus, various MVL sys-
tems have been proposed for many years.

When we design multiplie-valued VLSI(MV-VLSI),
we encounter ‘the same problems as in two-valued
systems. The first problem is the enormous design
complexity of VLSI’s, As the number of the elements
in a chip increases, design time increases exponen-
tially. Because logic design of multiple-valued
systems is usually much more complicated than two-
valued systems, this problem is more important in
MV-VLSI‘s. In order to reduce the design time and
errors, automatic design is indispensable in MV-
VLSI’s. However, even in two-valued system, automa-
tic design of random logic circuit is very diffi-
cult. The only—two-valued-circuits-which are succe-
ssfully designed by a complete automatic system are
programmable logic arrays(PLA)[SAS 86al.

The second problem is the testability of the
VLSI“s. In the modern VLSI's, testing cost often
dominates the total production costiDAN 85]1. In
order to overcome the design complexity and testa-—
bility problems, circuits having regular structure
such as PLA's, ROM's and RAM s are extensively used
in the many of the VLSI’s. For example, recent VLSI
microprocessors such as BELLMAC-32ACLAW 821 and
Motorola MC68020LDAN 85] use PLA’s extensively in
the control part of the processors. PLA s can be
used to implement complex MVL circuits. PLA s are
the most promising approach to the design of com-
plex MVL circuits.

In this paper, the author proposes a multiple-
valued PLA (MVPLA) which is easily implemented by
(static or dynamic) MOS/CMOS circuits., The MVPLA
consists of literal generators (which convert muli-
tiple-valued signals into two-valued signals), an
AND array, an OR array, and output encoders (which
convert two-valued signals into multi-valued sig-
nals). Because the AND and the OR arrays are same
as those of two-valued PLA’s with decodersCSAS 811,
we can use various existing PLA design tools such
as MINICHON 743, MINI-I1ICSAS 841 and ESPRESSO-
MVCRUD 85]. Logical capability and logical comple-
xity analysis show that the proposed MVPLA requires
much smaller arrays than previously published
MVPLA sCKUO 851,CIMM 851.

214

I1. PLA with Min and Max Arrays.

. ical lm
Fig.2.1
with a Min and a Max arrays.

shows an n—input m—output p-valued PLA
We will call this PLA

a Type 1 PLA. This structure represents a MVL
expressions

F=0'90V 1'91V...V(D-1)'gp_1. ———————— (2.1)
where V denotes the Max operator and : denotes the
Min operator. Similar structures can be found in
CHUR 841 or CKUO 851.

In realizing (2.1), 9g is usually omitted.
(p~1), which is the largest value, can also be
omitted from (2.1)., Therefore, (2.1) can be rewrit-
ten as

= 1'91V...V(p-2)'gp_2V 9p_1+ ~TTTT" (2.2)
Thus, - (p~2) different constants are used in the

Fig.2.1. Each

(i=1,2,...4p~1) of (2.2) can be represented as
sum—-of-products expression:

S, .S s
o=V X tx % ox ", (2.3

where §,C P, and P=(0,1,2,...,p~13. A literal x3
(p-1) if XES.

each p-valued
signal Xi of literals.

There are many ways to choose the set of literals.
We choose ini niver i

which
duct of some of literals in the set,
the minimum number of elements.

As shown in the Appendix, the minimum universal
set of literals contains p elements. Thus, the
number of rows in the Min array is H1=np+(p—2).

JTheorem 2.1: Let W be the number of columns neces-
sary to realize an arbitrary p-valued function in a

Type 1 PLA, then WS (p-1)p""1,
(Proof) It is clear that each column of Type 1 PLA
realizes a product

sub-function 9;

the

Min-array in

a value 0 if X€&S and a value

2P literals. In Fig.2.1,
is converted into a set

takes
There are

can represent any literal by a logical pro-
and contains

Sl S2 Sn
(j)'X1 'X2 -...Xn . Therefore, the number of
columns is equal to the number of products in
(2,2). Each sub—function g; can be realized with

n-1

at most p products because g; can be written as

82 23 &n
9;= VG(Xi)XZ g7 e X"y where a €P and
k=2, .¢0sn.
to represent (2.2) is at most (p-1)p

the total number of products
Pl e

Therefore,

Logic design of a Type 1 PLA can be done as
follows:
Algorithm 2.1
1) Obtain a minimum sum—of-products expression for
g .
p-1

2) For each gk,(k=p—2....,1). obtain a minimum sum-

of-products expression for S * In this case, g

-
(k+1 Sr Sp-1) can be used as don’t care sets.



. " |
Literal
Generators ’1
1_|
2]
p=2—
Xy — ;
Min H.=n-p+p-2
Xz—— : Array g=neTe
Xn—ﬂ E
R fo
Hoy=m Max . fy
Array :
¥ £y
. ¥/ P in a ax _Array
(Type 1 PLA)
Table 2.1 Tryth Table for
d-valyed Adder
Tnput Output
X1 X2 Sum Carry
0 0 0 0
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Fig.2.3 Maps for Adder using Type 1 PLA
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Fig. 2.4 Adder using Type 1 PLA
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expression can be done by a
MINI-II

Minimization of logical
K-cover methodlSMI 773 which includes MINI,
and ESPRESSO-MV.

Example 2.1: of 4~valued
logic shown in Table 2.1. In this case, the minimum
universal set of literals is generated by a literal
generator shown in Fig.2.2. By using the map shown
in Fig. 2.3, we can obtain the minimum sum-of-
products expressions for Sum and Carry functions
as follows:

Sum =1'91V2'92V93 , where

=y (1,3 4€0,2)y, (0,2 (1,3)
9,=Xy x50:27y U2 xgteS,

Let’s design an adder

_y (23 €0 {13, {13 {03, (2> €32, (3>
9,=Xy X5 \% Xq X3 \Y) Xq X5 VXl X373
{32, 40> {23,41> {13, ,(2> {03,,(3>
93=Xy X5 v X o Xg \4 Xq X5 AV Xy X377
Carry =1'gd y where
_v{(32,{1> (2,3>, (23 {1,2,32,(32
0=x$3 xS v x§ X522V x§ X537,
Fig.2.4 shows the PLA realizing the adder. Note

that products are wused in this PLA.
(End of example).

13

2.2 Physical Implementation

The Max and the Min arrays are easily implemen-
ted by bipolar technology, but they reguire many
transistors if realized by MOS technology. There-
fore, this structure is unsuitable for MOS implemen-
tation,

111, PLA with AND-OR Arrays Followed by

Output Encoders.

3.1 Logical Implementation

Fig.3.1 shows an n—input m—output p-valued PLA
with AND-OR arrays followed by output encoders. Ue
call this PLA a Jype 2 PLA. Similar to Type 1
PLA, each p-valued signal Xi is converted into the

minimum wuniversal set of literals. Then, these
literals are used in the AND and the OR arrays to
realize mr two-valued functions hO’hl”"’h

the

mr—1"

where r=[logzp], and C]ogzp] denotes least

integer greater than or equal to Iogzp. Finally,

these two-valued signals are converted into

valued signals by the output encoders.

p-

For simplicity, suppose that m=1 and p=2",
Then Fig.3.1 represents a MVL function:
‘F=0'90V1'91V...V(p-l)gp_i. (3.1)

The sub-functions ©19ys e+ 1951 are represented
by

% Mo
91 MMy’

92
93
»
9-1hgPy e h2thg

where Ri=(p—1)-hi . Each of sub-sub functions

hO"“’hr-l is represented by an expression:

$1.,52 S .
hi= VX132 X R0, 0 rm1)===(3.3)
5,€€0,1,2,...,0-1).

In Type 2 PLA, each column realizes a product
S1 S2 Sn
X1 AT e X

The output encoder accepts hO’hi""'hr—i’ and

where

generates a p-valued signal according to (3.1) and

(3.2).

Literal
Generators

X4—
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Theorem 3.1:
sary to realize an arbitrary p-valued function in a
Type 2 PLA, then USE]ogzp]'pn_l.

(Proof) The number of columns of a Type 2 PLA i=a
equal to the distinct number of the products in the

sub-sub functions. It is clear that each sub-sub
n-1

Let W be the number of columns neces-

can be realized by at most p
n-1

function hj pro-

ducts, Hence, we need at most r'p
represent(3.1),
Example 3.1: Let’s

logic shown in Table 2.1. Suppose that the 4-valued
output signal is represented by a pair of 2-valued
signals as shown in Table 3.1. Then the function to
be realized by the arrays can be represented as
Table 3.2. By using the maps shown in Fig.3.2, we
can obtain the minimum sum—of-products expressions
for S418q and cg as follows:

2x{2:3 x$07y Y121y xL0,1). €D

v x{0,3.x£3

ap X103 x£01D y x(0,22 41,3 '
(33 €13y, 02,33, €23y, (1,2,3). (3}

g =X xE v x¢ X5V x{112,37.4633,

Fig.3.3
that 9

products to
(Q.E.D.)

design the adder of A4-valued

et

shows the PLA realizing the adder. Note
products are used in this PLA.
(End of example).
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Fig.3.1 p-valued PLA with Output Encoders

(Type 2 PLA)

able 3.1 Output Encoding
for 4-valued Adder

4-valued 2~valued
signal signals
1 0o 3
2 3 0
3 3 3
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Fig.3.2 Maps for Adder using Type 2 PLA

(b) For NOR-NOR implementation
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Table 3.3 Invertors with Various Thresholods

Input Output

B [

[ery
IO O W W
O W W W ;
O 11 L)y ;

W N = O]
O OO W
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3.2 Physical Implementation

The AND and the OR arrays are easily implemen-—
ted by both bipolar and MOS technology. When we
realize a large PLA, dynamic CMOS circuit is the
most attractive technology[LAW 823, In this case,
an NOR-NOR structure is used to implement the AND

and the OR arrays. When we need an extremely low
power system, a static CMOS circuit is also
feasiblelPOW 841, 1In this case, an NAND-NAND

structure is used to implement the AND and the OR
arrays to take advantage of the n—channel device
in the serial device path.

For example, when p=4, Type 2 PLA be

can

implemented as follows: :

1) The literal generator is implemented as shown in
Fig.3.4. For the NAND-NAND structure, which is
logically equivalent to the AND-OR structure, we
use Fig.3.4(a), While, for the NOR-NOR struc-
ture, which is logically equivalent to the OR-
AND structure, every binary signal must be com-
plemented and so we use Fig.3.4(b), The input-
output relations of the inverters having diffe-
rent thresholds are shown in Table 3.3, These
inverters can be realized either by an ion im-
plantation technique for n-MOSCKAM 853, or CMOS
CZUK 853, or by voltage divider circuits using
transistorsCMCC 801].

2) The output encoder using a CMOS circuit is shown
in Fig.3.5(a) and denoted by the symbol shown in
Fig.3.3(b). For an NAND-NAND structure, we set
C0=0, Cl=1’ C2=2, and Ce=3, and for an NOR-NOR

structure, we set C0=3. C1=2. C2=1, and C3=0.

3.3 Comparison of Type 1 PLA with Type 2 PLA.

Table 3.4 compares Type 1 PLA's with Type 2

PLA’s. Because Type 2 PLA is easily-implemented by
MOS/CMOS technology, it is more suitable for VLSI
than Type 1 PLA. Bounds on the number of distinct
functions realized by both types of PLA's are de-
rived 1in Appendix, and summarized in the table.
Table 4.4 compares the size of PLA’s for randomly
generated functions, and shows that Type 2 PLA
requires fewer products.
Although these results suggests that Type 2 PLA s
usually require smaller arrays than Type 1 PLA’s,
it needs further study to verify it. Indeed, there
is a function whose Type 1 PLA realization requires
smaller arrays than Type 2 PLA. (see Addendum of

CTIR 841 distributed at ISMVL-84), Comparison of
the complexities of these PLA's is quite interes-
ting. Similar study can be found in L[BEN 853].
From the next section, we will consider the
design of Type 2 PLA in detail.
L]
Co [¥]
Lol  —
1 REAS
T CpCyCaCy
& 1yt N
py he
L hy— B
€2 i
l{EL (b) Logic symbol
el
. V] T
3 REARN
T
(a) CMOS realization

ig.3.,5 utput Enc .

Table 3.4 Comparison of Type 1 PLA with Type 2 PLA
to Realize p valued Functions

Type 1 PLA

Type 2 PLA

Structure

Literal generators
Min-array,Max-array

Literal generators
AND-array,0R-array
Qutput encoders

minimized by using 8. as
don’t care sets.
(kH1S8s=p-1)

Signals in array | p-valued two-valued
ipolar M0OS/CMOS/Bipolar

Technofogy Bipo static/dynamic

Hi | nptp-2 np
Array size

Hz |m m

W*s(-Dpt! Srepe?
Number ot UB {(p-1)¥ t°¥ gV gov +
realizable o
functions | LB | (p-1)¥ e g¥ -0 gWe gVe-n +

i d can he omitted, g (i=0,1,...,p-1) are

Desien netho g?(i=l.2,...,h.-1) are | realized by foshiseesss

he-1. These expressions
can be minimized simul-
taneously. .
Optimal output encodig
often reduces array size

ninumber of input variables
m:number of output variables

W number of co
f.vhen w=l
UB:upper bound
LB: lower bound
+ip=2" ,p24
1=2°-1,r={log

lumns for PLA

]
[a] denotes tﬁg least interger equal to or greater than a

V. Out Encoding Problem

4.1 Optimal Output Encoding for Adder

The concept of the optimal output encoding
problem for Type 2 PLA is illustrated by the follo—
wing.
Example 4.1: In realizing the adder in Example
3.1, we assign a pair of two-valued signals to
represent a 4-valued signal as shown in Table 3.1.
However, if we assign signals as shown in Table
4.1, we have Table 4.2, By using maps shown in

Fig.4.1, we have the minimum sum-of~products expre-
ssion for hi’hO’ and cq as follows:

—x (0,204 €0,2); y(1,3) (1,3

hy=Xy X5=r Vv Xy X377,
—x(0,13 {03 0,3, y(1> (2,33, €23

hg=x$0+ 17502 v/x{0+37 . xS13\/x£2,32 . &

vV X§1a2}

* X§3) ’

—x{(2,33 (23 (1,22 (3> {3,4(1,33
CO—X1 ' XZ \/X1 X5 \/X1 XZhr

Fig. 4.2,

In
the

ho .
realize
permute

shows the Type 2 PLA for this function.
Note that the first two terms of CO are shared with

this PLA,

function.

only 7 columns are

In this case,
the connection of constants in the

used to

we need to
output

encoder to obtain the proper output values.

(End of example).

Table 4.1 Optimum Qutput Encoding of Adders

(a) Encoding for Sum

for Type 2 PLA

(b) Encoding for Carry

4-valued 2-valued 4-valued 2-valued
signal signals signal signals
4] 3 3 0 0 0
1 0 3 1 0 3
2 3 0 2 3 0
3 o] 0 3 3 3
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Table 4.2 Truth Table for Adder

(Output encoding Optimum)

Input

=

b
x

N

Output
Carry
¢ S

T
N

T
(=]

X,

W N -~ O
W N = O

[

W W)
(=)=

(b) ho

KO W WWINNNN R R RO 00O

KD N 2 Ofw N = Ol N = Ok N 1= O

W O W OO W O W O W OO W O W
[CWWOIWWOOIKOOoO WO O
=felnle elelaele slolele =Yo]e]
[0 W WO WO OO OO O

X

3
3

W N = O

3

() Co

Fig.4.1 Maps for Adder using Type 2 PLA
i £t imal ¥

e— 7 —

Literal

Generators AND Array

® denotes AND
K denotes OR

Xy —

Xy —

OR Array r;‘ -

Sum

Carry

ri-t--1-

Co
-{-1-1- Programmable

Qutput Encoders

4.

4. Problem for MVPLA

n
As was illustrated in the Example 4.1, diffe-
rent output encodings derive PLA's with different
complexities. Suppose that we can use programmable

output encoders shown in Fig.4.3. In such a case,

we can use any output encoding for each output.
efiniti ¢ The optimal oytput encoding of

Type 2 PLA is a set of encodings which
size of the arrays minimum.

For a p-valued single-output function, there
are p! different ways of encodings. The exhaustive
way to find an optimum output encoding requires p!
minimizations. For p=4, the number is 4!=24. This
value can be reduced to 12 by considering the
symmetry of the sub-sub functions. Table 4.3 lists
the 12 essentially different output encodings.

As for the optimum output encoding problem for
m—output function, the exhaustive search re-

N

a

makes the

an

quires (p!/[logzp])m minimizations, which is im—

practical for large problems. By using a heuristic
method similar to CSAS 84], we can obtain the enco-
ding shown in Table 4.1. This encoding has been
verified to be optimum by the exhaustive examina-
tion by using a computer program.

4.3 Compyter Simylation
Table 4.4 compares the numbers of products
of Type 1 PLA’s, Type 2 PLA’s with original output
encodings, and Type 2 PLA's with optimum output
encoding. Randomly generated functions were used
to compare the complexites of PLA’s. For each fun-
ction, the number of input combinations which are

mapped into i (i=0,1,2,3) are equal to 4 "1 here
n is the number of the input variables. The optimum
output encodings were obtained by the exhaustive
method. Minimization of the expressions were done
by QM (modified Quine-McCluskey method[SAS 86bl)
for n=2 and 3 and byMINI-11for n=4 and 5. When n=5,
output encoding optimum PLA's require on the ave-
rage 3.7% fewer products than output encoding ori-
ginal PLA“s. In most cases, Type 1 PLA's require
more products than Type 2 PLA with output encoding
original.

le 4.4 e PLA’

Pr 4-val

Type 2 PLA

#10 #11

WO E
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Original Optimum
Encoding | Encoding

5.3
17.4
61.0

235.3

Average of 10 randomly generated functions.
The number of input combinations are
mapped into i (i=0,1,2,3) are equal.



V. jmal i P
In a two-valued PLA with two-bit decoders, the |: 4 E|

size of the arrays can be reduced by considering

the assignment of the input variables to the deco- E:teral Z:g_git
ders[SAS 811,[SAS 841. In a MVPLA having the struc- nerators e -1 -
ture shown in Fig.S5.1, the size of the array can be | _AND Array
reduced by using the similar technigue. Y1 ! !
Example 5.1: Suppose that the adder shown in Table Xi———— Yi '
2.1 is realized by the PLA having a structure shown Y2 ' ! ® denotes AND
in Fig.5.1. 1In this case, each literal generator | 1 X denotes OR
generates two literals as shown in Fig.5.2. In Y3 |
addition, we use the two-bit decoder shown in ;
Fig.5.3. Between the literal generators and the Y ;
tuwo-bit decoders, we use a permutation network. 2 y 2
Now, introduce 4 independent two-valued variables 4 !
¥42¥pi¥gsand y,, to represent X4 and Xz. [ O I [
0123
—v(2,3> _y{1,3> _v$2,3> —v{1,3> ~|-]-] —
Let Yl—xl ’ Y2-X1 ’ Y3—X2 , and Y4-X2 e Permutation t— } S1 111 ) Sum
Then, ;1=X§0’1? ;é=x§0,22 ;5=X§0’1), and ;h=x§0'2? network : N : 30_4
By using the new variables y;,yp,¥3, and y, , the ' H Ci lq 312
adder can be represented as shoun in Table 35.1. ) i c
Next, introduce two super variables Y,;=(y,,y3) and OR Array L 1, 0— Carry
Y2=(y2,y4). Then, Si’ SO and CO can be represented B
by maps shown in Fig.S.4(a)=-(c). From these maps, Programmable
we have the minimum sum—of-products expression: Output Encoders
-y €03,30>,,¢00,03,302 {00,33>,,(33>
81-‘/1 Y2 ' Vv Y1 ’ Y2 ’
SO=Y§03'30>, P
CU=Y§33>\/ Y§03'30>~Y§33}.
The PLA realizing these functions requires only 5
products.
By optimizing the output encodings, the size
of +the PLA is further reduced. UWhen we use the
output encodings shown in Table 5.2, we have the
PLA with only 4 columns. In this case, Cb is rea-
lized intead of Cg. Table 5.1  Tryth Table of Adder
As shown in Fig.5.4(d), C o can be written as for T i ~bi r
Eb =Y§03’30)'Y§00’03'30)\/ Y§00> X; Xz <o Tarry
Fig.5.5. shows the PLA realizing a 4-valued adder. Yy Yo Y3 Yp 91 SO C1 CO
Note that the first term of Cb is shared with S, . g g 8 g 8 g 0 8
(End of example) 0 0 3 0 3 Q 0 0
Table S.3 compares the size of the 4-valued 0 0 3 3 3 3 0 0
adders. Type 2 PLA's require smaller arrays than o] 3 0 0 0 3 0 0
Type 1 PLA's. Although Type 2 PLA s with two-bit ¢] 3 0 3 3 0 0 0
decoders require additional hardware, the size of o 3 3 0 3 3 0 0
tbe arrays are much smaller than one’s without two- g g 8 g g 8 8 g
bit decoders. 3 0 0 3 3 3 0 0
3 o] 3 0 0 0 0 3
e
Table 5. rision of i £ r 3 3 0 3 0 0 0 3
3 3 3 o] 0 3 0 3
3 3 3 3 3 0 0 3
Type 2 PLA Type 2 PLA with
Type 1 two-bit decoders
PLA - - K
enceding | encoding | encoding | encoding
original | optimum |original | optimum
One-figure H: 10 8 8 8 8
ader o T, 2 a a a a Table 5.2 Optimal Output Encoding for Adder
+ . —ld
LRI pee 13 ) 7 5 a el P
Zy Zo 28 (a) Encoding for Sum (b) Encoding for Carry
5 1586 108 84 60 4-valued 2-valued ITW:Iued 2-vajued
Two-figure | H, 18 18 16 18 16 —signal | signals —signal | siognals
adder 0 0 0 0 0 3
7 Yy ) T [ S S S O
+) Y,Y
L 79| 63| b52 17 14 3 3 3 3 33
Z22412
210 ' 11658 | 1386|1144 374 308

S=W-+ (Hi+H2)
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VI, Conclusion and Comparison with UOther Methods

this paper, the author proposed two types
of PLA“s: Type 1 PLA and Type 2 PLA.. Because both
PLA’s use the minimum universal set of literals,
they require the minimum number of literal lines.
The array structure for 4-valued logic proposed
by CIMM 853 uses 14 literals for each input. On the

In

other hand, the method in this paper uses only 4
literals. Thus, the height of the Min array in this
paper is about 29% of L[IMM 853. The 4-valued PLA

which can be obtained by extendingCKUDO 857 uses
4 Viterals ¢ x%07 x812 x{22 (33,

only However,
the Min array using these Jjiterals cannot be mini-
mized at all. On the other hand, Type 1 PLA pro—
posed in this paper uses the minimum universal set
of literals

cx(i.2,32X(0,2,3}’X(0,1.3)'X(O,l,Z})'
and the Min array can usually be minimized into

the half of [KUQ 851 or even amaller. Indeed, Table
2 of CIMM 851 implies that the number of columns
for Type 1 PLA is ,on the average, 50% to 60% of
[KUO 853. Thus, the Type 1 PLA proposed in this
paper usually requires much smaller arrays than
previoualy published onesCKUO 851,CIMM 853.

Although, Type 1 PLA is easy to implement by
bipolar technology, it is unsuitable for MOS reali-
zation. Type 2 PLA, which is also proposed in this
paper, is suitable for MOS/CMOS implementation.
Complexity analysi= and logical capability analysis
suggest that Type 2 PLA's are, on the average,
smaller than Type 1 PLA s. However, we need further
study on which realization reaires smaller arrays.
This is an interesting open problem, which is simi-
lar to the one discussed by C[TIR 843].
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APPENDIX

A.1 Minimum Unjversal Set of Literals for MVPLA's.

Sy S s
Definition A.1: Let L=C X 0,X 1,...,X ¥ 13 be a set

of literals of X, L is said to be universal if

any
other literal of X can be represented by an AND
(or a Min) operation among the elements in L. L is
said to be minimym if k is the minimum.

S S S__

Theorem A.1: L=¢X %,X 1,...,X P13 is the minimum
universal set of X, where Si= iy =P-¢i> , 1i=0,1,
veesp—1l and P={0,1,...,p-1D.

(Proof) L is universal: It is sufficient to show
that any literal XA of X can be represented by the
AND operation of the elements in L. )(A can be
represented by

S, .
XA= A X', vhere B=A=P-A, and P=(0,1,...,p-12.

i €B
L_is the minimum: There are 2° literals including

constant zero and constant p~1. In order to repre-
sent all the literals in the forms of (A.1), we
need at least p different elements. To show that L
is unique, assume, on the contrary, that there is
another universal set L’ which is different from L.

S,
Thus, there is i such that X ! €&L’. Since L’ is

: \ . Sx
universal, it realizes X

itself (as the product
of literals in L"), That is,

Si Si Sé S; .

X 7 o=X X 4o 00X where SjiEL'. Because
CH =Si N Sé N... F]Sé and S;=P-{i), every S}
(i=1,2,../,m) contains all the elements in P-(iJ,
and at least one S}z does not contain the element
i. But, it follows that 53'=Si, a contradiction.
It must be that L is unique. (Q.E.D.)

A.2 On the Number of Functions Realjzed by a_ PLA
with W Columns
heorem A.2: Let A(n,p,W) be the number of
n-variable p-valued single output function
by a Type 1 PLA with W columns. When W=p“,
(=12t Wian, 0, ¢ (e=1¥- ™, (here

distinct

realized

t=2P-1,

(Proof) Lower Bound: Consider a function £ which
can be represented by the expression:
F(Xl.Xz,...,Xn)=
(VANEPR g(g,xu*l,...,xn>'x:1'x;2-...'x:“,
a€pPY
——~=(A.2)

where gF(al ,...,au), and i=1,2,,.., p-1.

For every a €PY, a function

can be represented as

(1)9€asX yqsvensX)

Su+1
u+l

Sk CP (k=u+l,...,n).

S
1 = 1 - - n ———
(1)g(g,Xu+1,...,Xn)—(1)X cen Xn B (A.3)

where Note that the total

number of products in (A.2) is W=p". The number of
distinct non-zero functions realized by (A.3) is

(p—l)-t(n—uz because for each set (Su+1""’sn) and
for each i, there exists a unique function, and
there are t=2P-1 possible way to choose a subset Si

of P. The total number of distinct non-zero func-
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Yo Wn=-u)
tions realized by (A.2) is atlleagt (p-i? 't A ’
because for each a every combination of i and Sy

(k=u+l,...,n) in (A.3) will make distinct functions.

Upper Bound: f can be represented as follows:
F(Xl,Xz....,Xn)=

S S S
1 2 yon
\Y g(Sl.Sz,....,Sn)'Xi ROBEEE Xy s
(S, ,S5,+45S_)
1 ) ——==(A.4)
where 9(31'82""'sn) is 1,2,...,0r (p~-1), and
SkS;P (k=1,2,.¢0sn).
It is clear that the number of distinct functions
realized by (A.4) with W products is at most
(p-1O)¥. e"¥ | (Q.E.D.)
Lemma A.1: Let B(n,p,W) be the number of distinct

n-variable p-valued input 2-valued output functions
represented by the expression

Sl 82 .Sn
f(Xl,Xz,....Xn)= \V) X1 'X2 '...')(n
with W products.
When W=p", W eain,p, W<t where £=2P-1.

(Proof) Lower Bound: Consider the expression which

has the following form:
f(Xl,Xz,...,Xn)=

a a a
1 2, VY I .
v g(g_,Xu+1,....Xn)'X1 'X2 e Xu (A6)
acpY
where a =(ai,az....,au). A function g(gJXu+1,'.,Xn)
can be represented as s
S
=x 9l oxn, e (A7)
g(gjxu+1,...,xn)-xu+1 .o Xn ,
where SkS;P and k=utl,...,n.
Note that the number of products in gA.é) is Ufpu.
The number of distinct non-zero functions realized
by (A.?7) is t<n~U). Thus, the total number 9?
distinct non-zero functions represented by (A.6) is

at least tU(n—u? because for each (Su+1,...,Sn din

(A.7), we have distinct function.

Upper Bound: It is clear that the number of dis-
tinct functions realized by (A.5) with W products

i Wn (Q.E.D.)
t most t . :
%:e:remoA.S: Let C(n,p,W) be the number of distinct

p—

p-valued single—output function realized by a
valued Type 2 PLA with W columns. Then
Cln,p,W)=B(n+1,p,W), where p=2" an@ ped. )
(Proof) The n—input r—output function realized by a
Type 2 PLA can be represented as
F(Xl’x2""'xn’xn+1)=

\%
(81"“’Sn+1)
where x_.1 denotes a variable for the outputs and

S, S S, .S
1,402, .x n.y n+l -——(A.
X1 ‘)(2 o Xn Xn+1 ’ (A 8)

it takes p values. It is clear that (A.8) 9150
represents a (n+l)-input single output Fuqct1on.
Therefore, the number of the functions realized by

a Type 2 PLA with W columns is equal to the number
of (n+l)-variable functions represented by an ex—
pression (A.8) with W products. (Q.E.D.)





