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Abstract: In this paper, first, two types of multi- 

ple-valued PLA's are presented: 1) PLA's with Min 
and Max arrays, and 2) PLA's with AN0 and OR arrays 
followed by encoders. The optimal set of literals 
for p-valued PLA's is presented. Logical complexi- 
ties and capabilities of two types of PLA's are 
compared. Then, a logic design of the second type 
of PLA's is considered in detail. In that PLA's, 
each p-valued input is converted into a set of two- 
valued signals. Optimal input and output encoding 
problems are presented. Adders are designed for 5 
different PLA realizations. The PLA's proposed in 
this paper requires much smaller arrays than pre- 
viously published ones. 

I. Introduction 

One of the most pressing problems in present- 
day two-valued system is interconnection complexity, 
both in-chip and between chipsCHUR 843. It is evi- 
dent that multi-valued logic (MVL) is useful for 
reducing interconnections. Thus, various MVL sys- 
tems have been proposed for many years. 

When we design multiple-valued VLSI(MV-VLSI), 
we encounter the same problems as in two-valued 
systems. The first problem is the enormous design 
complexity of VLSI's. As the number of the elements 
in a chip increases, design time increases exponen- 
tially. Because logic design of multiple-valued 
systems is usually much more complicated than two- 
valued systems, this problem is more important in 
MV-VLSI's. In order to reduce the design time and 
errors, automatic design is indispensable in MV- 
VLSI's. However, even in two-valued system, automa- 
tic design of random logic circuit is very diffi- 
cult. The onlytwo-valued-circuits-which are succe- 
ssfully designed by a complete automatic system are 
programmable logic arrays(PLA)CSAS 86a3. 

The second problem is the testability of the 
VLSI's. In the modern VLSI's, testing cost often 
dominates the total production costCOAN 853. In 
order to overcome the design complexity and testa- 
bility problems, circuits having regular structure 
such as PLA's, ROM's and RAM'S are extensively used 
in the many of the VLSI's. For example, recent VLSI 
microprocessors such as BELLMAC-32ACLAW 823 and 
Motorola MC68020COAN 853 use PLA's extensively in 
the control part of the processors. PLA's can be 
used to implement complex MVL circuits. PLA's are 
the most promising approach to the design of com- 
plex MVL circuits. 

In this paper, the author proposes a multiple- 
valued PLA (MVPLA) which is easily implemented by 
(static or dynamic) MOS/CMOS circuits. The MVPLA 
consists of literal generators (which convert mul- 
tiple-valued signals into two-valued signals), an 
AND array, an OR array, and output encoders (which 
convert two-valued signals into multi-valued sig- 
nals). Because the AND and the OR arrays are same 
as those of two-valued PLA's with decodersCSAS 813. 
we can use various existing PLA design tools such 
as MINICHON 743, MINI-IICSAS 843 and ESPRESSO- 
MVCRUD 851. Logical capability and logical comple- 
xity analysis show that the proposed MVPLA requires 
much smaller arrays than previously published 
MVPLA'sCKUO 851,CIMM 851. 

11. PLA uith Min and Max Arrays. 

2.1 I oaical Implementation 

Fig.2.1 shows an n-input m-output p-valued PLA 
uith a Min and a Max arrays. We will call this PLA 
a Tvoe I PLA. This structure represents a MVL 

expression: 
f = O - g O V  l ~ g l V . . . V ( ~ - l ) ~ ~ p - l '  - - - - - - - - (2.1) 

uhere V denotes the Max operator and . denotes the 
Min operator. Similar structures can be found in 
CHUR 843 or CKUO 853. 

In realizing (2.1). g, is usually omitted. - 
(p-I), uhich is the largest value, can also be 
omitted from (2.1). Therefore. (2.1) can be rewrit- 

. - 

Thus. (p-2) different constants are used in the 
Min-array in Fig.2.1. Each sub-function gi 

(i=1,2,...,p-1) of (2.2) can be represented as the 
sum-of-products expression: 

uhere S i G  P, and P=CO.l,2,...,p-1). A literal xS 
takes a value 0 if X G S  and a value (p-I) if XES. 

There are 2' literals. In Fig.2.1, each P-valued 
signal X; is converted into a set of literals. 

There are many ways to choose the set of literals. 
We choose the minimum universal set of literals, 

uhich can represent any literal by a logical pro- 
duct of some of literals in the set, and contains 
the minimum number of elements. 

As shown in the Appendix, the minimum universal 
set of literals contains p elements. Thus. the 
number of rows in the Min array is H,=np+(p-2). - 
Theorem 2.1: Let W be the number of columns neces- 

sary to realize an arbitrary p-valued function in a 

Type 1 PLA, then w s (p-1 )pn-I. 
(Proof) It is clear that each column of T y ~ e  I PLA 
realizes a product 

I j ).  X;I.X:~. . . .X:n. Therefore. the number of 

columns is equal to the number of products in 
(2.2). Each sub-function gi can be realized uith 

at most pn-I products because gi can be written as 

VG(X~)X;~.X;~......X>, uhere ak E P  and 

k=2.. ..,n. Therefore, the total number of products 
to represent (2.2) is at most (P-l)p I .  (Q.E.0) 

Logic design of a Type I PLA can be done as 
fol lows: 
Alaorithm 2.1: 

I) Obtain a minimum sum-of-products expression for 

gp-I ' 
2) For each gL,(k=p-2, .... I), obtain a minimum sum- 
of-products expression for gk. In this case, gr 

(k+lSrSp-1) can be used as don't care sets. 
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Minimization of logical expression can be done by a 
K-cover methodCSMI 773 which includes MINI, MINI-I1 
and ESPRESSO-MV. 
Example 2.1: Let's design an adder of 4-valued 

logic shown in Table 2.1. In this case, the minimum 
universal set of literals is generated by a literal 
generator shoun in Fig.2.2. By using the map shoun 
in Fig. 2.3, ue can obtain the minimum sum-of- 
products expressions for Sum and Carry functions 
as follows: 
Sum =l.glV2.g2Vg3 , uhere 

~ 1 , 3 > . ~ C 0 , 2 > ~  xC0,2>.xC1,3>, 
gl=X1 2 1 2 

g2=X:2>.XCO>v xC1>. xCO>.xC2>vx:3>.xC3? 
2 1 X2 1 2  2 

(3). CO>v xC2>xC1>v xC1>. C 2 > V  xCo>. (3). 
g3=x1 x2 1 2  1 X2 1 X2 

Carry =1.g4 , uhere 

Fig.2.4 shous the PLA realizing the adder. Note 
that 13 products are used In this PLA. 

(End of exampl el. 

2.2 Physical Implementation 

The Max and the Min arrays are easily implemen- 
ted by bipolar technology, but they require many 
transistors if realized by NOS technology. There- 
fore, this structure is unsuitable for NOS implemen- 
tation. 

111. PLA with AND-OR Arrays Followed by 

Output Encoders. 

3.1 Loaical Implementation 

Fig.3.1 shous an n-input m-output p-valued PLA 
with AND-OR arrays followed by output encoders. We 
call this PLA a Type 2 PLA. Similar to Type 1 

PLA, each p-valued signal Xi is converted into the 

minimum universal set of literals. Then, these 
literals are used in the AND and the OR arrays to 
realize mr two-valued functions ho,hl, ... ,hmr-l, 

. - .... - 
uhere r=Clog2p3, and Clog2p3 denotes the least 

these two-valued signals are converted into P- 
valued signals by the output encoders. 

For simp1 icity, suppose that m=l and p=2'. 
Then Fig.3.1 represents a MVL function: 
f=O~goVl.glV...V(~-l)gD-l. - - - (3.1) 

The sub-functions gotgl....,gp-l are represented 

gp-l=ho'hl.. *.'hr-2.hr-l t 

where Ki=(p-l)-hi . Each of sub-sub functions 
ho,...,hr-l is represented by an expression: 

In Type 2 PLA, each column realizes a product 

The output encoder accepts ho,hl,...,hr-l, and 

Theorem 3.1: Let W be the number of columns neces- 
sary to realize an arbitrary P-valued function in a 

Type 2 PLA, then w s Clog2p3.pn-l. 
(Proof) The number of columns of a Type 2 PLA is 
equal to the distinct number of the products in the 
sub-sub functions. It is clear that each sub-sub 

function hj can be realized by at most pn-I pro- 

ducts. Hence, we need at most r.pn-' products to 
represent(3.1). (Q.E.0.) 
Example 3.1: Let's design the adder of 4-valued 

logic shoun in Table 2.1. Suppose that the 4-valued 
output signal is represented by a pair of 2-valued 
signals as shoun in Table 3.1. Then the function to 
be realized by the arrays can be represented as 
Table 3.2. BY using the maps shoun in Fig.3.2, we 
can obtain the minimum aum-of-products expressions 
for s,,sn and cn as follows: - - - 

-xC2,3>.xCo>v xC1,2>.xC1>v xCo,1>.xC2> 
- 1 2 1 2 1 2 
v XC093>.XC3? 

1 2 
-xC1,3>. C0,2> v xCo,2>.xC1,3> - 1 X2 1 2 , 
,xC3>.xC1>v xC2,3>.xC2>v xC1,2,3>.xC3>* 

C~ 1 2 1 2 1 2 
Fig.3.3 shous the PLA realizing the adder. Note 
that 9 products are used in this PLA. 

(End of example). 
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3.2 Physical Implementation 

The AND and the OR arrays are easily implemen- 
ted by both bipolar and MOS technology. When we 
realize a large PLA, dynamic CMOS circuit is the 
most attractive technologyCLAW 823. In this case, 
an NOR-NOR structure is used to implement the AND 
and the OR arrays. When we need an extremely low 
power system, a static CMOS circuit is also 
feasibleCPOU 843. In this case, an NAND-NAND 
structure is used to implement the AND and the OR 
arrays to take advantage of the n-channel device 
in the serial device path. 

For example, when p=4, Type 2 PLA can be 
implemented as follows: 
1) The literal generator is implemented as shoun in 

Fig.3.4. For the NAND-NAND structure, which is 
logically equivalent to the AND-OR structure, we 
use Fig.3.4(a). While, for the NOR-NOR struc- 
ture, which is logically equivalent to the OR- 
AND structure, every binary signal must be com- 
plemented and so we use Fig.3.4(b). The input- 
output relations of the inverters having diffe- 
rent thresholds are shown in Table 3.3. These 
inverters can be realized either by an ion im- 
plantation technique for n-MOSCKAM 853, or CMOS 
CZUK 851, or by voltage divider circuits using 
transistorsCMCC 803. 

2) The output encoder using a CMOS circuit is shoun 
in Fig.3.5(a) and denoted by the symbol shown in 
Fig.3.5Cb). For an NAND-NAND structure, we set 
Co=O. C,=l, C2=2, and C3=3, and for an NOR-NOR - - 
structure, we set C0=3, C1=2, C2=l, and C3=0. 

3.3 Comparison of Tvoe 1 PLA uith Type 2 PLA. 
Table 3.4 compares Type 1 PLA's uith Type 2 

PLA's. Because Type 2 PLA is easily implemented by 
MOS/CMOS technology, it is more suitable for VLSI 
than Type 1 PLA. Bounds on the number of distinct 
functions realized by both types of PLA's are de- 
rived in Appendix, and summarized in the table. 
Table 4.4 compares the size of PLA's for randomly 
generated functions, and shows that Type 2 PLA 
requires fewer products. 
Although these results suggests that Type 2 PLA's 
usually require smaller arrays than Type 1 PLA's, 
it needs further study to verify it. Indeed, there 
is a function whose Type 1 PLA realization requires 
smaller arrays than Type 2 PLA. (see Addendum of 
CTIR 841 distributed at ISMVL-84). Comparison of 
the complexities of these PLA's is quite interes- 
ting. Similar study can be found in CBEN 853. 

From the next section, we will consider the 
design of Type 2 PLA in detail. 

cDI=1czc3 

(b) Logic symbol 

I I (a) CMOS realization 
hl ho 

Table 3.4 Comparison of Type 1 PLA with Tyne 2 PLA 

fo Realize P valued Functions 

Structure L i tera l  generators 
Min-array ,Max-array 

Bipolar 

H I  ~ P + P - 2  
Array size - 

Ha m 

w * S ( p - 1 ) ~ " ~  

Number of U B (p-1)'. t o w  
realizable 
functions L B (p-1)' tW'"-" 

Design method go can he omi tted. 
g!(!=!,2, ..., h,:~) are 
m ~ n ~ m ~ z e d  by using g, as 
don't care sets. 

I ( k t l S s 6 p - 1 )  
I 
I 

n:number of input var iahles 
m:number of out,put variables 
W:number of columns for PLA 

T y p e  2 P L A  

II teral generators 
4ND-arrav,OR-array 
3ut,put encoders 

two-valued 

WS/CMOS/B i PO l a r  
static/dyna~ic 

np 

6 r . pD-I  

t ' .  t"W t 

t w  . t w  m - 1 )  t 

g, ( i=O,l ,  ..., p-1) are 
realized by h o t h i , .  ..., 
h,-I. These expressions 
can be m ~ n ~ m ~ z e d  sllmll- 
taneousl y. 
Optimal ou t,pu t encod i g 
often reduces array size 

*:when m=l 
U B : U D D ~ ~  bound 
LB: lower bomi  
t:p=2' , p b 4  
t=2Y- l . r=Clog~pl  
[a] denotes t.he least interger equal to or greater than a 

JV. Output Encoding Problem 

4 4  

The concept of the optimal output encoding 
problem for Type 2 PLA is illustrated by the follo- 
wing. 
Fxamole 4.1: In realizing the adder in Example 

3.1, we assign a pair of two-valued signals to 
represent a 4-valued signal as shown in Table 3.1. 
However, if we assign signals as shoun in Tab!e 
4.1, we have Table 4.2. BY using maps shoun in 
Fia.4.1, we have the minimum sum-of-products expre- 
ssion for hl,ho, and c0 as follows: 

h -XC0.2>.XC0,2~V Xclr3>.XClr3>, 
1- 1 2 1 2 

, -xc2,3>.xC2>vxc1,2>.xc3> vxC3>.xC1,3> 
0- 1 2 1 2 1 2  

Fig. 4.2. shows the Type 2 PLA for this function. 
Note that the first two terms of Co are shared uith 

h, . In this PLA, only 7 columns are used to 

realize the function. In this case, we need to 
permute the connection of constants in the output 
encoder to obtain the proper output values. 

(End of example). 

Fia.3.5 Output Encoder, 

Table 4.1 Optimum Output Encoding of Adders 

for Tvoe 2 PLA 
(a) Encoding for Sum (b) Encoding for Carry 

4-val ued 2-va 1 ued 4-val ued 2;va 1 ued 
signal sisnals signal sianals 



Fig.4.l Maps for Adder using Type 2 PLA 
ylth ootimal output enc~dUlp. 
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denotes 
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I- I - I - I - I - I - I J  Programmable 
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Fia.4.2 Adder using T v ~ e  2 PLA 

Table 0.2 Truth Table for Adder 

(Output encoding Optimum) 

h h o C C  

0 3  0 0  
0 3 0  0 0  

1 0  0 0 0 

Fia. 4.3 Programmable 

As was illustrated in the Example 4.1, diffe- 
rent output encodings derive PLA's uith different 
complexities. Suppose that we can use proarammabl~ 

putput encoders shown in Fig.4.3. In such a case, 

- - 
3 1 
3 2 
3 3 

we can use any output encoding for each output. 
Definition 4.1: The optimal output encodins of a 

3 3  0 3  Output Encoder(4-valued) 
0 3  0 3  
3 0  0 3  

Type 2 PLA is a set of encodings which makes the 
size of the arrays minimum. 

For a P-valued single-output function, there 
are p! different ways of encodings. The exhaustive 
way to find an optimum output encoding requires p! 
minimizations. For p=4, the number is 4!=24. This 
value can be reduced to 12 by considering the 
symmetry of the sub-sub functions. Table 4.3 lists 
the 12 essentially different output encodings. 

As for the optimum output encoding problem for 
an m-output function, the exhaustive search re- 

quires (p!/~log,pl)~ minimizations, which is im- - 
practical for large problems. BY using a heuristic 
method similar to CSAS 843, we can obtain the enco- 
ding shown in Table 4.1. This encoding has been 
verified to be optimum by the exhaustive examina- 
tion by using a computer program. 

4.3 Comouter Simulation 
Table 4.4 compares the numbers of products 

of Type 1 PLA's, Type 2 PLA's uith original output 
encodings, and Type 2 PLA's with o~timum outout - . -. 
encoding. ~andoml y generated functions were used 
to compare the complexites of PLA's. For each fun- 
ction, the number of input combinations which are 

mapped into i ( i=0,1.2,3) are equal to 4 "-? where 
n is the number of the input variables. The optimum 
output encodings were obtained by the exhaustive 
method. Minimization of the expressions were done 
by QM (modified Quine-McCluskey methodCSAS 86bl) 
for n=2 and 3 and byMIN1-Ilfor n=4 and 5. When n=5, 
output encoding optimum PLA's require on the aue- 
rage 3.7% fewer products than output encoding ori- 
ginal PLA's. In most cases, Type 1 PLA's require 
more products than Type 2 PLA uith output encoding 
original'. 

Average of 10 randomly generated functions. 
The number of input combinations are 
mapped into i (i=0,1.2,3) are equal. 

Table 4.4 Averaae Number of Products 4-valued PLA'* 
J a b l e t i a l l v  Different Output Fncodinas 

Yalue 
0 
1 
2 
3 

- 
Wl W2 13 W4 P5 W6 #7 W8 W9 *10 Wll #I;! 
00 00 00 03 03 03 03 03 03 33 33 33 
03 03 33 00 00 30 30 33 33 00 03 03 
30 33 03 30 33 00 33 00 30 03 00 30 

n=3 20.0 19.1 17.4 

33 30 30 33 30 33 00 30 00 30 30 00 
n=4 67.4 64.4 61.0 
n=5 251.5 



V. 

I n  a two-valued PLA u i t h  t u o - b i t  decoders. the  
s i z e  o f  t h e  arrays can be reduced by consider ing 
the assignment o f - t h e  i n p u t  va r iab les  t o  the  deco- 
dersCSAS 813,CSAS 843. I n  a MVPLA having the s t ruc -  
t u r e  shown i n  Fig.5.1, t h e  s i z e  o f  the array can be 
reduced by us ing the  s i m i l a r  technique. 
Example 5.1: Suppose t h a t  t h e  adder shown i n  Table 

2.1 i s  r e a l i z e d  by t h e  PLA having a s t r u c t u r e  shoun 
i n  Fi9.5.1. I n  t h i s  case, each l i t e r a l  generator 
generates tuo l i t e r a l s  as shoun i n  Fig.5.2. I n  
add i t i on ,  we use t h e  two-b i t  decoder shoun i n  
Fig.5.3. Between t h e  l i t e r a l  generators and the  
two-b i t  decoders, ue use a permutat ion network. 
Nou. in t roduce 4 inde~endent  two-valued v a r i a b l e s  
yl,y2,y3,and y4, t o  represent  Xi and X2. 

C l r3?  L e t  yl=~:2'3? Y ~ = x : ' ' ~ ?  y3=~:2'3', and y4=X2 

,hen, F1=X:O * 1; - - C0 *2?  ~ ~ = ~ ! j ~  *I3, and G = ~ : ~  v 2 ?  
''2-X1 

By us ing  the  new v a r i a b l e s  yI,y2,y3. and yp , the  - - -  
adder can be represented as shown i n  Table 5.1. 
Next, in t roduce two super va r iab les  YI=(yi,y3) and 

Y2=(y2,y4). Then, S1. So and Co can be represented 

by maps shoun i n  Fig.5.4(a)-(c).  From these maps. 
we have the minimum sum-of-products expression: 

S1=Y:03,30). C00,03,30>V yCOOr33>. yC33) 
2 1 2 ' 

,yC03,30>, 
0 2 

-yC33)v yC03,30).yC33>. 
0- 1 1 2 

The PLA r e a l i z i n g  these func t ions  requ i res  on ly  5 
products. 

By op t im iz ing  the  output  encodings, t h e  s i z e  
o f  t h e  PLA i s  f u r t h e r  reduced. When we use the  
output  encodings shoun i n  Table 5.2, us have the  

PLA u i t h  on ly  4 columns. I n  t h i s  case, ro i s  rea- 

l ized in tead  o f  Co. 

As show i n  Fig.5.4Cd1, can be u r i t t e n  as 

Fig.5.5. shows the  PLA r e a l i z i n g  a 4-valued adder. 

Note t h a t  t h e  f i r s t  term o f  co i s  shared u i t h  Si . 
(End o f  exampl e ) 

Table 5.3 compares the s i z e  o f  t h e  4-valued 
adders. Type 2 PLA's r e q u i r e  smal ler  ar rays than 
Type 1 PLA's. Although Type 2 PLA's u i t h  two-b i t  
decoders r e q u i r e  a d d i t i o n a l  hardware, t h e  s i z e  o f  
the  arrays are much smal ler  than one's u i t h o u t  tuo- 
b i t  decoders. 

Table 5.3 Com~ar is ion  o f  Size of Adders 

One-f igure 
adder 

x c 
+) Yo 

21 Z o  

Two-f igure 
adder 

X I  x:. 
+) Y I Y O  

Generators decode 

1 
denotes AND 

X denotes OR 

X2 

Permutation 

Output Encoders 

L i t e r a l  Two-b i t 
Generators decoders I I 1 I 

denotes AND 
X denotes OR 

X2 
- 

Permutation Sum 

Carry 

Fia.5.5 Adder us ing  Type 2 PIA 

Table 5.1 Tru th  Table o f  Adder 

f o r  T Y D ~  2 PI A u i t h  Two-bit Decodera 

X7 ( Sum Carry 

Table 5.2 Optimal Output Encoding f o r  Adder 

f o r  T v ~ e  2 PIA w i t h  Two-bit b c o d e r a  

( a )  Encoding f o r  Sum (b)  Encoding f o r  Carry 
4-valued 2-valued a-valued 2 ~ v a l u e d  

s i g n a l s  s;sna 1 s iana l  , w n a l s  
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VI. Conclusion and Comparison ~ ~ t h  Other Methods 

In this paper, the author proposed two types 
of PLA's: Type 1 PLA and Type 2 PLA.. Because both 
PLA's use the minimum universal set of literals. 
they require the minimum number of literal lines. 

The array structure for 4-valued logic proposed 
by :IMM 851 uses 14 literals for each input. On the 
other hand, the method in this paper uses only 4 
literals. Thus, the height of the Min array in this 
paper is about 29% of CIMM 853. The 4-valued PLA 
uhich can be obtained by extendingCKU0 851 uses 

on1 y 4 1 iterals C X ~ O ) , X ~ ~ ?  xC2',xC3'). Houever, 
the Min array using these literals cannot be mini- 
mized at all. On the other hand, Type 1 PLA pro- 
posed in this paper uses the minimum universal set 

. - - 
and the Min array can usually be minimized into 
the half of CKUO 853 or even smaller. Indeed. Table 
2 of CIMM 851 imp1 ies that the number of columns 
for Type 1 PLA is ,on the average, 50% to 60% of 
CKUO 851. Thus, the Type 1 PLA proposed in this 
paper usually requires much smaller arrays than 
previously published onesCKUO 851,CIMM 851. 

Although. Type 1 PLA is easy to implement by 
bipolar technology, it is unsuitable for MOS reali- 
zation. Type 2 PLA, which is also proposed i,l this 
paper, is suitable for MOS/CMOS implementation. 
Complexity analysis and logical capability analysis 
suggest that Type 2 PLA's are, on the average, 
smaller than Type 1 PLA's. However, ue need further 
study on which realization resires smaller arrays. 
This is an interesting open problem, uhich is simi- 
lar to the one discussed by CTIR 841. 
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APPENDIX 

A.l Minimum Universal Set of Literals for MVPLA's, 

Definition A.l: Let L=C XSO.XS1 ...., XSk-'1 be a set 

of literals of X. L is said to be universal if any 

other literal of X can be represented by an AND 
(or a Min) operation among the elements in L. L is 
said to be minimum if k is the minimum. 

Theorem A.1: L=<XSO,XS1 B . . . ,  XSp-I 1 is the minimum 

universal set of X, uhere Si= (i> =P-Ci) . i=0,1, 

.... p-1 and P=CO.l,.. ..p-11. 
(Proof) L is universal: It is sufficient to shou 

that any 1 iteral xA of X can be represented by the 
AND operation of the elements in L. xA can be 
represented bv 

xA= A XSi , uhere B=K=P-A, and P=CO, 1,. . . .p-1). 
i E B  ------- (A.1) 

L is the minimum: There are 2' literals including 

constant zero and constant p-1. In order to repre- 
sent all the literals in the forms of (A.l), we 
need at least p different elements. To shou that L 
is unique, assume, on,the contrary, that there is 
another universal set L which is different from L. 

Thus, there is i such that XSi BL'. Since L' is 

Si . universal, it realizes X Itself (as the product 

of liter713 jn L'). T5at is, 

'm XSi=Xs1.XS2. ..... X u h e r e s ; ~ ~ ' .  Because 

Si =S; n S; n . . . n Sk and Si=P-(i1, every S; 

(j=1,2,...,m) cont7ins all the elements in P-Ci>. 
and at least one S;, does not contain the element 
i. But, it follows that S'i,=Si, a contradiction. - - 
It must be that L is unique. (Q.E.D. 

A.2 On the Number of Functions Realized by a PLA 

uith W Columns 
T h e o r e m L  Let A(n,p,W) be the number of distinct 

n-variable p-valued single output function realized 

by a Type 1 PLA uith W columns. When u=pU, 

(p-l)W.tW(n-u)<~(n ,P,w)< (P-1 )'. tnW, where t=2'-1. 
(Proof) Lower Bound: Consider a function f which 

can be represented by the expression: 
f(X1,X2, ..., Xn)= 

where *(al ,..., a 1, and i= 

For every g EPU, a function 

can be represented as 

( i ) g ( ~ , x ~ + ~ ,  . . . ,xn)=( i ) x k l .  
where Sk C P  (k=u+l,....n). Note that the total 

W;tW(n-u), 
tions realized by (A.2) is at least (P-1) 
because for each a every combination of i and Sk 
(k=u+l,....n) in (A.3) will make distinct functions. 

Upper Bound: f can be represented as follows: 

f(X,,X-,,...,X-)= 

where g(S1,S2, ..., Sn) is 1,2,...,or (p-I), and 

S k G P  (k=1,2,...,n). 

It is clear that the number of distinct functions 
realized by (A.4) uith W products is at most 
( p - ~ ) ~ . t " ~  . (Q.E.D.) 
Lemma A.l: Let B(n,p,W) be the number of distinct 

n-variable p-valued input 2-valued output functions 
represented by the expression 

f (X1,X2.. . . .Xn)= V XS1.X2. . . . gn ------ (A.5) 
uith W products. 

When W=pU, tW(n-u)<~(n , p, w )< tun, where '~=2~-1. 
(Proof) Lower Bound: Consider the expression which 

has the following form: 
f(X1,X2, ". ,Xn)= 

a a 
V g( L,Xu+l'. . . .xn 1 xll. x ~ ~ .  . . . . X> ------ (A.6) 
g C p U  

uhere a =(a1,a2, ..., a ). A function Q ( ~ , X ~ + ~ ~ . , X ~ )  

can be represented as 
E 

Note that the number of products in (A.6) is w=pU. 
The number of distinct non-zero functions realized 

by (A.7) is t("-~). Thus, the total number of 
distinct non-zero functions represented by (A.6) is 

at least tW(n-uj because for each (Su+l,. . . ,Sn )in 
(A.7). we have distinct function. 
&oer Bound: It is clear that the number of dis- 

tinct functions realized by (A.5) uith W products 

is at most tWn (Q.E.D.) 
Theorem A.3: Let C(n,p.W) be the number of distinct 

p-valued single-output function realized by a P- 
valued Type 2 PLA with W columns. Then 

C(n,p.W)=B(n+l,p,W). where p=2' and p a d .  
(Proof) The n-input r-output function realized by a 
Type 2 PLA can be represented as 
f(XI'X2"..'Xn,Xn+1)= 

(S1..~.,Sn+l) 

uhere x,+~ denotes a variable for the outputs and 

it takes p values. It is clear that (A.8) also 
represents a (n+l)-input single output function. 
Therefore, the number of the functions realized by 
a Type 2 PLA with W columns is equal to the number 
of (n+l)-variable functions represented by an ex- 
pression (A.8) with W products. (Q.E.D.) 

number of products in (A.2) is W=pU. The number of 
distinct non-zero functions realized by (A.3) is 

(p-1). t(n-u! because for each set (SU+l,. . . ,Sn) and 
for each i, there exists a unique function, and 

there are t=2'-1 possible way to choose a subset Si 
of P. The total number of distinct non-zero func- 




