# Tsutomu SASAO

Department of Electronic Engineering Osaka University Osaka 565, Japan

Abstract: In this paper, first, two types of multiple-valued PLA's are presented: 1) PLA's with Min and Max arrays, and 2) PLA's with AND and OR arrays followed by encoders. The optimal set of literals for p-valued PLA's is presented. Logical complexities and capabilities of two types of PLA's are compared. Then, a logic design of the second type of PLA's is considered in detail. In that PLA's, each p-valued input is converted into a set of twovalued signals. Optimal input and output encoding problems are presented. Adders are designed for 5 different PLA realizations. The PLA's proposed in this paper requires much smaller arrays than pre-viously published ones.

#### I. Introduction

One of the most pressing problems in presentday two-valued system is interconnection complexity, both in-chip and between chips thus connection complexity dent that multi-valued logic (MVL) is useful for reducing interconnection. reducing interconnections. Thus, various MVL sys-tems have been proposed for many years.

When we design multiple-valued VLSI(MV-VLSI), we encounter the same problems as in two-valued systems. The first problem is the enormous design systems. The first problem is the enormous design complexity of VLSI's. As the number of the elements in a chip increases, design time increases exponen-In a chip increases, design time increases exponen-tially. Because logic design of multiple-valued systems is usually much more complicated than two-valued systems, this problem is more important in MV-VLSI's. In order to reduce the design time and errors, automatic design is indispensable in MV-VLSI's. However, even in two-valued system, automa-tic design of random logic circuit is very difficult. The only two-valued circuits which are successfully designed by a complete automatic system are

programmable logic arrays(PLA)[SAS 86a]. The second problem is the testability of the VLSI's. In the modern VLSI's, testing cost often dominates the total production cost[DAN 85]. In order to overcome the design complexity and testability problems, circuits having regular structure such as PLA's, ROM's and RAM's are extensively used in the many of the VLSI's. For example, recent VLSI microprocessors such as BELLMAC-32AELAW 82] and Motorola MC68020[DAN 85] use PLA's extensively in the control part of the processors. PLA's can be used to implement complex MVL circuits. PLA's are the most promising approach to the design of complex MVL circuits.

In this paper, the author proposes a multiple-valued PLA (MVPLA) which is easily implemented by (static or dynamic) MOS/CMOS circuits. The MVPLA consists of literal generators (which convert mul-tiple-valued signals into two-valued signals), an AND array, an OR array, and output encoders (which convert two-valued signals into multi-valued sign two-valued signals into multi-valued sigconvert nals). Because the AND and the OR arrays are same nais). Because the AND and the UK arrays are same as those of two-valued PLA's with decodersESAS 81], we can use various existing PLA design tools such as MINICHON 74], MINI-IIESAS 84] and ESPRESSO-MVERUD 85]. Logical capability and logical comple-xity analysis show that the proposed MVPLA requires much smaller arrays than previously published MVPLA'sEKUO 85],[IMM 85].

#### II. PLA with Min and Max Arrays.

2.1 Logical Implementation

Fig.2.1 shows an n-input m-output p-valued PLA with a Min and a Max arrays. We will call this PLA a <u>Type 1 PLA.</u> This structure represents a MVL expression:

 $f=0 \cdot g_0 \vee 1 \cdot g_1 \vee \ldots \vee (p-1) \cdot g_{p-1}, \quad ------$ (2.1)

where  $\bigvee$  denotes the Max operator and  $\cdot$  denotes the Min operator. Similar structures can be found in [HUR 84] or [KUO 85].

In realizing (2.1),  $g_0$  is usually omitted.

(p-1), which is the largest value, can also be omitted from (2.1). Therefore, (2.1) can be rewritten as

 $f = 1 \cdot g_1 \vee \ldots \vee (p-2) \cdot g_{p-2} \vee g_{p-1} \cdot \cdots$ (2.2)Thus, (p-2) different constants are used in the Min-array in Fig.2.1. Each sub-function g<sub>i</sub> (i=1,2,...,p-1) of (2.2) can be represented as the sum-of-products expression:

$$g_i = \bigvee x_1^{s_1} \cdot x_2^{s_2} \cdot \dots \cdot x_n^{s_n}, \quad ----- \quad (2.3)$$

where  $S_i \subseteq P$ , and  $P=\{0,1,2,\ldots,p-1\}$ . A <u>literal</u>  $X^S$ takes a value 0 if  $X \notin S$  and a value (p-1) if  $X \notin S$ . There are  $2^p$  literals. In Fig.2.1, each p-valued signal X<sub>i</sub> is converted into a set of literals. There are many ways to choose the set of literals. We choose the minimum universal set of literals,

which can represent any literal by a logical pro-duct of some of literals in the set, and contains

the minimum number of elements. As shown in the Appendix, the minimum universal set of literals contains p elements. Thus, the number of rows in the Min array is  $H_1$ =np+(p-2).

Theorem 2.1: Let W be the number of columns necessary to realize an arbitrary p-valued function in a Type 1 PLA, then  $W \leq (p-1)p^{n-1}$ .

(Proof) It is clear that each column of Type 1 PLA realizes a product

 $x_1^{S_1} \cdot x_2^{S_2} \cdot \dots \cdot x_n^{S_n}$ S. Therefore, the number of

 $(j) \cdot X_1^{1} \cdot X_2^{2} \cdot \ldots X_n^{n}$ . Therefore, the number of columns is equal to the number of products in the function of the realized with (2.2). Each sub-function  $g_i$  can be realized with

at most p<sup>n-1</sup> products because g<sub>i</sub> can be written as

 $g_i = \bigvee G(X_1) X_2^{a_2} \cdot X_3^{a_3} \cdot \ldots \cdot X_n^{a_n}$ , where  $a_k \in P$  and  $k=2,\ldots,n$ . Therefore, the total number of products to represent (2.2) is at most (p-1)p<sup>n-1</sup>. (Q.E.D) Logic design of a Type 1 PLA can be done as follows:

Algorithm 2.1:

1) Obtain a minimum sum-of-products expression for 9<sub>p-1</sub> ·

2) For each g<sub>k</sub>,(k=p-2,...,1), obtain a minimum sumof-products expression for g<sub>k</sub>. In this case, g<sub>r</sub>  $(k+1 \le r \le p-1)$  can be used as don't care sets.





Table 2.1 Truth Table for 4-valued Adder

| Inc         | out              | Ûu               | tput             |
|-------------|------------------|------------------|------------------|
| ×1          | ×2               | Sum              | Carry            |
| 00000       | 0<br>1<br>2<br>3 | 0<br>1<br>2<br>3 | 0<br>0<br>0      |
| 1<br>1<br>1 | 0<br>1<br>2<br>3 | 1<br>2<br>3<br>0 | 0<br>0<br>0<br>1 |
| 2222        | 0<br>1<br>2<br>3 | 2<br>3<br>0<br>1 | 0<br>0<br>1<br>1 |
| 0000        | 0<br>1<br>2<br>3 | 3<br>0<br>1<br>2 | 0<br>1<br>1      |



Fig. 2.2 Literal Generator







3

0

1

 $\mathbf{2}$ 

3

3

X 1

X<sub>1</sub>













3

з

Fig.2.3 Maps for Adder using Type 1 PLA



Fig. 2.4 Adder using Type 1 PLA

Minimization of logical expression can be done by a K-cover methodESM1 773 which includes MINI, MINI-II and ESPRESSO-MV.

<u>Example 2.1:</u> Let's design an adder of 4-valued logic shown in Table 2.1. In this case, the minimum universal set of literals is generated by a literal generator shown in Fig.2.2. By using the map shown in Fig. 2.3, we can obtain the minimum sum-of-products expressions for Sum and Carry functions as follows: Sum =1.9 $_1$ V2.9 $_2$ V9 $_3$ , where

 $\begin{array}{l} \text{Sum} = 1 \cdot g_1 \vee 2 \cdot g_2 \vee g_3 \text{ , where} \\ g_1 = X_1^{(1,3)} \cdot X_2^{(0,2)} \vee X_1^{(0,2)} \cdot X_2^{(1,3)} \text{,} \\ g_2 = X_1^{(2)} \cdot X_2^{(0)} \vee X_1^{(1)} \cdot X_2^{(1)} \vee X_1^{(0)} \cdot X_2^{(2)} \vee X_1^{(3)} \cdot X_2^{(3)} \text{,} \\ g_3 = X_1^{(3)} \cdot X_2^{(0)} \vee X_1^{(2)} X_2^{(1)} \vee X_1^{(1)} \cdot X_2^{(2)} \vee X_1^{(0)} \cdot X_2^{(3)} \text{,} \\ \text{Carry} = 1 \cdot g_4 \text{ , where} \end{array}$ 

 $\begin{array}{c} g_4 = X_1^{(3)} X_2^{(1)} \lor X_1^{(2,3)} \cdot X_2^{(2)} \lor X_1^{(1,2,3)} X_2^{(3)} \\ \text{Fig.2.4 shows the PLA realizing the adder. Note that 13 products are used in this PLA. (End of example).} \end{array}$ 

# 2.2 Physical Implementation

The Max and the Min arrays are easily implemented by bipolar technology, but they require many transistors if realized by MOS technology. Therefore, this structure is unsuitable for MOS implementation.

# III. PLA with AND-OR Arrays Followed by Output Encoders.

#### 3.1 Logical Implementation

Fig.3.1 shows an n-input m-output p-valued PLA with AND-OR arrays followed by output encoders. We call this PLA a Type 2 PLA. Similar to Type 1 PLA, each p-valued signal  $X_i$  is converted into the minimum universal set of literals. Then, these literals are used in the AND and the OR arrays to realize mr two-valued functions  $h_0, h_1, \ldots, h_{mr-1}$ , where r=Elog<sub>2</sub>p], and Elog<sub>2</sub>p] denotes the least integer greater than or equal to log<sub>2</sub>p. Finally, these two-valued signals are converted into p-valued signals by the output encoders.

For simplicity, suppose that m=1 and p=2<sup>r</sup>. Then Fig.3.1 represents a MVL function:  $f=0 \cdot g_0 \vee 1 \cdot g_1 \vee \ldots \vee (p-1)g_{p-1}$ . ------- (3.1) The sub-functions  $g_0, g_1, \ldots, g_{p-1}$  are represented by

$$\begin{array}{l} g_{0} &= \overline{h}_{0} \cdot \overline{h}_{1} \cdot \dots \cdot \overline{h}_{r-2} \cdot \overline{h}_{r-1} \quad , \\ g_{1} &= \overline{h}_{0} \cdot \overline{h}_{1} \cdot \dots \cdot \overline{h}_{r-2} \cdot \overline{h}_{r-1} \quad , \\ g_{2} &= \overline{h}_{0} \cdot \overline{h}_{1} \cdot \dots \cdot \overline{h}_{r-2} \cdot \overline{h}_{r-1} \quad , \\ g_{3} &= \overline{h}_{0} \cdot \overline{h}_{1} \cdot \dots \cdot \overline{h}_{r-2} \cdot \overline{h}_{r-1} \quad , \\ g_{p-2} = \overline{h}_{0} \cdot \overline{h}_{1} \cdot \dots \cdot \overline{h}_{r-2} \cdot \overline{h}_{r-1} \quad , \\ g_{p-1} = \overline{h}_{0} \cdot \overline{h}_{1} \cdot \dots \cdot \overline{h}_{r-2} \cdot \overline{h}_{r-1} \quad , \end{array}$$

where  $\bar{h}_i = (p-1) - h_i$ . Each of sub-sub functions  $h_0, \dots, h_{r-1}$  is represented by an expression:

 $\begin{array}{c} & S_{1} \\ h_{j} = \bigvee X_{1}^{1} \cdot X_{2}^{2} \cdot \ldots \cdot X_{n}^{n} (j=0,1,\ldots,r-1) - --(3.3) \\ \text{where} \quad S_{i} \subseteq (0,1,2,\ldots,p-1). \end{array}$ 

In Type 2 PLA, each column realizes a product  $x_1^{S_1} \cdot x_2^{S_2} \cdot \ldots \cdot x_n^{S_n}$ .

The output encoder accepts  $h_0, h_1, \dots, h_{r-1}$ , and generates a p-valued signal according to (3.1) and (3.2).

<u>Theorem 3.1</u>: Let W be the number of columns necessary to realize an arbitrary p-valued function in a Type 2 PLA, then  $W \leq [\log_2 p] \cdot p^{n-1}$ .

(Proof) The number of columns of a Type 2 PLA is equal to the distinct number of the products in the sub-sub functions. It is clear that each sub-sub function  $h_j$  can be realized by at most  $p^{n-1}$  pro-

ducts. Hence, we need at most  $r \cdot p^{n-1}$  products to represent(3.1). (Q.E.D.) <u>Example 3.1</u>: Let's design the adder of 4-valued logic shown in Table 2.1. Suppose that the 4-valued output signal is represented by a pair of 2-valued signals as shown in Table 3.1. Then the function to be realized by the arrays can be represented as Table 3.2. By using the maps shown in Fig.3.2, we can obtain the minimum sum-of-products expressions for  $s_1, s_0$  and  $c_0$  as follows:

$$s_{1} = x_{1}^{(2,3)} \cdot x_{2}^{(0)} \lor x_{1}^{(1,2)} \cdot x_{2}^{(1)} \lor x_{1}^{(0,1)} \cdot x_{2}^{(2)} \lor x_{1}^{(0,3)} \cdot x_{2}^{(3)},$$
  

$$s_{0} = x_{1}^{(1,3)} \cdot x_{2}^{(0,2)} \lor x_{1}^{(0,2)} \cdot x_{2}^{(1,3)},$$
  

$$s_{0} = x_{1}^{(3)} \cdot x_{2}^{(1)} \lor x_{2}^{(2,3)} \cdot x_{2}^{(2)} \lor x_{1}^{(1,2,3)} \cdot x_{2}^{(3)},$$

 $c_0 = x_1^{-1} \cdot x_2^{-1} \vee x_1^{-1} \cdot x_2^{-1} \vee x_1^{-1} \cdot x_2^{-1}$ Fig.3.3 shows the PLA realizing the adder. Note that 9 products are used in this PLA. (End of example).



Fig.3.1 p-valued PLA with Output Encoders (Type 2 PLA)



| 4-valued<br>signal | 2-valued<br>signals |
|--------------------|---------------------|
| 0                  | 0 0                 |
| 1                  | 03                  |
| 2                  | 30                  |
| 3                  | 3 3                 |





Fig.3.2 Maps for Adder using Type 2 PLA



Fig.3.3 Adder using Type 2 PLA



(a) For NAND-NAND implementation



(b) For NOR-NOR implementation

# Fig. 3,4 Literal Generator



| Input            |                  | 1 | Output                |                  |                       |                |  |
|------------------|------------------|---|-----------------------|------------------|-----------------------|----------------|--|
| x <sub>1</sub>   | x <sub>2</sub>   |   | รับ<br>ร <sub>1</sub> | "s <sub>0</sub>  | Cai<br>C <sub>1</sub> | C <sub>0</sub> |  |
| 0<br>0<br>0      | 0<br>1<br>2<br>3 |   | 0033                  | 0<br>3<br>0<br>3 | 0<br>0<br>0           | 0<br>0<br>0    |  |
| 1<br>1<br>1<br>1 | 0<br>1<br>2<br>3 |   | 0330                  | 3030             | 0000                  | 003            |  |
| 2222             | 0<br>1<br>2<br>3 |   | 3<br>3<br>0<br>0      | 0303             | 0<br>0<br>0           | 0033           |  |
| 0000             | 0<br>1<br>2<br>3 |   | 3<br>0<br>0<br>3      | 3<br>0<br>3<br>0 | 0<br>0<br>0           | 0333           |  |

Table 3.3 Invertors with Various Thresholods

| Input | Output |      |      |     |  |  |  |
|-------|--------|------|------|-----|--|--|--|
|       | -0>-   | -1>0 | -20- |     |  |  |  |
| 0     | 3      | 3    | 3    | 3 - |  |  |  |
| 2     |        |      | 3    | ō   |  |  |  |

# 3.2 Physical Implementation

The AND and the OR arrays are easily implemented by both bipolar and MOS technology. When we realize a large PLA, dynamic CMOS circuit is the most attractive technology[LAW 82]. In this case, an NOR-NOR structure is used to implement the AND and the OR arrays. When we need an extremely low power system, a static CMOS circuit is also feasibleEPOW 84]. In this case, an NAND-NAND structure is used to implement the AND and the OR arrays to take advantage of the n-channel device in the serial device path.

when p=4, Type 2 PLA can be For example, when implemented as follows:

- 1) The literal generator is implemented as shown in Fig.3.4. For the NAND-NAND structure, which is logically equivalent to the AND-OR structure, we use Fig.3.4(a). While, for the NOR-NOR structure, which is logically equivalent to the OR-AND structure, every binary signal must be com-plemented and so we use Fig.3.4(b). The inputoutput relations of the inverters having diffe-rent thresholds are shown in Table 3.3. These inverters can be realized either by an ion implantation technique for n-MOSEKAM 853, or CMOS [ZUK 85], or by voltage divider circuits using transistorsEMCC 80].
- 2) The output encoder using a CMOS circuit is shown in Fig.3.5(a) and denoted by the symbol shown in Fig.3.5(b). For an NAND-NAND structure, we set  $C_0=0$ ,  $C_1=1$ ,  $C_2=2$ , and  $C_3=3$ , and for an NOR-NOR structure, we set  $C_0=3$ ,  $C_1=2$ ,  $C_2=1$ , and  $C_3=0$ .

#### 3.3 Comparison of Type 1 PLA with Type 2 PLA.

Table 3.4 compares Type 1 PLA's with Type 2 's. Because Type 2 PLA is easily implemented by 2 PLA's. MOS/CMOS technology, it is more suitable for VLSI than Type 1 PLA. Bounds on the number of distinct functions realized by both types of PLA's are de-Trived in Appendix, and summarized in the tabl Table 4.4 compares the size of PLA's for randomly and summarized in the table. generated functions, and shows that Type 2 PLA requires fewer products.

Although these results suggests that Type 2 PLA's usually require smaller arrays than Type 1 PLA's, it needs further study to verify it. Indeed, there is a function whose Type 1 PLA realization requires smaller arrays than Type 2 PLA. (see Addendum of TIR 841 distributed at ISMVL-84). Comparison of the complexities of these PLA's is quite interes-ting. Similar study can be found in [BEN 85]. From the next section, we will consider the design of Type 2 PLA in detail.



Fig.3.5 Output Encoder.

Table 3.4 Comparison of Type 1 PLA with Type 2 PLA to Realize p valued Functions

|                         |                          | Type 1 PLA                                                                                                                     | Type 2 PLA                                                                                                                                                                                                    |  |  |
|-------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Structure               |                          | Literal generators<br>Min-array,Max-array                                                                                      | Literal generators<br>AND-array,OR-array<br>Output encoders                                                                                                                                                   |  |  |
| Signals in :            | array                    | p-valued                                                                                                                       | two-valued                                                                                                                                                                                                    |  |  |
| Technology              |                          | Bipolar                                                                                                                        | MOS/CMOS/Bipolar<br>static/dynamic                                                                                                                                                                            |  |  |
| Array size              | H <sub>1</sub>           | np+p-2                                                                                                                         | np                                                                                                                                                                                                            |  |  |
|                         | H <sub>2</sub>           | m                                                                                                                              | าม                                                                                                                                                                                                            |  |  |
|                         | $W^* \leq (p-1) p^{n-1}$ |                                                                                                                                | ≦r•p <sup>n-1</sup>                                                                                                                                                                                           |  |  |
| Number of               | UB                       | (p-1) <sup>₩</sup> • t <sup>▶₩</sup>                                                                                           | t <sup>w</sup> •t <sup>nw</sup> +                                                                                                                                                                             |  |  |
| realizable<br>functions | LB                       | (p-1) <sup>w</sup> • t <sup>w (n-r)</sup>                                                                                      | t <sup>w</sup> •t <sup>w</sup> (b-r) +                                                                                                                                                                        |  |  |
| Design method           |                          | $g_0$ can be omitted.<br>$g_1(i=1,2,,h_{r-1})$ are<br>minimized by using $g_4$ as<br>don't care sets.<br>$(k+1 \le s \le p-1)$ | g, (i=0,1,,p-1) are<br>realized by h <sub>0</sub> ,h <sub>1</sub> ,,<br>; h <sub>r-1</sub> . These expressions<br>can be minimized simul-<br>taneously.<br>Optimal output encodig<br>often reduces array size |  |  |

n:number of input variables

m:number of output variables W:number of columns for PLA

\*:when m =1

UB:upper bound LB:lower bound

t=:p=2r,p≥4 t=2<sup>p</sup>-1,r=[log<sub>2</sub>p] [a] denotes the least interger equal to or greater than a

#### IV. Output Encoding Problem

4.1 Optimal Output Encoding for Adder

The concept of the optimal output encoding problem for Type 2 PLA is illustrated by the following.

Example 4.1: In realizing the adder in Example 3.1, we assign a pair of two-valued signals to represent a 4-valued signal as shown in Table 3.1. However, if we assign signals as shown in Table 4.1, we have Table 4.2. By using maps shown in Fig.4.1, we have the minimum sum-of-products expression for  $h_1, h_0$ , and  $c_0$  as follows:

$$h_{1}=X_{1}^{(0,2)} \cdot X_{2}^{(0,2)} \vee X_{1}^{(1,3)} \cdot X_{2}^{(1,3)},$$

$$h_{0}=X_{1}^{(0,1)} \cdot X_{2}^{(0)} \vee X_{1}^{(0,3)} \cdot X_{2}^{(1)} \vee X_{1}^{(2,3)} \cdot X_{2}^{(2)}$$

$$\vee X_{1}^{(1,2)} \cdot X_{2}^{(3)},$$

$$C_{0}=X_{1}^{(2,3)} \cdot X_{2}^{(2)} \vee X_{1}^{(1,2)} \cdot X_{2}^{(3)} \vee X_{1}^{(3)} \cdot X_{2}^{(1,3)}$$

Fig. 4.2. shows the Type 2 PLA for this function. Note that the first two terms of C<sub>0</sub> are shared with  $h_0$  . In this PLA, only 7 columns are used to realize the function. In this case, we need to permute the connection of constants in the output encoder to obtain the proper output values. (End of example).

| Table | 4.1 | <u>Optimum Output Encoding of Adders</u> |
|-------|-----|------------------------------------------|
|       |     |                                          |

| TOP TYPE 2 FCH |                                             |          |          |  |  |  |  |  |
|----------------|---------------------------------------------|----------|----------|--|--|--|--|--|
| (a) Encodir    | (a) Encoding for Sum (b) Encoding for Carry |          |          |  |  |  |  |  |
| 4-valued       | 2-valued                                    | 4-valued | 2-valued |  |  |  |  |  |
| signal         | signals                                     | signal   | signals  |  |  |  |  |  |
| 0              | 3 3                                         | 0        | 0 0      |  |  |  |  |  |
| 1              | 0 3                                         | 1        | 0 3      |  |  |  |  |  |
| 2              | 3 0                                         | 2        | 3 0      |  |  |  |  |  |
| 3              | 0 0                                         | 3        | 3 3      |  |  |  |  |  |

218











Fig.4.2 Adder using Type 2 PLA with Optimal Output Encoding

| Table | 4.3 | Essentially | Different | Output Encodings |
|-------|-----|-------------|-----------|------------------|
|-------|-----|-------------|-----------|------------------|

| Value | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | #12 |
|-------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
| 0     | 00 | 00 | 00 | 03 | 03 | 03 | 03 | 03 | 03 | 33  | 33  | 33  |
| 1     | 03 | 03 | 33 | 00 | 00 | 30 | 30 | 33 | 33 | 00  | 03  | 03  |
| 2     | 30 | 33 | 03 | 30 | 33 | 00 | 33 | 00 | 30 | 03  | 00  | 30  |
| 3     | 33 | 30 | 30 | 33 | 30 | 33 | 00 | 30 | 00 | 30  | 30  | 00  |

Table 4.2 Truth Table for Adder





Output Encoder(4-valued)

#### 4.2 Optimal Output Encoding Problem for MVPLA

As was illustrated in the Example 4.1, different output encodings derive PLA's with different complexities. Suppose that we can use <u>programmable</u> <u>output</u> encoders shown in Fig.4.3. In such a case, we can use any output encoding for each output. <u>Definition 4.1: The optimal output encoding</u> of a Type 2 PLA is a set of encodings which makes the

size of the arrays minimum. For a p-valued single-output function, there are p! different ways of encodings. The exhaustive way to find an optimum output encoding requires p! minimizations. For p=4, the number is 4!=24. This value can be reduced to 12 by considering the symmetry of the sub-sub functions. Table 4.3 lists the 12 essentially different output encodings.

As for the optimum output encoding problem for an m-output function, the exhaustive search requires  $(p!/[log_2p])^m$  minimizations, which is impractical for large problems. By using a heuristic method similar to ESAS 84], we can obtain the encoding shown in Table 4.1. This encoding has been verified to be optimum by the exhaustive examination by using a computer program.

## 4.3 Computer Simulation

Table 4.4 compares the numbers of products of Type 1 PLA's, Type 2 PLA's with original output encodings, and Type 2 PLA's with optimum output encoding. Randomly generated functions were used to compare the complexites of PLA's. For each function, the number of input combinations which are mapped into i (i=0,1,2,3) are equal to 4  $^{n-1}$ , where n is the number of the input variables. The optimum output encodings were obtained by the exhaustive method. Minimization of the expressions were done by QM (modified Quine-McCluskey method[SAS 86b]) for n=2 and 3 and byMINI-IIfor n=4 and 5. When n=5, output encoding optimum PLA's require on the average 3.7% fewer products than output encoding original PLA's. In most cases, Type 1 PLA's require more products than Type 2 PLA with output encoding original.

Table 4.4 Average Number of Products 4-valued PLA's

|                          | Type 1                       | Type 2 PLA                   |                              |  |  |
|--------------------------|------------------------------|------------------------------|------------------------------|--|--|
|                          | PLA                          | Original<br>Encoding         | Optimum<br>Encoding          |  |  |
| n=2<br>n=3<br>n=4<br>n=5 | 6.4<br>20.0<br>67.4<br>251.5 | 6.1<br>19.1<br>64.4<br>244.3 | 5.3<br>17.4<br>61.0<br>235.3 |  |  |

Average of 10 randomly generated functions. The number of input combinations are mapped into i (i=0,1,2,3) are equal.

#### Optimal Input Encoding Problem

In a two-valued PLA with two-bit decoders, the size of the arrays can be reduced by considering the assignment of the input variables to the deco-dersESAS 81],ESAS 84]. In a MVPLA having the struc-ture shown in Fig.5.1, the size of the array can be reduced by using the similar technique. Example 5.1: Suppose that the adder shown in Table 2.1 is realized by the PLA having a structure shown in Fig.5.1. In this case, each literal generator generates two literals as shown in Fig.5.2. In addition, we use the two-bit decoder shown in Fig.5.3. Between the literal generators and the two-bit decoders, we use a permutation network. Now, introduce 4 independent two-valued variables  $y_1, y_2, y_3, and y_4$ , to represent  $X_1$  and  $X_2$ . Let  $y_1 = X_1^{(2,3)}, y_2 = X_1^{(1,3)}, y_3 = X_2^{(2,3)}, \text{ and } y_4 = X_2^{(1,3)}$ Then,  $\overline{y}_1 = X_1^{(0,1)}, \overline{y}_2 = X_1^{(0,2)}, \overline{y}_3 = X_2^{(0,1)}, \text{ and } \overline{y}_4 = X_2^{(0,2)}$ By using the new variables  $y_1, y_2, y_3$ , and  $y_4$ , the adder can be represented as shown in Table 5.1. Next, introduce two super variables  $Y_1 = (y_1, y_3)$  and  $Y_2^{\pm}(y_2,y_4)$ . Then,  $S_1$ ,  $S_0$  and  $C_0$  can be represented by maps shown in Fig.5.4(a)-(c). From these maps, we have the minimum sum-of-products expression:  $S_1 = Y_1^{(03,30)} \cdot Y_2^{(00,03,30)} \vee Y_1^{(00,33)} \cdot Y_2^{(33)}$ 

s<sub>0</sub>=Y<sup>(03,30)</sup>,

 $C_0 = \gamma_1^{(33)} \vee \gamma_1^{(03,30)} \cdot \gamma_2^{(33)}$ . The PLA realizing these functions requires only 5 products.

By optimizing the output encodings, the size of the PLA is further reduced. When we use the output encodings shown in Table 5.2, we have the PLA with only 4 columns. In this case,  $\overline{C}_{n}$  is realized intead of  $C_{n}$ .

As shown in Fig.5.4(d),  $\overline{C}_0$  can be written as  $\overline{C}_0 = Y_1^{(03,30)} \cdot Y_2^{(00,03,30)} \vee Y_1^{(00)}$ 

Fig.5.5. shows the PLA realizing a 4-valued adder. Note that the first term of  $\overline{\mathbb{C}}_0$  is shared with  $\mathsf{S}_1$  .

(End of example) Table 5.3 compares the size of the 4-valued adders. Type 2 PLA's require smaller arrays than Type 1 PLA's. Although Type 2 PLA's with two-bit decoders require additional hardware, the size of the arrays are much smaller than one's without two-bit decoders. bit decoders.

| Table 5.3 | Comparision | of Size | of Adders |
|-----------|-------------|---------|-----------|
|-----------|-------------|---------|-----------|

|                                                                      |                | Type 1 | Type 2               | PLA                 | Type 2 PL<br>two-bit d | A with<br>ecoders   |
|----------------------------------------------------------------------|----------------|--------|----------------------|---------------------|------------------------|---------------------|
|                                                                      |                | PLA    | encoding<br>original | encoding<br>optimum | encoding<br>original   | encoding<br>optimum |
| One-figure                                                           | Hı             | 10     | 8                    | 8                   | 8                      | 8                   |
| adder Xe                                                             | H2             | 2      | 4                    | 4                   | 4                      | 4                   |
| + Y <sub>0</sub>                                                     | W              | 13     | 9                    | 7                   | 6                      | 4                   |
| $Z_1 Z_0$                                                            | s              | 156    | 108                  | 84                  | 60                     | 48                  |
| Two-figure                                                           | H <sub>1</sub> | 18     | 16                   | 16                  | 16                     | 16                  |
| $\frac{\text{adder}}{\begin{array}{c}X_1 X_0\\+ Y_1 Y_0\end{array}}$ | H <sub>2</sub> | 3      | 6                    | 6                   | 6                      | 6                   |
|                                                                      | W              | 79     | 63                   | 52                  | 17                     | 14                  |
| Z <sub>2</sub> Z <sub>1</sub> Z <sub>0</sub>                         | s              | 1659   | 1386                 | 1144                | 374                    | 308                 |

 $S = W \cdot (H_1 + H_2)$ 





Table 5.1 Truth Table of Adder for Type 2 PLA with Two-bit Decoders

|                  |                  | X                | ×2   |                | Sum              |                  | Carry          |  |  |
|------------------|------------------|------------------|------|----------------|------------------|------------------|----------------|--|--|
| y <sub>1</sub>   | У <sub>2</sub>   | УЗ               | Уд   | <sup>S</sup> 1 | S <sub>0</sub>   | - C <sub>1</sub> | C <sub>0</sub> |  |  |
| 0<br>0<br>0<br>0 | 0<br>0<br>0      | 0033             | 0%0% | 0033           | 0303             | 0000             | 0000           |  |  |
| 0000             | 0000             | 0033             | 0000 | 0330           | 3030             | 0000             | 0000           |  |  |
| 0000             | 0<br>0<br>0<br>0 | 0<br>0<br>3<br>3 | 0303 | 3300           | 0303             | 0<br>0<br>0      | 0033           |  |  |
| 3333             | 3333             | 0<br>0<br>3<br>3 | 0303 | 3<br>0<br>3    | 3<br>0<br>3<br>0 | 0<br>0<br>0      | 0333           |  |  |

Table 5.2 Optimal Output Encoding for Adder

|                    | for                 | Туре             | 2 PLA with Two-t       | oit [               | ecoders)         |  |
|--------------------|---------------------|------------------|------------------------|---------------------|------------------|--|
| (a) Encodin        | ng fo               | r Sum            | (b) Encoding for Carry |                     |                  |  |
| 4-valued<br>signal | 2-valued<br>signals |                  | 4-valued<br>signal     | 2-valued<br>signals |                  |  |
| 0<br>1<br>2<br>3   | 0033                | 0<br>3<br>0<br>3 | 0<br>1<br>2<br>3       | 0033                | 3<br>0<br>3<br>0 |  |









(a) Logic Symbol



(b) Circuit Realization









#### VI. Conclusion and Comparison with Other Methods

In this paper, the author proposed two types of PLA's: Type 1 PLA and Type 2 PLA. Because both PLA's use the minimum universal set of literals, they require the minimum number of literal lines.

The array structure for 4-valued logic proposed by [IMM 85] uses 14 literals for each input. On the other hand, the method in this paper uses only 4 literals. Thus, the height of the Min array in this paper is about 29% of EIMM 853. The 4-valued PLA which can be obtained by extending[KU0 85] uses

only 4 literals  $(X^{(0)}, X^{(1)}, X^{(2)}, X^{(3)})$ . However, the Min array using these literals cannot be mini-mized at all. On the other hand, Type 1 PLA proposed in this paper uses the minimum universal set of literals

 $(\chi^{(1,2,3)}\chi^{(0,2,3)}\chi^{(0,1,3)}\chi^{(0,1,2)})$ and the Min array can usually be minimized into the half of [KU0 85] or even smaller. Indeed, Table 2 of [IMM 85] implies that the number of columns Type 1 PLA is ,on the average, 50% to 60% of 85]. Thus, the Type 1 PLA proposed in this for EKUO 851. paper usually requires much smaller arrays than previously published onesEKUO 853,EIMM 853.

Although, Type 1 PLA is easy to implement by bipolar technology, it is unsuitable for MOS realization. Type 2 PLA, which is also proposed in this paper, is suitable for MOS/CMOS implementation. Complexity analysis and logical capability analysis suggest that Type 2 PLA's are, on the average, smaller than Type 1 PLA's. However, we need further study on which realization regires smaller arrays. This is an interesting open problem, which is simi-lar to the one discussed by [TIR 84].

#### EACKNOWLEDGEMENT]

The author is grateful to the referees for their detailed and constructive comments. Part of this work was supported by Grant in Aid for Scientific Research of the Ministry of Education, Science, and Culture of Japan.

#### [Reference]

[BEN 85] E.A.Bender, J.T.Butler, and H.G.Kerkhoff, Comparing the sum with the max for use in four-valued PLA's, ISMVL-85, pp.30-35, May 1985.

valued PLA's, ISMVL-85, pp.30-35,May 1985. CDAN 853 R.G.Daniels and W.C.Bruce, Bulit-in selftest trends in Motorola microprocessors, IEEE Design and Test, pp.64-71, April 1985. IFLE 833 H.Fleisher, The implementation and use of

multivalued logic in a VLSI environment, pp.138-143, May 1983. ISMVL-83.

[FRE 84] D.A.Freitas and K.W.Current, CMOS circuit pp.164-168, May 1984. ISMVL-84,

HON 741 S.J.Hong, R.G.Cain, and D.L.Ostapko, MINI: A heuristic approach for logic minimization, IBM J. A heuristic approach for logic minimization, Res. and Develop. pp.443-458, Sept. 1974.

Res. and Develop. pp.443-458, Sept. 1974. [HUR 84] S.L. Hurst, 'Multiple-value logic: Its status and its future,' IEEE Trans. Comput. Vol.C-33, No.12, pp.1160-1179, Dec. 1984. [IMM 85] M.Imme and C.A.Papachristou,'Simplifica-tion of MVL functions and implementation via a VLSI array structure,'ISMVL-85, pp.242-248, May 1985. [KAM 85] M.Kameyama, T.Hanyu, M.Esashi, T.Higuchi, and T.Ito, Implementation of quaternary NMOS integ-rated circuits for pipelined image processing.

rated circuits for pipelined image processing,

ISMVL-85, pp.226-232, May 1985. [KUO 85] H-L Kuo and K-Y Fang, The multiple-valued programmable logic array and its application in modular design, ISMVL-85, pp.10-18, May 1985.

modular design, ISMVL-85, pp.10-18, may 1700. ELAW 82] H.F.Law and M.Shoji, PLA design of the DELEMAC-324 microprocessor, ICCC-82, PP.161-164, 1982.

EMCC 80] E.J.McCluskey, Logic design of MOS ternary logic, ISMVL-80,pp.1-5,June 1980.

'An [POW 84] S.Powell, E.Iodice, and E.Friedman, automated, low power, high speed complementary PLA design system for VLSI application, ICCD-84, pp.314-319, 1984. [RUD 85] R.Rudell and A.L.M.Sangiovanni-Vincentel-

li, ESPRESSO-MV:Algorithms for multiple-valued lo-gic minimization, 1985 Custom Integrated Circuits Conference, pp.230-234, May 1985. ESAS 81] T.Sasao, Multiple-valued decomposition of

generalized Boolean functions and the complexity of programmable logic arrays, IE C-30, pp.635-643, Sept. 1981. 'IEEE Trans. Comput. Vol.

[SAS 84] T.Sasao, Input variable assignment and output phase optimization of PLA's, IEEE Trans. Comput. Vol. C-33, No.10,pp.879-894, Oct. 1984. [SAS 86a] T.Sasao, <u>Programmable Logic Array</u>: How to

make and How to Use, NIKKAN KOGYOU Pub. Co.Tokyo, April 1986.(to be published in Japanese). ESAS 86b] T.Sasao, 'MACDAS: Multi-level AND-O AND-OR generators, 23-rd Design Automation Conference, June 29-July 02, 1986.(to be published). [SMI 77] W.R.Smith III, Minimization of multivalued functions, in <u>Computer</u> Science and Multi-1

Logic, D.C.Rine Ed. North Holland Publi. Co. 1977.

ETIR 843 P. Tirumalai and J.T.Butler, On the reali PLA's, ISMVL-84,pp.33-42, May 1984 and Addendum PLA's, distributed at ISMVL-84.

[ZUK 85] C.Zukeran, C.Afuso, M.Kameyama, and T.Hi-Design of new low-power quaternary CMOS circuits based on multiple ion implants, guchi, logic ISMVL-85, pp.84-90, May 1985.

#### APPENDIX

# A.1 Minimum Universal Set of Literals for MVPLA's.

Definition A.1: Let L=( $X^{S_0}, X^{S_1}, \ldots, X^{S_{k-1}}$ ) be a set of literals of X. L is said to be <u>universal</u> if any other literal of X can be represented by an AND (or a Min) operation among the elements in L. L is said to be <u>minimum</u> if k is the minimum.

<u>Theorem A.1</u>:  $L=(X^{S_0}, X^{S_1}, \dots, X^{S_{p-1}})$  is the minimum

universal set of X, where  $S_i = \overline{(i)} = P^{(i)}$ , i=0,1, ...,p-1 and P=(0,1,...,p-1).
(Proof) L is universal: It is sufficient to show

that any literal X<sup>A</sup> of X can be represented by the AND operation of the elements in L,  $X^A$  can be

represented by  $X^{A} = \Lambda X^{S_{i}}$ , where B=A=P-A, and P=(0,1,...,p-1).

 $i \in B$ 

-----(A.1)

L is the minimum: There are 2<sup>P</sup> literals including constant zero and constant p-1. In order to represent all the literals in the forms of (A.1), we need at least p different elements. To show that L is unique, assume, on the contrary, that there is another universal set L' which is different from L.

Thus, there is i such that 
$$X^{S_i} \notin L'$$
. Since L' is

niversal, it realizes X <sup>1</sup> itself (as the product of literals in L'). That is,

 $S_i \approx X^{1} \cdot X^{2} \cdot \dots \cdot X^{m}$  where  $S_j \in L'$ . Because  $S_i = S'_1 \cap S'_2 \cap \ldots \cap S'_m$  and  $S_i = P - (i)$ , every  $S'_j$ (j=1,2,...,m) contains all the elements in P-(i), and at least one  $S_{j'}'$  does not contain the element i. But, it follows that  $S'_{j'}=S_i$ , a contradiction. It must be that L is unique. (0.E.D.)

## A.2 On the Number of Functions Realized by a PLA with W Columns

<u>Theorem A.2</u>: Let A(n,p,W) be the number of distinct n-variable p-valued single output function realized by a Type 1 PLA with W columns. When  $W=p^{U}$ ,

 $(p-1)^{W} \cdot t^{W(n-u)} \langle A(n,p,W) \langle (p-1)^{W} \cdot t^{nW}, where t=2^{P}-1.$ (Proof) Lower Bound: Consider a function f which can be represented by the expression:  $f(X_1, X_2, \dots, X_n) =$ 

$$\bigvee (i) \cdot g(\underline{a}, X_{u+1}, \dots, X_n) \cdot X_1^{\underline{a}_1} \cdot X_2^{\underline{a}_2} \cdot \dots \cdot X_u^{\underline{a}_u},$$
$$\underline{a} \in \mathsf{P}^{\mathsf{u}}$$

---(A.2) where <u>a</u>=(a<sub>1</sub> ,...,a<sub>u</sub>), and i=1,2,..., p-1.

For every  $\underline{a} \in P^{U}$ , a function (i)g( $\underline{a}, X_{U+1}, \dots, X_{n}$ ) can be represented as -

$$(i)_{g(\underline{a},X_{u+1},...,X_n)=(i)X_{u+1}^{S_{u+1}}....X_n^{S_n}, ---(A.3)$$

where  $S_k \subseteq P$  (k=u+1,...,n). Note that the total

number of products in (A.2) is W=p<sup>U</sup>. The number of distinct non-zero functions realized by (A.3) is  $(p-1)\cdot t^{(n-u)}$ , because for each set  $(S_{u+1},...,S_n)$  and for each i, there exists a unique function, and there are  $t=2^{p}-1$  possible way to choose a subset  $S_{i}$ of P. The total number of distinct non-zero functions realized by (A.2) is at least  $(p-1)^{U-t} W(n-u)$ , because for each a every combination of i and  $S_k$ (k=u+1,...,n) in (A.3) will make distinct functions.

Upper Bound: f can be represented as follows:  $f(X_1, X_2, ..., X_p) =$ 

$$\bigvee_{\substack{g(S_1, S_2, \dots, S_n) \\ (S_1, S_2, \dots, S_n)}} x_1^{S_1} \cdot x_2^{S_2} \cdot \dots \cdot x_n^{S_n},$$

where  $g(S_1, S_2, ..., S_n)$  is 1,2,...,or (p-1), and  $S_{L} \subseteq P$  (k=1,2,...,n).

It is clear that the number of distinct functions realized by (A.4) with W products is at most (p~1)<sup>₩</sup>·t<sup>n₩</sup>. (Q.E.D.)

Lemma A.1: Let B(n,p,W) be the number of distinct n-variable p-valued input 2-valued output functions represented by the expression

$$f(X_1, X_2, \dots, X_n) = \bigvee X_1^{S_1} \cdot X_2^{S_2} \cdot \dots \cdot X_n^{S_n} - \dots - (A.5)$$

with W products

When  $W=p^{U}$ ,  $t^{W(n-U)} \langle B(n,p,W) \langle t^{Wn}$ , where  $t=2^{P}-1$ . (Proof) Lower Bound: Consider the expression which

has the following form:  $f(X_1, X_2, ..., X_n) =$ 

$$\bigvee g(\underline{a}, X_{u+1}, \dots, X_n) \cdot X_1^{a_1} \cdot X_2^{a_2} \cdot \dots \cdot X_u^{a_u} = -----(A.6)$$

where  $\underline{a} = (a_1, a_2, \dots, a_u)$ . A function  $g(\underline{a}, X_{u+1}, \dots, X_n)$ can be represented as

$$g(\underline{a}, X_{u+1}, \dots, X_n) = X_{u+1}^{S_{u+1}} \cdot \dots \cdot X_n^{S_n}, \qquad ----(A.7)$$
  
where  $S_k \subseteq P$  and  $k = u+1, \dots, n$ .

Note that the number of products in (A.6) is  $W=p^{U}$ . The number of distinct non-zero functions realized by (A.7) is  $t^{(n\sim u)}$ . Thus, the total number of distinct non-zero functions represented by (A.6) is at least  $t^{W(n-u)}$ , because for each  $(S_{u+1}, \dots, S_n)$  in (A.7), we have distinct function. Upper Bound: It is clear that the number of dis-

tinct functions realized by (A.5) with W products is at most t<sup>Wn</sup> (Q.E.D.)

Theorem A.3: Let C(n,p,W) be the number of distinct p-valued single-output function realized by a p-valued Type 2 PLA with W columns. Then

C(n,p,W)=B(n+1,p,W), where  $p=2^{r}$  and  $p \ge 4$ . (Proof) The n-input r-output function realized by a Type 2 PLA can be represented as

$$(X_1, X_2, \dots, X_n, X_{n+1}) =$$

$$\bigvee \qquad x_1^{S_1} \cdot x_2^{S_2} \cdot \ldots \cdot x_n^{S_n} \cdot x_{n+1}^{S_{n+1}}, \qquad ---(A.8)$$

(S<sub>1</sub>,...,S<sub>n+1</sub>)

where  $x_{n+1}$  denotes a variable for the outputs and it takes p values. It is clear that (A.8) also represents a (n+1)-input single output function. Therefore, the number of the functions realized by Therefore, the number of the functions realized by a Type 2 PLA with W columns is equal to the number of (n+1)-variable functions represented by an ex-(Q.E.D.) pression (A.8) with W products.