
Tautoloav Checkine Alaorithms for Multiple-Valued Input Binary Functions

and Their Application

Tsutomu SASAO

Department of Electronic Engineering
Osaka University, Osaka 565, Japan

Abstract:Multiple-valued input binary

n
function is a mapping 5: X P +B, where

i=l
Pi=CO,l,..,pi-11 and B=C0,1>. In this

paper, tautology checking methods for sum-
of-products expressions of multiple-valued
input binary functions are discussed.
Firstly, methods for decomposing a
tautology problem into smaller ones are
shown. Secondly, a fast hardware tautology
checker is proposed. The computation time
of the hardware tautology checker is
proportional to the number of the terms in
the expression. The hardware tautology
checker for n-variable p-valued input

binary functions requires 4.pn copies of
2-input AND gates. Finally, applications
of the tautology checker for generating
prime implicants, for generating
irredundant sum-of-products expressions,
and for detection of the essential prime
impl icants are shown.

I. INTRODUCTION

In logic design, minimization or
simplification of logical expression is
important. A minimal sum-of-products
expression for a two-valued input logic
function corresponds to a minimal two-level
AND-OR circuit or a minimal two-level PLA
(Programmable Logic Array)ClI. Similarly,
a minimal sum-of-products expression for a
four-valued input two-valued output
function (also called a four-valued input
binary function) corresponds to a minimal
PLA with two-bit decodersC2l,C33,C41.

Suppose that we have to minimize
n-variable two-valued logic function.

When n 6 1 0 , we can often obtain a
minimum solution by using a Quine-McCluskey
method. But this method is impractical for
larger problems because it needs all the
prime implicants and their covering table.
The average number of prime implicants is

greater than 2"-' when n L 10, and some
class of functions have prime implicants

proportional to 3"/n C4l.
When n 5 1 6 , several algorithms which

use the truth table of a given function are
reportedC111-C133. They obtain good
solutions in a relatively short time.

Although these algorithms need not generate
all the prime implicants at a time, they
need memory space which is proportional to

2? So these algorithms are also impractical
for larger problems.

When n 140, we have very good
algorithms such as MINI and ESPRESSO which
first obtains a complement of a given
functionC2I,C51. In these algorithms, the
complement is effectively used to make the
implicants prime or near prime. These
algorithms often simplifies larger
practical problems. However, recently,
we found a class of functions whose size
of the complement increases exponentially
with the number of products in an original
expressionC61. For this class of functions
both MINI and ESPRESSO failed to obtain the
complement of the function even if
sophisticated algorithmsC9l,C143 were used.

There are minimization methods without
using the list of all the prime implicants,
the truth table, nor the complement of the
given functionC53,Cl53-C181~ However,
these methods require much computation time
if we need a near minimum solution : we
have to check whether an array & covers a
cube c or not thousands of times. Most
computation time is spend for the checking
of this impl ication relation c < 5.
As will be shown in Section 5, c < & holds
if and only if &(lc)=l, i.e., the
restriction of & to c is tautology.
Therefore, a high speed tautology checker
is useful for testing implication relations
and thus, useful for logic minimization
of many-variable problems. It is known that
the implication relation c < & can be
examined by computing c#&C16,173 or
c @ & C23. But the tautology checking of v(lc) is much faster.

In Section 2, the tautology problem
of the binary functions is formally defined.
The problem is Co-NP complete and there is
virtually no hope to find a polynomial time
algorithm to decide whether a given sum-of-
products expression is tautology or not.

In Section 3, methods for decomposing
a tautology problem into smaller ones are
shown. Necessary conditions to be tautology
are also given, which are useful for quick
non-tautology detection.

In Section 4, a fast hardware tautology
checker is introduced. The time to decide
whether a given sum-of-products expression
is tautology or not is proportional to the
number of terms in the expression. The
tautology checker for an n-variable p-

valued input binary function requires 4 - p n
copies of 2-input AND gates. We can realize
an efficient tautology checking system by
combining the methods shown in Sections 3
and 4.

In Section 5, application of the
tautology checking system for generating
prime implicants, for generating irredun-
dant sum-of-products expressions, and for
detection of the essential prime implicants
are shown. Experiments in C43 shows that
more than a half of the prime implicants in
minimum sum-of-products expressions are
essential for control circuits of micro-
processors. Therefore, we often obtain good
solutions quickly by first detecting all'
the essential prime implicants. Theorem 5.3
gives an efficient essential prime
implicants detection method without
generating all the prime implicants at a
time. Our experiments show that this method
is much faster than local extraction
a1 gorithmC101.

11. BINARY FUNCTIONS AND TAUTOLOGY PROBLEM

Definition 2.1: A mapping 2 pi +B is
i=l

called a multiple-valued input binary

function (also called a multi-valued input
two-valued output function), where
Pi=CO,l,,..,pi-11, and B=CO,l>.

Definition 2.2: Let Xi be a variable on Pi.

Xyi is a 1 itcral of Xi, where S i G P i .

S
Xpi represents a function such that xii= 0
if X i d S i , and =I if X i E S i .

Definition 2.3: A product of literals

'n x : ~ ~ x : ~ - * - - - x ~ is called a p a .

A sum of products is called a sum-of-
productsexPression.

Theorem 2.1: An arbitrary binary function

can be represented by a sum-of-products
expression:

where S i C P i .

From here, F (an upper case letter)
represents a multiple-valued input binary
function and f(a script letter) represents
its expression, and so on.

Example 2.1: A binary function
F:CO,l>XC0,1,2>+CO,l> shown in
Table 2.1 can be represented by the sum-
of-products expression:

f =X; . Xc0.2) vx; vxCO,l! 2 2
0 For simplicity, x:O'is represented by XI

and so on.
Table 2.1 Truth table

Definition 2.4: (Positional cube notation).

A product XS1*Xz2. . . . can be

represented as follows:

X2 X n

where ci =O if ie S i and =1 if iESi.
The above notation is called a positional

cube notationC73. A sum-of-products expres-
sion represented by a set of positional
cubes is called a n . Arrays are denoted

by the same symbols as the corresponding
expressions.
Example 2.2: An array for the expression in

Example 2.1 is

X2

Definition 2.5: Let f be a sum-of-products
expression. If &=I, i.e., & is equal to 1
for all the input combinations, then is
said to be t-. The problem to decide

a given sum-of-products expression is
tautology or not is said to be a tautoloav

problem.

Example 2.3: A function in Example 2.1 is

not tautology, which is obvious from
Table 2.1.
Example 2.4: Consider a function

F : C O , l > X C O , 1 . 2 > X C O . l . 2 . 3 > + B ,
and its expression:

By making a truth table for f, it is easy
to verify that 6J is tautology.

(End of Example).

When the number of the input variable
is large, it is quite time consuming to
check the tautology by making a large
truth table. It is interesting to find an
efficient tautology checking algorithm.
However, the next theorem shows that the
problem is quite hard.
Theorem 2.2: The tautology problem for

binary function is Co-NP complete.
(Proof) Similar to the two-valued logic
function C81. (Q. E. D)

The above theorem implies that there
is virtually no hope to find a polynomial
time algorithm for the tautology problem.

1 1 1 . DECOMPOSITION OF A TAUTOLOGY PROBLEM
Definition 3.1: Let c be a cube. The cube

restriction of to c is obtained as

follows and denoted by s(lc).
1) Make a logical product of 9 and c.
2) Delete null products.
3) Change 0's of 5 into 1's in the col-

umns where c is 0.
Example 3.1: Consider an array 9 and a
a cube c, where

c= C01-111-1100>
tl0-111-00111

We can make !?(lc) as follows:
1). By making a logical product of 9 and

C, we have

LOI-111~110J
2). By deleting the null cube(denoted by

* I , we have * **
01-101-0100

c. C = [ol~lo-11001
01-111-0100

3). By changing 0's in 9 into 1's in the
columns where c is 0 (denoted by *),
we have,

11-101-0111-
C (l c)= [ll-olo-11111

11-111---0111
(End of example).

Lemma 3.1: c. F = c . s (lc).

(Proof) Clear from Definition 3.1.(Q.E.D)
Lemma 3.2: Let be an array, and c i

(i=1,2,...,m) be cubes, where
m

Then, r = v ci-stlc).
i=l

(Proof)
m m

C = (V ci)-fF= V (c i e C) . BY Lemma 3.1,
i=l i=l

m
we have F= V ci-q(Ici). (Q.E.D.)

i=l

Lemma 3.3: Let 5 be an array, and c i
(i=1,2,. . ,,m) be cubes, where
m
V c i = l and ci.c .=0(i + j) .
i=l J
Then, 5 ~ l - C (l c i) ~ l (i = l , 2 , ..., m).
(Proof) Obvious from Definition 2.5 and
Lemma 3.1. (Q.E.D.)
Lemma 3.4: In the columns of Xk in 5 ,

suppose that the i-th column covers j-th
column(i.e., the i-th column has 1's in all
the rows in which the j-th column has 1's).
Let 9 be an array after deleting the i-th
column from 5 , we have 9 ~ 1 9 ~ 1 .

(Proof) Let cr=x; (r=O,l, ..., pk-1). It is

pk-1
- clear that V cr=l and cr-cs=O(r+s).

r=O
By Lemma 3.3, ~ ~ l - ~ r ~ l (r = O , l , . , , p k - l) ,

where s r = a (1 X;) . Because i-th col umn
covers j-th column, sj< r i , which implies

that if 5 . E l then s i E l . Therefore, we
J

need not check the tautology of si if aj
is tautology.

Next, consider array 9. Let cr=x:
(r=O,l,.,,,pk-1. r+j).

pk-1
In this case note that v cr=1

r=O (r + j)
and cr-cs=O (r +s). By Lemma 3.3,

9 ~ 1 - S r = l (r=O,l,, pk-1 ,r+j),

r
where sr=g(iXk). Obviously, s r = F r .

Hence 5 ~ 1 - 9 ~ 1 . (Q.E.D.
Lemma 3.5: If 9 has a column with all
O's, then 9 is non-tautology.
(Proof) Suppose that the j-th column of X i
has all 0's. 9 is 0 for the inputs such
that Xi=j. In other words, 5 is non-
tautology. (Q.E.D.)
Theorem 3.1: Let 9 be an array obtained
from an array 9 by applying the following
operations repeatedly. Then 9 E l - Q z l ,
1) Delete a cube which has a variable with

all 0's.
2) Delete a column with all 1's.
(Proof)
1) A cube which has a variable with all 0's

is a null cube. So the deletion of the
cube will not change the function
represented by the array.

2) Suppose that the i-th column of Xk are

are all 1's.
a) When p k L 2 : The i-th column covers

other columns in Xk. By Lemma 3.4,

the i-th column can be deleted.
b) When pk=l : In this case, 5 does not

depend on Xk and we can delete Xk .

Example 3.2: Consider an array #:
* * *

By deleting columns with all 1's (denoted
by *'s), we have

r 011+10-1011

By deleting cubes with all-0 variables
(denoted by under lines), we have * * *

011-010-101

3 2 = [001-110411 111+11-101
111-010-101

by *'s), we have

I
By deleting columns with all 1's (denoted

By deleting cubes with all-0 variables
(denoted by under lines), we have

3q=Cll-01-103

By lemma 3.5, S4 is non-tautology. Hence,

9 is non-tautology. (End of example)
Theorem 3.2:(Split-by-variable decomposition)

1 - r i E l (i=0,1,2,...,pk-I),

(Proof) Let ci=xL (i=0,1,2, ..., pk-1).
By Lemma 3.3, we have the theorem.(Q.E.D.)
Example 3.3: Consider an array 5:

10-101-1011 r lo+lo-lloli
I 10-110+100 F= 01-cl10-1011
01-101-1101 1 01-011-1011

In Theorem 3.2, 1 et k=l; then
11-101-1011

s o = [ll-110+100 11+10-llol] and

11-010-1011
C ,= [ll-101-1101]

11-011-1011
Therefore,
9 ~ 1 t.. (Foil and C 1 = l).

-

(End of Example).
In E x a m ~ l e 3.3. every cube of 9 has

effective. However, when many elements are
1's in all the variables, Theorem 3.2 is
not so effective. This theorem has been
discussed for the two-val ued 1 og i c
functionsC93.
Theorem 3.3:(Split-by-term decomposition).

Suppose that the given expression can be
S

written as 9 - c V 9, where c=X:1.Xz2. - e x m ?

Then, ~ ~ l - ' Q (l c i) ~ l (i = l , 2 , . . , m) , where

m+ 1
(Proof) Let C=C,+~. Then V c i r l and

i=l
ci.c -=O (i + j). By Lemma 3.3,

J
5 = 1 - F(lci)=l(i=i, ..., m+l). Because

$ = C ~ + ~ V ! ~ , and C ~ + ~ . C ~ = O (i=1,2,.+.,m),

we have y(ici)=3(ici) (i=1,2,...,m),

Note that ~ (i ~ ~ + ~) ~ l . Hence, we have

F r l - !9(lci)rl(i=1,2 ,..., m).(Q.E.D.)
Example 3.4: Consider an array 9:

is written as F=c V 3, where C=X;. x$,
and

i
01-101-1010-1011
11-011+111-1101

!9= 11-110-1011+111
11-001-1011-1111 I 10-0014101-1101

By Theorem 3.3,
1 c-. Cs(lcl)=l and 3(lc2)'1),

0 where c1=Xl , C ~ = X : - X ~ O * ~) and

(End of Exampl e)
As easily seen from Example 3.4,

Theorem 3.3 is effective when the given
expression has a cube with a small number
of literals.
Definition 3.2: The volume of a cube

singleton 1' in XI.. It is-easy to see that
S1.Xz2- . - - -X:" is defined as c=X1

when every cube has singleton 1 in a same
variable, Theorem 3.2 is especially

n
vol(c)= l l ISii ,where ISi\ denotes the

i=l
number of elements in Si. In other words,

vol(c) is the number of minterms contained
in c.

m
Theorem 3.4: Let s = V c i .

i=l
m n

If F s l then Cvol(ci) L n p i .
i=l i=l

The above theorem says that, if the
sum of the volume of each cube is smaller
than the number of minterms in the univer-
sal cube, then 9 is non-tautology. This
theorem is useful for quick non-tautology
detection.
Example 3.5: Consider an array 9:

It is easy to see that vol(c,)=4,
I

vol(c2)=4, vol(c3)=3, and vol(c4)=6.

n
We have C vol (ci)=17. On the other hand

i =l
n n Pi=2X3X3=18. By Theorem 3.4,
i=l
5 is non-tautology. (End of example)

IV. HARDWARE TAUTOLOGY CHECKER

As shown in the previous section, the
tautology problem can be solved by an

a minterm. When a cube c is applied to the
input, all the outputs which corresponds to
the minterms of c become one.
Catch Part consists of W latches. Every

latch is reset to zero at the initial state.
When a cube is applied to the minterm
generator, a1 1 the latches which correspond
to the minterms of c will be set to one.
We have to apply all the cubes sequentially.
AND Gate Part has W inputs and one output.

The output becomes one if all the W inputs
are one, which shows that the given array
is taut01 ogy.

INPUT Mintem Generator Lafch AND gate

iterative applications of Theorems 3.1, 3.2,
and 3.3. Another method to solve the tautol-
ogy problem is to make a truth table of the
array. The tautology checking by using a
truth table is, in general, time consuming xo

n 1
because we have to check n pi combinations.

i=l
However, when the problem is small(say n 57
and pi=2 (i=l,Z,...,n)), tautology checking

Fig. 4.1 Tautology Checking Circuit

Latch AND gate

by the truth table is faster than by
decompositionC93, Therefore, the tautology
problem can be solved efficiently first by
decomposing the problem into small ones,
and then by making the truth tables of the
small ones.

In this section, we will show a fast 2
tautology checking method by using a special
logic circuit. The computation time for this Reset
tautology checker is proportional to the
number of the terms in the expression.
4.1 Tautology Checking Circuit

Schematic diagram of the hardware
tautology checker is shown in Fig.4.1.

n
Minterm Generator has H= Z pi inputs and

i=l

Fig. 4.2 Tautology Checking Circuit for

n
W= n P. outputs. Each output corresponds to

i=l 1

Example 4.1: Consider a binary function:

F: C0,11XC0,1,2> + C0,1), and its array

0
*1 X2

x1 x i - 0 1 2
X2 X2 X2

1 0 - 1 0 1 c 4

The tautology checking circuit for this
function is shown in Fig.4.2.
At the initial state, all the latches are
reset to zero.
When cube cl is applied, fO and f2 are

set to one.
When cube c2 is applied, fO and fl are

set to one.
When cube c3 is applied, f3 and f4 are

When cube c4 is applied, fl , f2 f4

and f5 are set to one.

In the following table, X marks show the
latches which are set by the application
of each cube.

When all the cubes are applied to Fig.4.2,
the output of the AND gate will be one,
which shows the given array 9 is tautol-
ogy. (End of example).

4.2 Estimation of the Gate Counts

In this part, we assume that p=pi (i=l,

2,...,n) and 17x2: where m is an integer.
Minterm Generator: Let g(n) be the number

of the 2-input AND gates to realize an n-
variable minterm generator. A 2-variable
minterm generator is realized by

using p2 copies of 2-input AND gate. So we

have g(2)=p2. An n-variabl e minterm gener-
ator is realized by two (n/2)-variable min-

tern generators and pn copies of 2-input AND
gates. From these, we have,

g(n)=2'g(n/2)+pn=pn+2'p(n/2)+~.p(n/4)+.
+(n/2) .p 2

latch Part: Each latch is realized by a pair

of 2-input AND gates. So the number of AND

gates is 2.pn.

AND Gate Part: pn input AND gate is realized

by (pn-1) copies of 2-input AND gates.
Hence, the total number of 2-input AND

gates is
2 4.pn+2-p(n /2)+4 'p(n /4)++(n/2).p -1.

Table 4.1 shows the number of 2-input AND
gates necessary to realize a tautology
checker when p=2.

Table 4.1 Number of 2-input AND aates to

realize a Tautoloev checker

ANDgate part1 63 255 1023 4095 16383

Total 1279 1071 4191 16559 65863

Number of
Inputs n

Minterm
Genera tor

Latch part

4.3 Estimation of the Computation Time

6 8 10 12 14

88 304 1120 4272 16712

128 512 2048 8192 32768

Suppose that the bit pattern of each
cube is sent to the output port of the
computer by an output instruction, and that
tautology is checked by the logic circuit
shown in Fig.4.1. The circuit can be
realized in at most Cn.log2p + 2 + log2n3
levels. When n=10 and p=2, it is 16 levels,
and the delay time of the circuit is in the
order of nano-seconds if we use TTL
technology. On the other hand, the time tl

to send a bit pattern of a cube to the
output port of a computer is in the order
of micro-seconds. So, the total computation
time depends only on the output instruction
time, and is m.tl, where m is the number of

the cubes and ti is the time to send the

bit pattern of a cube to the output port.

V , APPLICATION FOR LOGIC MINIMIZATION
Minimization methods in this section

may be slower than MINI or ESPRESSO if we
use only a software for tautology checking.
But if we make a system which first
decomposes a large tautology problem into
many small problems, and then use a high-
speed hardware tautology checker to solve
the small problems, we can make a fast
minimization system for many input problems.

'n
Definition 5.1: A product P=XB1.X:2*-..Xn
is called an implicant of F if F is equal

to one whenever P is equal to one, and
denoted by P < F. P is called a prime

implicant of F if P < F and Si (i=1,2,...,n)
is maximal. When P < F, F is said to cover P.

From here, we will consider a problem
to represent a given function f by using a
minimum (or minimal) number of prime
implicants.
Lemma 5.1: Let c be a cube and 5 be an
an array. Then c(s ~ s (l c) ~ l .
(Proof) By Lemma 3.1, c.!?=c-s(lc). Note
that c < 5 cr c=c.s. If c < 5 , then
c=c. s = c . s(lc). Therefore s(lc)el.
If $ (l c) ~ l , then c=c.s. Therefore c < 5.

(Q.E.D.)
&xam~le 5.1: Let c and 5 be a cube and an
array as follows:

c = (11-111-0110>

10-011-11101
The cube restriction of 5 is given by

r 01-011-1111~

- -

By Theorem 3.1, s (l c) r l .-. $ G I , where
r 0 1 4 1 1

By making the truth table for 9 , we
can see that 9 its tautology.
Therefore, s (l c) E l . By Lemma 5.1, we
have c < & , (End of Example).

Lemma 5.1 shows that whether an array
5 covers a cube c or not is examined by
the tautology checking.

Theorems 5.1 through 5.3 shows
methods for generating prime implicants,
for deriving irredundant sum-of-products
expressions, and for detecting the essen-
tial prime implicants. In these methods,
we have to examine whether c < 5 or not
thousands of times, which can be done effi-
ciently by the tautology checking of s(lc).
Theorem 5.1: Let s = c V s , where

c=XS1. X;2. xsk. k -...x~! s Let

S
'1. Xz2. Xak. . . . Xnn , and eSk , b=Xl k

1) If b < 9 , then s = c ' V s , where

2) If b c s for a1 1 ak&Sk, and for all

k (k=1,2,...,n), then c is a prime
imp1 icant of 5.

Example 5.2: Let us obtain a prime

implicant cover of the following array:
01-010-1010
01-100-1110 1

s = [10-010-1110
10-100--0110

5 can be written as S = c l V s 1 , where

cl= CO1410-1010) , and

01-100-1110
P I = [10-010-11101

10-100-0110
Consider a cube
bl= C10410-1010>

Because b l < s l , cl is expandable to the

0 direction XI.

So 5 can be written as s = c ; V s l , where

c ~ = ~ ~ V b ~ = C 1 1 - 0 1 0 - 1 0 1 0 ~

c; is a prime implicant because it is

unexpandable to any other direction.
Similarly, both c2 and c3 are prime

imp1 icants.
Now, 5 can be written as 5=c4V$32 ,
where
c4= (10-1004llO>, and

- 11410-1010
P 2 = 101 -100-1110

10-010-1110
Consider a cube

I
b4= C10,10-0110>

Because b4< s 2 , b4 is expandable to the

1 direction X2.

So . can be written as S = c i V P 2 s where
ci=c4 Vb4=C10-1104110)

ci is a prime implicant because it is

unexpandable to any other direction,
Hence, S=c;Vc2Vc3Vc;l is a sum-of-

products expression consisting of prime
implicants. (End of example).
Theorem 5.2: Let !?=cVs, and c be a cube.

1) If c < s , then cube c can be deleted ,
i.e., SES.

2) Let be represented as F=c, Vc,V ...
A L

V c m ,where ci(i=1,2 ,... ,m)
is a prime implicant, Let 9; be a sum
of prime implicants other than ci.

If ci(si for all i (i=1,2,..,m),

then 5 is irredundant (minimal).
Example 5.3: Consider an array consisting

of prime implicants:
11-010-1010

s = [01-100-1110 1
10-010-1110
10-110---0110 I 2

c4
5 can be written as s = c l V s l , where
c, = C1l-O1O-1010) , and

Because cl(s l , c1 cannot be deleted.

Similarly, c2 cannot be deleted.

5 is also written as 5 = c 3 V S 3 , where
c3 = C10-410-11101 , and

11--010-1010
9 3 = [01-100-1110]

10-1104110
Because c3< s 3 , c3 can be deleted.

Similarly, 5 is written as 5 = c 4 V S 4 ,
where
C, = (10-11041101 , and

11-010-lolo]
194 = [OI-100-1110
Because c4(s 4 , ca cannot be deleted.

Hence, we have an irredundant
sum-of-products expression:

11410-1010
El3 = [ol-100-1110]

10-110--0110
(End of example).

Definition 5.2: Let c be a cube of f, and

let v be a minterm of c. If the prime
implicant which covers v is unique, then c
is an essential prime irnplicant , and v is
a distinguished minterm.

Definition 5.3: A sum-of-products expression

is said to be minimum if it consists of the

minimum number of prime implicants.
Lemma 5.2: A minimum sum-of-products
expression for f contains all the essential
prime implicants of f, if any.
Definition 5.4: Let cl and c2 be cubes,

where

cl.X:l. Xz2. . . . -xnn S and c2=X1 xnn, T

A consensus of cl and c2 is defined as

and denoted by cons(cl,c2).

Definition 5.5: Let c be a cube and 19 be
an array. A consensus of c and 3
is defined as cons(c,s)= U cons(c,ci).

ci E 19
Theorem 5.3: Suppose that 5 can be written
as S = c V s , where c is a prime implicant.
Let H=cons(c,lB). If c 4 H , then c is
essential.
(Proof)

Suppose that c=X1 'n S1-Xz2-...-Xn and c(x .
There exists a minterm, where -
v=~:l. a2--.-~;k...-~:n 2 such that v E c . H ,

where aiESi(i=1,2,..,,n).

Suppose that a prime implicant c' which is
different from c covers v. where

T
c 8 =X:~. X22X:k..-.Xn? T Because c f-3 c, # 4

and cgc', we can assume that Tk-Sk # 4 ,
and that there is a minterm in c' such that

vx.Xal. 1 x;2. x.k-1. xLk. xak+lxtn ,
k- I k+l

where bk €Tk-Sk.

Because v'ec and u'€c', v' is a minterm
of 9. Therefore, there exists ,
a cube d in 9 which covers v .
Note that a i € D i (i=1,2, ..., n, i + k) and

bkEDk. Consider a consensus of

c and d: hk=c0n%(c,d)2

sl n D, s2 n D, sk u DK sn n on
'X2 ' ' ' 'Xk ' ' ' "n

Because a i E S i n D i (i + k) and a k E S k U D k ,
we have u E h k .

. .

However, this contradicts the hypothesis -
that v E c - H because hk < H .
Hence, the prime implicants which covers c
is unique. In other words, v is
distinguished minterm and c is an essential
prime implicant. (Q.E.D.)
Example 5.4: Consider an array consisting
of prime implicants:

0141-1110 1 g = [ol-104111] c2
10-01-0111
10-11-0001 C3

C4
Let's find the eesenqtial prime implicants
of the array.
9 is written as 9 = c l V s l , where

- -
cl= CO1-O1-11101 , and

01-10--0111
s l = [1041--0111]

10-11-0001
First, make a consensus of cl and sl.

Because cl(HI, clis an essential prime
imp1 icant.
9 is written as 9 = c 2 V S 2 , where
c2= COl-lOUlll> , and

- - - - - -

Similarly, make a consensus of c2 and 8 2 :
- -

H2=cons(c2, s2)=[4:~::=:tP]

Because c2< H 2 , c2 is not essential.

Similarly, we can see that neither
c3 nor c4 are essential . (End of Example) .

V I , CONCLUSION

1. Two methods for decomposing a tautology
problem into smaller ones are shown.

2. A hardware tautology checker is proposed.
The computation time of the checker is
proportional to the number of products
in a given sum-of-products expression.

3. Application of the tautology checker for
simplifying logical expressions with
many variables is shown.

REFERENCES

C11 S.Muroga, Loaic design and Switching

Theory. Wiley-Interscience Publication,

1979.
C21 S.J.Hong, R.G.Cain, and D.L.Ostapko,

MINI: A heuristic approach for logic
minimization,' IBM J. Res. and Develop.,
pp.443-458: Sept. 1974.

C33 T. Sasao, Multiple-valued decomposi-
tion of generalized Boolean functions
and the complexity of programmable
logic arrays*'IEEE Tans. on Computers,
vo1.C-30, ?0,9,pp.635-643* Sept. 1981.

C41 T . Sasao, Input variable assignment
and output phase optimization of PLA's9
IEEE Trans. on Compu:.(to be published)

C51 R.K.Brayton, et.al, A comparison of
logic mi?imization strategies using
ESPRESSO , Proc. of 1982 ISCAS
pp.42-48, Nay 1982.

C61 T.Sasao, S.J.Hong, and R.K.Brayton,
'Minimization of PLA's by decomposition'
(in preparation).

C73 Y.H.Su and P.T.Cheung, 'Computer
minimizatiyn of multi-valued switching
functions, IEEE Trans. Comput. C-21,
pp.995-1003,1972.

C81 M.R.Garey and D.S. Johnson, Computers
. .

and Intractabilit~, W.H.Freeman and

Company, San Francisco , 1979.
C91 R.K.Brayton, J.D. Cohen* G.D.Hachte1,

B.M. Tragger, and D.Y.Y.Yun,
'Fast recursjve Boolean function
manipulation * Proc. 1982 ISCAS,pp.58-
62, May 1982.

C101 J. P.Roth, 'Algebraicmtopological
methods in synthesis, ,In Annals of
Computational Laboratory of Harvard
University, vo1.29. pp.57-73, 1959.

Cll3 P.Bricaud and J.Campbel1 ,'Mu!tiple
output PLA minimization: EMIN , WESCON
78,33/3, 1978.

El23 Z. Arevalo and J.G. Bredeson, 'A method
to simplify a Boolean function into a
near minimal sum-of-produc:~ for
programmable logic arrays, IEEE Trans.
Cornput.,vol C-279pp.1028-1039, yov.1978.

C133 P.W. Besslich and P.Pichlbauer Fast
transform procedure for the generation
of near minimal covers of Boolean
functions', IEE Proc. vo1.128, Pt.E.
No.6, pp.250-254. Nov. 1981.

C141 T.Sasao,'A fast complementaion algorithm
for sum-of-products expressions of
multiple-valued input binary functions',
Proc. 13th ISMVL, pp.103-110, May 1983.

C153 0. W. Broun,'A state-machine synthesizer
--SMS', Proc. of 18th Design Automation
Conference ,June 1981.

C163 D.L. Dietmeyer, Logic Desien of Dieital

Systems (Second Edition)* Allyn and

Bacon Inc.* Boston, 1978.
El71 M. A. Breuer, Design Ak~tomation of

Digital System-* vol.l:Theory and

Technique, Prentice-Hall, 1972.

