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Abstract:Multiple-valued input binary 

n 
function is a mapping 5: X P +B, where 

i=l 
Pi=CO,l,..,pi-11 and B=C0,1>. In this 

paper, tautology checking methods for sum- 
of-products expressions of multiple-valued 
input binary functions are discussed. 
Firstly, methods for decomposing a 
tautology problem into smaller ones are 
shown. Secondly, a fast hardware tautology 
checker is proposed. The computation time 
of the hardware tautology checker is 
proportional to the number of the terms in 
the expression. The hardware tautology 
checker for n-variable p-valued input 

binary functions requires 4.pn copies of 
2-input AND gates. Finally, applications 
of the tautology checker for generating 
prime implicants, for generating 
irredundant sum-of-products expressions, 
and for detection of the essential prime 
impl icants are shown. 

I. INTRODUCTION 

In logic design, minimization or 
simplification of logical expression is 
important. A minimal sum-of-products 
expression for a two-valued input logic 
function corresponds to a minimal two-level 
AND-OR circuit or a minimal two-level PLA 
(Programmable Logic Array)ClI. Similarly, 
a minimal sum-of-products expression for a 
four-valued input two-valued output 
function (also called a four-valued input 
binary function) corresponds to a minimal 
PLA with two-bit decodersC2l,C33,C41. 

Suppose that we have to minimize 
n-variable two-valued logic function. 

When n 6 1 0 ,  we can often obtain a 
minimum solution by using a Quine-McCluskey 
method. But this method is impractical for 
larger problems because it needs all the 
prime implicants and their covering table. 
The average number of prime implicants is 

greater than 2"-' when n L 10, and some 
class of functions have prime implicants 

proportional to 3"/n C4l. 
When n 5 1 6  , several algorithms which 

use the truth table of a given function are 
reportedC111-C133. They obtain good 
solutions in a relatively short time. 

Although these algorithms need not generate 
all the prime implicants at a time, they 
need memory space which is proportional to 

2? So these algorithms are also impractical 
for larger problems. 

When n 140, we have very good 
algorithms such as MINI and ESPRESSO which 
first obtains a complement of a given 
functionC2I,C51. In these algorithms, the 
complement is effectively used to make the 
implicants prime or near prime. These 
algorithms often simplifies larger 
practical problems. However, recently, 
we found a class of functions whose size 
of the complement increases exponentially 
with the number of products in an original 
expressionC61. For this class of functions 
both MINI and ESPRESSO failed to obtain the 
complement of the function even if 
sophisticated algorithmsC9l,C143 were used. 

There are minimization methods without 
using the list of all the prime implicants, 
the truth table, nor the complement of the 
given functionC53,Cl53-C181~ However, 
these methods require much computation time 
if we need a near minimum solution : we 
have to check whether an array & covers a 
cube c or not thousands of times. Most 
computation time is spend for the checking 
of this impl ication relation c <  5. 
As will be shown in Section 5, c <  & holds 
if and only if &(lc)=l, i.e., the 
restriction of & to c is tautology. 
Therefore, a high speed tautology checker 
is useful for testing implication relations 
and thus, useful for logic minimization 
of many-variable problems. It is known that 
the implication relation c <  & can be 
examined by computing c#&C16,173 or 
c @ & C23. But the tautology checking of v( lc) is much faster. 

In Section 2, the tautology problem 
of the binary functions is formally defined. 
The problem is Co-NP complete and there is 
virtually no hope to find a polynomial time 
algorithm to decide whether a given sum-of- 
products expression is tautology or not. 

In Section 3, methods for decomposing 
a tautology problem into smaller ones are 
shown. Necessary conditions to be tautology 
are also given, which are useful for quick 
non-tautology detection. 



In Section 4, a fast hardware tautology 
checker is introduced. The time to decide 
whether a given sum-of-products expression 
is tautology or not is proportional to the 
number of terms in the expression. The 
tautology checker for an n-variable p- 

valued input binary function requires 4 - p n  
copies of 2-input AND gates. We can realize 
an efficient tautology checking system by 
combining the methods shown in Sections 3 
and 4. 

In Section 5, application of the 
tautology checking system for generating 
prime implicants, for generating irredun- 
dant sum-of-products expressions, and for 
detection of the essential prime implicants 
are shown. Experiments in C43 shows that 
more than a half of the prime implicants in 
minimum sum-of-products expressions are 
essential for control circuits of micro- 
processors. Therefore, we often obtain good 
solutions quickly by first detecting all' 
the essential prime implicants. Theorem 5.3 
gives an efficient essential prime 
implicants detection method without 
generating all the prime implicants at a 
time. Our experiments show that this method 
is much faster than local extraction 
a1 gorithmC101. 

11. BINARY FUNCTIONS AND TAUTOLOGY PROBLEM 

Definition 2.1: A mapping 2 pi +B is 
i=l 

called a multiple-valued input binary 

function (also called a multi-valued input 
two-valued output function), where 
Pi=CO,l,,..,pi-11, and B=CO,l>. 

Definition 2.2: Let Xi be a variable on Pi. 

Xyi is a 1 itcral of Xi, where S i G P i .  

S 
Xpi represents a function such that xii= 0 
if X i d S i ,  and =I if X i E S i .  

Definition 2.3: A product of literals 

'n x : ~ ~ x : ~ - * - - - x ~  is called a p a .  

A sum of products is called a sum-of- 
productsexPression. 

Theorem 2.1: An arbitrary binary function 

can be represented by a sum-of-products 
expression: 

where S i C P i .  

From here, F (an upper case letter) 
represents a multiple-valued input binary 
function and f(a script letter) represents 
its expression, and so on. 

Example 2.1: A binary function 
F:CO,l>XC0,1,2>+CO,l> shown in 
Table 2.1 can be represented by the sum- 
of-products expression: 

f =X; . Xc0.2) vx; vxCO,l! 2 2 
0 For simplicity, x:O'is represented by XI 

and so on. 
Table 2.1 Truth table 

Definition 2.4: (Positional cube notation). 

A product XS1*Xz2. . . . can be 

represented as follows: 

X2 X n 

where ci =O if ie S i  and =1 if iESi. 
The above notation is called a positional 

cube notationC73. A sum-of-products expres- 
sion represented by a set of positional 
cubes is called a n .  Arrays are denoted 

by the same symbols as the corresponding 
expressions. 
Example 2.2: An array for the expression in 

Example 2.1 is 

X2 

Definition 2.5: Let f be a sum-of-products 
expression. If &=I, i.e., & is equal to 1 
for all the input combinations, then is 
said to be t-. The problem to decide 

a given sum-of-products expression is 
tautology or not is said to be a tautoloav 

problem. 

Example 2.3: A function in Example 2.1 is 

not tautology, which is obvious from 
Table 2.1. 
Example 2.4: Consider a function 

F : C O , l > X C O , 1 . 2 > X C O . l . 2 . 3 > + B ,  
and its expression: 

By making a truth table for f, it is easy 
to verify that 6J is tautology. 

(End of Example). 



When the number of the input variable 
is large, it is quite time consuming to 
check the tautology by making a large 
truth table. It is interesting to find an 
efficient tautology checking algorithm. 
However, the next theorem shows that the 
problem is quite hard. 
Theorem 2.2: The tautology problem for 

binary function is Co-NP complete. 
(Proof) Similar to the two-valued logic 
function C81. (Q. E. D) 

The above theorem implies that there 
is virtually no hope to find a polynomial 
time algorithm for the tautology problem. 

1 1 1 .  DECOMPOSITION OF A TAUTOLOGY PROBLEM 
Definition 3.1: Let c be a cube. The cube 

restriction of to c is obtained as 

follows and denoted by s( lc). 
1) Make a logical product of 9 and c. 
2) Delete null products. 
3 )  Change 0's of 5 into 1's in the col- 

umns where c is 0. 
Example 3.1: Consider an array 9 and a 
a cube c, where 

c= C01-111-1100> 
tl0-111-00111 

We can make !?(lc) as follows: 
1). By making a logical product of 9 and 

C, we have 

LOI-111~110J 
2). By deleting the null cube(denoted by 

* I ,  we have * ** 
01-101-0100 

c. C =  [ol~lo-11001 
01-111-0100 

3). By changing 0's in 9 into 1's in the 
columns where c is 0 (denoted by *), 
we have, 

11-101-0111- 
C ( l c )= [ll-olo-11111 

11-111---0111 
(End of example). 

Lemma 3.1: c. F = c . s (  lc). 

(Proof) Clear from Definition 3.1.(Q.E.D) 
Lemma 3.2: Let be an array, and c i  

(i=1,2,...,m) be cubes, where 
m 

Then, r =  v ci-stlc). 
i=l 

( Proof ) 
m m 

C = (  V ci)-fF= V ( c i e C ) .  BY Lemma 3.1, 
i=l i=l 

m 
we have F= V ci-q(Ici). (Q.E.D.) 

i=l 

Lemma 3.3: Let 5 be an array, and c i  
(i=1,2,. . ,,m) be cubes, where 
m 
V c i = l  and ci.c .=0(i + j ) .  
i=l J 
Then, 5 ~ l - C ( l c i ) ~ l ( i = l , 2 ,  ..., m). 
(Proof) Obvious from Definition 2.5 and 
Lemma 3.1. (Q.E.D.) 
Lemma 3.4: In the columns of Xk in 5 ,  

suppose that the i-th column covers j-th 
column(i.e., the i-th column has 1's in all 
the rows in which the j-th column has 1's). 
Let 9 be an array after deleting the i-th 
column from 5 ,  we have 9 ~ 1  9 ~ 1 .  

(Proof) Let cr=x; (r=O,l, ..., pk-1). It is 

pk-1 
- clear that V cr=l and cr-cs=O(r+s). 

r=O 
By Lemma 3.3, ~ ~ l - ~ r ~ l ( r = O , l , . , , p k - l ) ,  

where s r = a  ( 1 X; ) . Because i-th col umn 
covers j-th column, sj< r i ,  which implies 

that if 5 . E l  then s i E l .  Therefore, we 
J 

need not check the tautology of si if aj 
is tautology. 

Next, consider array 9. Let cr=x: 
(r=O,l,.,,,pk-1. r+j). 

pk-1 
In this case note that v cr=1 

r=O (r + j) 
and cr-cs=O (r +s). By Lemma 3.3, 

9 ~ 1  - S r = l  (r=O,l, ...., pk-1 ,r+j), 

r 
where sr=g(iXk). Obviously, s r = F r .  

Hence 5 ~ 1  - 9 ~ 1 .  (Q.E.D. 
Lemma 3.5: If 9 has a column with all 
O's, then 9 is non-tautology. 
(Proof) Suppose that the j-th column of X i  
has all 0's. 9 is 0 for the inputs such 
that Xi=j. In other words, 5 is non- 
tautology. (Q.E.D.) 
Theorem 3.1: Let 9 be an array obtained 
from an array 9 by applying the following 
operations repeatedly. Then 9 E l - Q z l ,  
1) Delete a cube which has a variable with 

all 0's. 
2) Delete a column with all 1's. 
(Proof ) 
1) A cube which has a variable with all 0's 

is a null cube. So the deletion of the 
cube will not change the function 
represented by the array. 

2) Suppose that the i-th column of Xk are 

are all 1's. 
a) When p k L 2 :  The i-th column covers 

other columns in Xk. By Lemma 3.4, 

the i-th column can be deleted. 
b) When pk=l : In this case, 5 does not 

depend on Xk and we can delete Xk . 



Example 3.2: Consider an array #: 
* * * 

By deleting columns with all 1's (denoted 
by *'s), we have 

r 011+10-1011 

By deleting cubes with all-0 variables 
(denoted by under lines), we have * * * 

011-010-101 

3 2 =  [ 001-110411 111+11-101 
111-010-101 

by *'s), we have 

I 
By deleting columns with all 1's (denoted 

By deleting cubes with all-0 variables 
(denoted by under lines), we have 

3q=Cll-01-103 

By lemma 3.5, S4 is non-tautology. Hence, 

9 is non-tautology. (End of example) 
Theorem 3.2:(Split-by-variable decomposition) 

1 - r i E l  (i=0,1,2,...,pk-I), 

(Proof) Let ci=xL (i=0,1,2, ..., pk-1). 
By Lemma 3.3, we have the theorem.(Q.E.D.) 
Example 3.3: Consider an array 5: 

10-101-1011 r lo+lo-lloli 
I 10-110+100 F= 01-cl10-1011 
01-101-1101 1 01-011-1011 

In Theorem 3.2, 1 et k=l; then 
11-101-1011 

s o =  [ll-110+100 11+10-llol] and 

11-010-1011 
C ,= [ll-101-1101] 

11-011-1011 
Therefore, 
9 ~ 1  t.. (Foil and C 1 = l  ). 

- 

(End of Example). 
In E x a m ~ l e  3.3. every cube of 9 has 

effective. However, when many elements are 
1's in all the variables, Theorem 3.2 is 
not so effective. This theorem has been 
discussed for the two-val ued 1 og i c 
functionsC93. 
Theorem 3.3:(Split-by-term decomposition). 

Suppose that the given expression can be 
S 

written as 9 - c  V 9, where c=X:1.Xz2. - e x m ?  

Then, ~ ~ l - ' Q ( l c i ) ~ l ( i = l , 2 , . . , m ) ,  where 

m+ 1 
(Proof) Let C=C,+~. Then V c i  r l  and 

i=l 
ci.c -=O ( i  + j). By Lemma 3.3, 

J 
5 = 1  - F(lci)=l(i=i, ..., m+l). Because 

$ = C ~ + ~ V ! ~ ,  and C ~ + ~ . C ~ = O  (i=1,2,.+.,m), 

we have y(ici)=3(ici) (i=1,2,...,m), 

Note that ~ ( i ~ ~ + ~ ) ~ l .  Hence, we have 

F r l  - !9(lci)rl(i=1,2 ,..., m).(Q.E.D.) 
Example 3.4: Consider an array 9: 

is written as F=c V 3,  where C=X;. x$, 
and 

i 
01-101-1010-1011 
11-011+111-1101 

!9= 11-110-1011+111 
11-001-1011-1111 I 10-0014101-1101 

By Theorem 3.3, 
1 c-. Cs(lcl)=l and 3(lc2)'1), 

0 where c1=Xl , C ~ = X : - X ~ O * ~ )  and 

( End of Exampl e ) 
As easily seen from Example 3.4, 

Theorem 3.3 is effective when the given 
expression has a cube with a small number 
of literals. 
Definition 3.2: The volume of a cube 

singleton 1' in XI.. It is-easy to see that 
S1.Xz2- . -  - -X:" is defined as c=X1 

when every cube has singleton 1 in a same 
variable, Theorem 3.2 is especially 



n 
vol(c)= l l  ISii ,where ISi\ denotes the 

i=l 
number of elements in Si. In other words, 

vol(c) is the number of minterms contained 
in c. 

m 
Theorem 3.4: Let s =  V c i  . 

i=l 
m n 

If F s l  then Cvol(ci) L n p i .  
i=l i=l 

The above theorem says that, if the 
sum of the volume of each cube is smaller 
than the number of minterms in the univer- 
sal cube, then 9 is non-tautology. This 
theorem is useful for quick non-tautology 
detection. 
Example 3.5: Consider an array 9: 

It is easy to see that vol(c,)=4, 
I 

vol(c2)=4, vol(c3)=3, and vol(c4)=6. 

n 
We have C vol (ci)=17. On the other hand 

i =l 
n n Pi=2X3X3=18. By Theorem 3.4, 
i=l 
5 is non-tautology. (End of example) 

IV. HARDWARE TAUTOLOGY CHECKER 

As shown in the previous section, the 
tautology problem can be solved by an 

a minterm. When a cube c is applied to the 
input, all the outputs which corresponds to 
the minterms of c become one. 
Catch Part consists of W latches. Every 

latch is reset to zero at the initial state. 
When a cube is applied to the minterm 
generator, a1 1 the latches which correspond 
to the minterms of c will be set to one. 
We have to apply all the cubes sequentially. 
AND Gate Part has W inputs and one output. 

The output becomes one if all the W inputs 
are one, which shows that the given array 
is taut01 ogy. 

INPUT Mintem Generator Lafch AND gate 

iterative applications of Theorems 3.1, 3.2, 
and 3.3. Another method to solve the tautol- 
ogy problem is to make a truth table of the 
array. The tautology checking by using a 
truth table is, in general, time consuming xo 

n 1 
because we have to check n pi combinations. 

i=l 
However, when the problem is small(say n 57 
and pi=2 (i=l,Z,...,n)), tautology checking 

Fig. 4.1 Tautology Checking Circuit 

Latch AND gate 

by the truth table is faster than by 
decompositionC93, Therefore, the tautology 
problem can be solved efficiently first by 
decomposing the problem into small ones, 
and then by making the truth tables of the 
small ones. 

In this section, we will show a fast 2 
tautology checking method by using a special 
logic circuit. The computation time for this Reset 
tautology checker is proportional to the 
number of the terms in the expression. 
4.1 Tautology Checking Circuit 

Schematic diagram of the hardware 
tautology checker is shown in Fig.4.1. 

n 
Minterm Generator has H= Z pi inputs and 

i=l 

Fig. 4.2 Tautology Checking Circuit for 

n 
W= n P. outputs. Each output corresponds to 

i=l 1 



Example 4.1: Consider a binary function: 

F: C0,11XC0,1,2> + C0,1), and its array 

0 
*1 X2 

x1 x i  - 0 1 2  
X2 X2 X2 

1 0 -  1 0 1  c 4 

The tautology checking circuit for this 
function is shown in Fig.4.2. 
At the initial state, all the latches are 
reset to zero. 
When cube cl is applied, fO and f2 are 

set to one. 
When cube c2 is applied, fO and fl are 

set to one. 
When cube c3 is applied, f3 and f4 are 

When cube c4 is applied, fl , f2 f4 

and f5 are set to one. 

In the following table, X marks show the 
latches which are set by the application 
of each cube. 

When all the cubes are applied to Fig.4.2, 
the output of the AND gate will be one, 
which shows the given array 9 is tautol- 
ogy. (End of example). 

4.2 Estimation of the Gate Counts 

In this part, we assume that p=pi (i=l, 

2,...,n) and 17x2: where m is an integer. 
Minterm Generator: Let g(n) be the number 

of the 2-input AND gates to realize an n- 
variable minterm generator. A 2-variable 
minterm generator is realized by 

using p2 copies of 2-input AND gate. So we 

have g( 2)=p2. An n-variabl e minterm gener- 
ator is realized by two (n/2)-variable min- 

tern generators and pn copies of 2-input AND 
gates. From these, we have, 

g(n)=2'g(n/2)+pn=pn+2'p(n/2)+~.p(n/4)+.  . . . . 
+(n/2) .p 2 

latch Part: Each latch is realized by a pair 

of 2-input AND gates. So the number of AND 

gates is 2.pn. 

AND Gate Part: pn input AND gate is realized 

by (pn-1) copies of 2-input AND gates. 
Hence, the total number of 2-input AND 

gates is 
2 4.pn+2-p(n /2 )+4 'p(n /4 )+ .  . . . .+(n/2).p -1. 

Table 4.1 shows the number of 2-input AND 
gates necessary to realize a tautology 
checker when p=2. 

Table 4.1 Number of 2-input AND aates to 

realize a Tautoloev checker 

ANDgate part1 63 255 1023 4095 16383 

Total 1279 1071 4191 16559 65863 

Number of 
Inputs n 

Minterm 
Genera tor 

Latch part 

4.3 Estimation of the Computation Time 

6 8 10 12 14 

88 304 1120 4272 16712 

128 512 2048 8192 32768 

Suppose that the bit pattern of each 
cube is sent to the output port of the 
computer by an output instruction, and that 
tautology is checked by the logic circuit 
shown in Fig.4.1. The circuit can be 
realized in at most Cn.log2p + 2 + log2n3 
levels. When n=10 and p=2, it is 16 levels, 
and the delay time of the circuit is in the 
order of nano-seconds if we use TTL 
technology. On the other hand, the time tl 

to send a bit pattern of a cube to the 
output port of a computer is in the order 
of micro-seconds. So, the total computation 
time depends only on the output instruction 
time, and is m.tl, where m is the number of 

the cubes and ti is the time to send the 

bit pattern of a cube to the output port. 

V ,  APPLICATION FOR LOGIC MINIMIZATION 
Minimization methods in this section 

may be slower than MINI or ESPRESSO if we 
use only a software for tautology checking. 
But if we make a system which first 
decomposes a large tautology problem into 
many small problems, and then use a high- 
speed hardware tautology checker to solve 
the small problems, we can make a fast 
minimization system for many input problems. 

'n 
Definition 5.1: A product P=XB1.X:2*-..Xn 
is called an implicant of F if F is equal 

to one whenever P is equal to one, and 
denoted by P <  F. P is called a prime 

implicant of F if P < F  and Si (i=1,2,...,n) 
is maximal. When P <  F, F is said to cover P. 



From here, we will consider a problem 
to represent a given function f by using a 
minimum (or minimal) number of prime 
implicants. 
Lemma 5.1: Let c be a cube and 5 be an 
an array. Then c( s ~ s ( l c ) ~ l .  
(Proof) By Lemma 3.1, c.!?=c-s(lc). Note 
that c <  5 cr c=c.s. If c <  5 ,  then 
c=c. s = c .  s( lc). Therefore s( lc)el. 
If $ ( l c ) ~ l ,  then c=c.s. Therefore c <  5. 

(Q.E.D.) 
&xam~le 5.1: Let c and 5 be a cube and an 
array as follows: 

c = (11-111-0110> 

10-011-11101 
The cube restriction of 5 is given by 

r 01-011-1111~ 

- - 

By Theorem 3.1, s ( l c ) r l  .-. $ G I ,  where 
r 0 1 4 1 1  

By making the truth table for 9 ,  we 
can see that 9 its tautology. 
Therefore, s ( l c ) E l  . By Lemma 5.1, we 
have c < & , (End of Example). 

Lemma 5.1 shows that whether an array 
5 covers a cube c or not is examined by 
the tautology checking. 

Theorems 5.1 through 5.3 shows 
methods for generating prime implicants, 
for deriving irredundant sum-of-products 
expressions, and for detecting the essen- 
tial prime implicants. In these methods, 
we have to examine whether c <  5 or not 
thousands of times, which can be done effi- 
ciently by the tautology checking of s( lc). 
Theorem 5.1: Let s = c V s ,  where 

c=XS1. X;2. . . . . xsk. k -...x~! s Let 

S 
'1. Xz2. . . . . Xak. . . . Xnn , and eSk , b=Xl k 

1) If b <  9 ,  then s = c ' V s ,  where 

2) If b c s  for a1 1 ak&Sk, and for all 

k (k=1,2,...,n), then c is a prime 
imp1 icant of 5. 

Example 5.2: Let us obtain a prime 

implicant cover of the following array: 
01-010-1010 
01-100-1110 1 

s =  [ 10-010-1110 
10-100--0110 

5 can be written as S = c l V s 1 ,  where 

cl= CO1410-1010) , and 

01-100-1110 
P I =  [ 10-010-11101 

10-100-0110 
Consider a cube 
bl= C10410-1010> 

Because b l <  s l ,  cl is expandable to the 

0 direction XI. 

So 5 can be written as s = c ; V s l ,  where 

c ~ = ~ ~ V b ~ = C 1 1 - 0 1 0 - 1 0 1 0 ~  

c; is a prime implicant because it is 

unexpandable to any other direction. 
Similarly, both c2 and c3 are prime 

imp1 icants. 
Now, 5 can be written as 5=c4V$32 , 
where 
c4= (10-1004llO>, and 

- 11410-1010 
P 2 =  101 -100-1110 

10-010-1110 
Consider a cube 

I 
b4= C10,10-0110> 

Because b4< s 2 ,  b4 is expandable to the 

1 direction X2. 

So . can be written as S = c i V P 2 s  where 
ci=c4 Vb4=C10-1104110) 

ci is a prime implicant because it is 

unexpandable to any other direction, 
Hence, S=c;Vc2Vc3Vc;l is a sum-of- 

products expression consisting of prime 
implicants. (End of example). 
Theorem 5.2: Let !?=cVs, and c be a cube. 

1) If c <  s ,  then cube c can be deleted , 
i.e., SES. 

2) Let be represented as F=c, Vc,V ... 
A L 

V c m  ,where ci(i=1,2 ,... ,m) 
is a prime implicant, Let 9; be a sum 
of prime implicants other than ci. 

If ci( si for all i (i=1,2,..,m), 

then 5 is irredundant (minimal ). 
Example 5.3: Consider an array consisting 

of prime implicants: 
11-010-1010 

s =  [ 01-100-1110 1 
10-010-1110 
10-110---0110 I 2 

c4 
5 can be written as s = c l V s l  , where 
c, = C1l-O1O-1010) , and 

Because cl( s l ,  c1 cannot be deleted. 

Similarly, c2 cannot be deleted. 

5 is also written as 5 = c 3 V S 3 ,  where 
c3 = C10-410-11101 , and 



11--010-1010 
9 3  = [01-100-1110] 

10-1104110 
Because c3< s 3 ,  c3 can be deleted. 

Similarly, 5 is written as 5 = c 4 V S 4  , 
where 
C, = (10-11041101 , and 

11-010-lolo] 
194 = [OI-100-1110 
Because c4( s 4 ,  ca cannot be deleted. 

Hence, we have an irredundant 
sum-of-products expression: 

11410-1010 
El3 = [ol-100-1110] 

10-110--0110 
(End of example). 

Definition 5.2: Let c be a cube of f, and 

let v be a minterm of c. If the prime 
implicant which covers v is unique, then c 
is an essential prime irnplicant , and v is 
a distinguished minterm. 

Definition 5.3: A sum-of-products expression 

is said to be minimum if it consists of the 

minimum number of prime implicants. 
Lemma 5.2: A minimum sum-of-products 
expression for f contains all the essential 
prime implicants of f, if any. 
Definition 5.4: Let cl and c2 be cubes, 

where 

cl.X:l. Xz2. . . . -xnn S and c2=X1 . . . . xnn, T 

A consensus of cl and c2 is defined as 

and denoted by cons(cl,c2). 

Definition 5.5: Let c be a cube and 19 be 
an array. A consensus of c and 3 
is defined as cons(c,s)= U cons(c,ci). 

ci E 19 
Theorem 5.3: Suppose that 5 can be written 
as S = c V s ,  where c is a prime implicant. 
Let H=cons(c,lB). If c 4  H ,  then c is 
essential. 
(Proof) 

Suppose that c=X1 'n S1-Xz2-...-Xn and c( x .  
There exists a minterm, where - 
v=~:l. a2--.-~;k...-~:n 2 such that v E c . H ,  

where aiESi(i=1,2,..,,n). 

Suppose that a prime implicant c' which is 
different from c covers v. where 

T 
c 8  =X:~. X22 ....X:k..-.Xn? T Because c f-3 c, # 4 

and cgc', we can assume that Tk-Sk # 4 ,  .. .. 
and that there is a minterm in c' such that 

vx.Xal. 1 x;2. . . . . x.k-1. xLk. xak+l .....xtn , 
k- I k+l 

where bk €Tk-Sk. 

Because v'ec and u'€c', v' is a minterm 
of 9. Therefore, there exists , 
a cube d in 9 which covers v . 
Note that a i € D i  (i=1,2, ..., n, i + k )  and 

bkEDk. Consider a consensus of 

c and d: hk=c0n%(c,d)2 

sl n D, s2 n D, sk u DK sn n on 
'X2 ' ' ' 'Xk ' ' ' "n 

Because a i E S i  n D i ( i + k )  and a k E S k  U D k  , 
we have u E h k .  

. . 

However, this contradicts the hypothesis - 
that v E c  - H because hk < H . 
Hence, the prime implicants which covers c 
is unique. In other words, v is 
distinguished minterm and c is an essential 
prime implicant. (Q.E.D.) 
Example 5.4: Consider an array consisting 
of prime implicants: 

0141-1110 1 g =  [ol-104111] c2 
10-01-0111 
10-11-0001 C3 

C4 
Let's find the eesenqtial prime implicants 
of the array. 
9 is written as 9 = c l V s l ,  where 

- - 
cl= CO1-O1-11101 , and 

01-10--0111 
s l =  [1041--0111] 

10-11-0001 
First, make a consensus of cl and sl. 

Because cl( HI, clis an essential prime 
imp1 icant. 
9 is written as 9 = c 2 V S 2 ,  where 
c2= COl-lOUlll> , and 

- -  - - - -  

Similarly, make a consensus of c2 and 8 2 :  
- - 

H2=cons(c2, s2)=[4:~::=:tP] 

Because c2< H 2 ,  c2 is not essential. 

Similarly, we can see that neither 
c3 nor c4 are essential . (End of Example) . 

V I ,  CONCLUSION 

1. Two methods for decomposing a tautology 
problem into smaller ones are shown. 

2. A hardware tautology checker is proposed. 
The computation time of the checker is 
proportional to the number of products 
in a given sum-of-products expression. 

3. Application of the tautology checker for 
simplifying logical expressions with 
many variables is shown. 
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