
A FAST COMPLEMENTATION ALGORITHM FOR SUM-OF-PRODUCTS
EXPRESSIONS OF MULTIPLE-VALUED INPUT BINARY FUNCTIONS

Tsutomu Sasao

Mathematical Sciences Department
IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

and

Department of Electronics Engineering
Osaka University
Osaka 565, Japan

ABSTRACT: A recursive algorithm to obtain a complement

of a sum-of-products expression for a binary function of p-

valued input variables is presented. It produces at most pn/2

products for n-variables functions, whereas an elementary

algorithm produces O(tn n(1-t"2) products where

t = 2'-1. It is 10 " 30 times faster then the elementary one

when p=2 and n=8.

I. Introduction: -

As an elementary method to obtain a complement of a

sum-of-products expression for f, the following is well known.

By using De Morgan's law, obtain a product-of-sums

expression for f .

By using the distributive law, obtain a sum-of-products

expression for f.

By using the absorption law, simplify the sum-of-products

expression.

However, this method becomes quite inefficient when the

number of input variables is large, because it will produce all

the prime implicants of T . For example, the elementary method

will generate 0(3"/n) products for a class of n-variable

switching functions (two-valued input binary functions) [I],

whereas the presented algorithm will generate at most 2"-'

products. The new algorithm is about 10 - 30 times faster

than the elementary one for switching functions of 8-variables.

Binary functions are useful in designing programmable

logic arrays with decoders [2] and other circuits [3], [4]. Sim-

plification of the expressions for the binary functions will

reduce the complexities of circuits. A fast complementation

algorithm has been desired because practical minimization

algorithms such as MINI [5] and ESPRESSO [6] require the

complement of the given function.

The proposed algorithm has been incorporated into MINI

and other systems and has been effectively used to design

logical circuits.

II, Definitions and an Elementary Method for
Complementation

n

Definition 2.1[4]: A mapping x Pi -., B is called a multiple- --
i- 1

valued input binary function, w%ere Pi = {0,1, ..., pi-1). and

B = {O, 11.

Definition 2.2: Let Xi be a variable on Pi. X? is a of --
Xi when Si E Pi.

x S ~ represent a function

Definition 2.3: A product of literals x;~.x?. ... 0x2 is called --
a product. A sum of products is called a sum-of-products

expression.
n

Theorem 2.1[2]: An arbitrary binary function X Pi + B can --
be represented by a sum-of-products expressioni='

f X x , . , x = V x ~ L x ? x;n
(S,,S2 ,..., S")

where Si r Pi.

Definition 2.4: Let E be a product. E is called a prime --
implicant if E < f and E is maximal (i.e. there is no E l such - -
that E, E l s f) .

Lemma 2.1: Let f, g and h be binary functions. --
-
fog = T V g (De Morgan's law)

(f v g) . h = f. h V g. h (Distributive law)

f V f .g = f (Absorption law)

As an elementary method to obtain a complement of

sum-of-products expression, the following is well known. products expression:

Algorithm 2.1:

1. By using De Morgan's law, convert a complement of a

given expression into a product-of-sums form.

2. By using the distributive law, expand the expression into a

sum-of-products form. Delete null products (If

A f l B = + then x A * x B = +) and redundant literals (If

A 2 B then xA*xB = xB).

3. By using the absorption law, drop subsuming products

(P v Pq = P).

Example 2.1:

Consider a binary function

and an expression

Let's obtain a complement of B by Algorithm 2.1. First, by

De Morgan's law, convert it into a product-of-sums form.

Note that B1 contains 8 products.

(End of Example)

Straightforward application of Algorithm 2.1 is quite ineffi-

cient. It might be made more efficient by the simplifying the

intermediate results by using absorption law or by changing the

order of expansion. However, in any case, Algorithm 2.1 will

generate many products. This is because that Algorithm 2.1

will generate all the prime implicants of i , which is stated by

the following theorem.

Theorem 2.1: Let S be a sum-of-products expression of a --
binary function f, and 3 be an expression obtained by using

Algorithm 2.1. Then, 3 contains all the prime implicants of T .

(Proof). Similar to the switching function [7]

(Q.E.D)

111. A Fast Complementation Algorithm - --
By extending Shannon's expansion theorem to binary

functions and applying the complementation theorem of Hong-

Ostapko [9] , we have the following:

Lemma 3.1: Let a binary function be represented by

f = XO.fo V X1.f1 V... V ~ p - " f ~ - ~ .

Then a complement of f is given by
Second, by the distributive law, we have the following:

In the above expression, X:.X~ and x ~ ~ ~ ~ ~ - x : etc. are omit-

ted because they are null products. By using the distributive

law again, we have the sum-of-products expression:

Third, by the absorption law, we can delete products

X; . x ; . x ~ ~ ' ~ ~ and x:.x: etc., because X:-X:GX; and

x ~ . x ; . x ~ ~ ~ ~ G X:.XY1. Hence, we have the sum-of-

i = xOio v xl.il v... v xP-I .T,-,.

where fi = f(X + i).

By using Lemma 3.1 recursively, we can obtain a comple-

ment of an expression. It is possible to make an algorithm to
n

generate at most Il pi/(max{pi]) products. However, experi-
i= 1

ments showed that a program simply based on Lemma 3.1 was

not so fast for large practical problems. One reason for it is

that most variables appear in a small number of products (i.e.,

a lot of "don't cares" in the array). Therefore, for the practi-

cal problems, the following algorithm has been developed.

Algorithm 3.1: Let B be a given expression. Use the follow-

ing rules recursively.

Rule 1. If B is a constant:

Rule 2.

Rule 3.

Rule 4.

Rule 5.

Rule 6.

If B depends on only one-variable: i.e. if

= X? V X? V...V X? then g = X; where

S = S,US,U ... U S,.

If B consists of one product i.e., if

B = X?~.X? ... X? then

S2 z = x;lvx;l .x2 V... V x;1. x l ... x2-t x?

If B has a common factor, i.e. if B can be written as

B = x;'xp ... x;f.b.

by renaming variables, where 9 does not contain

variables X1,X2 ,..., XP, then

If B can be decomposed with a variable Xi, i.e. if B

can be written as

then

where bk (k = 0 , ..., pi-1) do not contain the varia-

ble Xi.

Otherwise, B can be written as

B = x?'.x? *...* X;'VIB

by renaming the variables. Then @ is given by

'i
where bi is obtained from (x ? * x ~ *...-Xi) A b by

deleting null products.

Definition 3.1 : A sum-of-products expression is disjoint if all

products are mutually disjoint, i.e.,

Theorem &J: Algorithm 3.1 generates disjoint sum-of-

products expression for f. The number of products in S is

denoted by t(B). By Theorem 3.1, it is clear that

where 9 is obtained by Algorithm 3.1.

Theorem 3.2: Let S, be a sum-of-products expression for

n

f,: x Pi -, B.
i= 1

Let gn be an expression obtained by Algorithm 3.1, then

(Proof). Proof will be done by the induction on n and re-

striction of f,.

Rule 1. When n = 0 : t (go) < 1 and the theorem holds for

n = 0.

Rule 2. When n = 1: t (g l) < 1 and the theorem hold for -
n = 1.

Rule 3. When B consists of one product: x;~-x>. x?.

Then, t(g,) = P < n<2"-', and the theorem holds -
(n > 2).
~ro; here, suppose that the theorem holds for

n-1, n-2 ,..., 1,0, and for the restriction of f,.

Rule 4. When B, has a common factor, i.e. B can be written

as follows by renaming the variables:

Since 9 does not contain the variables XI, X2,..., XP,

it has at most (n-P) variables. By the hypothesis of

induction (8) < d p i Hence
; 2 i=t+1

1 1 "
t (g) 2 P + 7 i=y-l pi 5 2 i y l ~ i and the theorem

holds.

Rule 5. When S, can be decomposed with respect to Xi, i.e.

B, can be written as

by renaming the variables:

By the hypothesis of induction t(bi) < d pj n = 2 j=2
Hence t(C,) < pix? d pi = II pi and the

= 2 i=2 2 j=1
theorem holds.

Rule 6. Otherwise, d can be written as

d = x;'*x> x;' v YB

by renaming the variables. Because

-
YBi is obtained from (x;~.x> *... *X?)AYB by deleting - null

products, and has a common factor X;I-X> x?. Let

I Sk I = ak, where 1 < ak < pk-1. In YBi. Xk takes at most ak - - - -
distinct values; in other words, YBi represents a restriction of f,:

By the hypothesis of induction,

Let bi = ai/pi and we have

Hence

and the theorem holds.

We have exhausted all possible cases and proved the

theorem by induction.

(0.E.D)

In Rule 6 of Algorithm 3.1, the selection of the products

and the ordering of the variables influence the efficiency of the

algorithm. After doing a lot of experiments on practical cir-

cuits, we use the following heuristics.

Heuristic 3.1 : --

1. Which product to select: Choose one with the least number

of literals (i.e., the number of literals such that I Si I # pi)

If a tie occurs, choose one with maximal I Si 1 , where
i= 1

x;l.x>*.... xs,.

2. The ordering of variables: Expand a product in the ascend-

ing order of I Si I / p i If a tie occurs, expand first using the

variable with the smallest ai = (sum of number of 1's of

each part in bit representation of YB)/pi.

Example 3.1: Consider the function shown in Example 2.1:

gF = Xy.x;.x~~'3Jvx~.xp'2J.x~~.2~vx~1.2'.x;

First use Rule 6. x$"~~.x; is a product with least number of

literals. d is written as follows:

I s2 1
Because - = - and = 1 expand it in the order

p2 3 P j 4 '
of X3 and X2.

Next let's obtain and g2 recursively. 8, can be writ-

ten as YB1 = x~*(x;-x:)v x : - (x ~ ~ ' ~ ~ - x $. YB1 can be de-

composed with respect to XI . By Rule 5, we have

Y B consists of one product and by Rule 3,

@ 2 - - x;vxy.xp2J v x y . x ; . x p 3 1 .

Hence

Note that g contains 5 products.

(End of Example)

IV. Experimental Results: -

Algorithm 3.1 has been programmed in APL and com-

pared with other algorithms written in APL.

1. Table 4.1 shows the comparison of Algorithm 2.1 (U, #
F), the disjoint sharp algorithm of MINI [S], and Algorithm

3.1. U, denotes a universal cube. (U, # d) can be con-

sidered as an implementation of Algorithm 2.1. @is similar

to #, but will generate disjoint sum-of-products expressions.

First, truth tables for 8-variable switching functions were

randomly generated. Then, the functions were simplified

by the distance-one-merge algorithm [5]. t (S) denotes the

number of products in a simplified expression. Lastly, the

complement of the expressions were obtained. t(@) de-

notes the number of products in the complement @. Table

4.1 shows that the disjoint sharp @ algorithm and Algor-

ithm 3.1 are 10 - 30 times faster than algorithm 2.1 (D #
F) and will generate simpler expressions. (See the entries

for n = 8 and p = 2.) Also, the truth tables of 8-variable

switching functions were decoded to make 4-variable binary

functions of 4-valued variables. Also in this case, Disjoint

sharp and Algorithm 3.1 were faster and produced simpler

expressions. (See the entries for n = 4 and p = 4.)

2. Table 4.2 shows the comparison of Disjoint sharp (u,@F)

and Algorithm 3.1. Control circuits for microprocessors

were used to compare the performance of two algorithms.

For example see the entries for D2. D2 is an 8-input 7-

output circuit. A characteristic function for a two-level

PLA [2] is a mapping

f: P~XM--B; P = (0,1), M = (0,1, ..., 61, B = (0 , l j

A simplified expression for f has 43 products. Also, a

characteristic function for a PLA with two-hit decoders [2]

is a mapping.

f: P ~ X M - B ; P = {0,1,2,3], M = I0.1, ..., 61, B = [0,1{

A simplified expression S for f has 42 products. Table

4.2 shows that Algorithm 3.1 generates simpler solutions

(fewer products) than U,@F. This is a desirable property

because in MINI, (U, @ F) often produces an excessive

number of products which prevents completing the initial

phase of computing the complement for large problems.

3. Recently, R.K. Brayton et. a1 have independently developed

a fast complementation algorithm [13]. It is for ordinary

multiple-output switching functions only, and cannot treat

multiple-valued variables. It is difficult to compare the

performance of their algorithm with Algorithm 3.1 because

of different data structures. In most cases, Algorithm 3.1

produced comparable solutions, but took longer time.

Table 4.1: Numbers of products in complement expressions and their computation time for Sharp, --

Algorithm 2.1

CPU time

(set)

38.814

57.631

65.232

59.472

15.020

22.494

43.494

29.927

Disjoint Sharp

U"@F

CPU time

(set)

2.098

3.186

4.191

4.239

0.701

1.436

2.485

2.583

Algorithm 3.1

CPU time

(set)

1.167

4.493

2.925

2.930

0.735

0.883

1.647

1.624

S : sum-of-products expression for f; @: sum-of-products expression for f.

t(S): Number of products in S ; t($): number of products in @.

Circuit
name

D2

R1

I1

I4

I5

A2

Table 4.2: Numbers of products in complement expressions and their computation time for --
Disjoint sharp and Algorithm 3.1.

Disjoint Sharp

u"@

CPU Time t (g)
(set)

1.904 125

1.166 106

1.652 123

1.016 63

10.162 333

5.779 288

64.954 3042

33.841 1633

8.783 918

5.287 1100

5.372 228

3.124 216

Algorithm 3.1

CPU Time t (g)
(set)

1.548 67

1.569 95

1.231 31

,976 40

5.429 202

4.720 229

23.375 651

32.038 1148

7.460 255

19.353 667

6.417 188

5.417 165

f: P"XM-B, P = {O,l, ..., p - I{ M = {O,l, ..., m - 11

g: sum-of-products expression for f; $: sum-of-products expression for i.

t(rP): Number of products in S; t (g) : number of products in @

Conclusions

The elementary method to obtain the complement of

sum-of-product expression for f will generate all the prime

implicants of f, and is quite inefficient.

The average number of prime implicants for binary func-

tions f0.1, ..., p - 1ln + B is larger than 1/2 p" for large

n.

Algorithm 3.1 will generate at most 1/2 pn products. It is

10 - 30 times faster than the elementary one when

n = 8 and p = 2.

Algorithm 4.1 produces fewer products than the disjoint

sharp algorithm used by MINI for large practical prob-

lems.

Acknowledgement

The author is grateful to Dr. R.K. Brayton and Dr. S.J.

Hong for their technical work. He also thanks Mrs. B. White

for typing the manuscript.

References

[I] B. Dunham and R. Fridshal, "The problem of simplifying

logical expressions", Journal of Symbolic Logic, Vol. 24,

pp. 17-19, 1959.

[2] T. Sasao, "Multiple-valued decomposition of generalized

Boolean functions and the complexity of programmable

logic arraysf', IEEE Trans. on Comput., Vol. C-30, No. 9,

pp. 635-643, Sept. 1981.

[3] T. Sasao, "An application of multiple-valued logic to a

design of masterslice gate array LSI", Proceedings of the

12th International Symposium on Multiple-Valued Logic,

May 1982.

[4] M. Davio, J.P. Deschamps and A. Thayse, Discrete and

Switching Functions, Gerge Publishing Co. and McGraw-

Hill, New York, 1978.

[5] S.J. Hong, R.G Cain and D.L. Ostapko, "MINI: A heuris-
tic approach for logic minimization", IBM Res. Develop.,

Vol. 18, pp. 443-458, Sept. 1974.

[6] R.K. Brayton et al., "A comparison of logic minimization

strategies using ESPRESSO: An APL Program package

for partitioned logic minimization," Proc. 1982 Interna-

tional Symposium on Circuits and Systems, pp. 42-48,

May 1982.

[7] R.J. Nelson, "Simplest normal truth function", J. Symbol-

ic Logic, Vol. 20, pp. 105-108, June 1954.

[8] T. Sasao and H. Terada, "Multiple-valued logic and the

design of programmable logic arrays with decoders", Proc.

9th International Symposium on Multiple-valued Logic,

May 1979.

[9] S.J. Hong and D.L. Ostapko, "On complementation of
Boolean functions", IEEE Trans. on Comput., Vol. C-21,

p. 1072, 1972.

[lo] D.L. Dietmeyer, Logic Design of Digital Systems, (second

edition), Allyn and Bacon, Inc., Boston, 1978.

1111 S.Y.H. Su and P.T. Cheung, "Computer simplification of

multi-valued switching functions", in Computer Science

and Multiple-Valued Logic, North-Holland, pp. 189 - 220,

1977.

1121 T. Sasao et al., "A fast complementation algorithm for

sum-of-products expressions", (in Japanese) Technical

Group on Automata and Languages, IECE Japan, Jan. 22,

1981.

1131 R.K. Brayton et al., "Fast recursive Boolean function

manipulation", Proc. 1982 International Symposium on

Circuit and Systems, pp. 58-62, May 1982.

Appendix

As to the maximum number of the prime implicants of

binary functions, the following are known.

Lemma A.1[8]: Let p(n, p) be the maximum number of prime --
implicants of binary functions P"-B where P = {0,1, ..., p].

Define t = 2P-1 and m = " Then
2p- 1 '

For example for n=15 and p=4, we have

p(p, n) > IS!-i.3x 10".
- -

Theorem A.2[8]: For fixed p, there exists a positive constant

K such that

where t = 2'-1.

As to the average number of the prime implicants of binary

function, we have the following:

Theorem A.3: Let f be a binary function --
n

f: Pi+B, where Pi = O l , . , p i 1 and

B = {0,lj7'u = I f-'(1) 1 is a weight of f. The average

number of the prime implicants of f with weight u is given

by the following:

n
s(p,s) = ,X (pi-si), t = (tl,t2 ,..., t,) is a partition of t, and

I = I

A p t = w t s = s 1 + x 2 " t ') (i = l s i

n
and f(s) = n si.

i= 1

(proof.) Omitted.

Theorem A.4: Average number of the prime implicants of --
p-valued input binary functions is given by the following:

GP(,) = x Ck.2-w(k) .p~1(l -2-w(k) / i
i= 1

) >
k

where k = (kl,k2 ,..., kp) is a partition of n.

P
w(k) = I; (ilk', dk) = (n!) n '(:)*I. and ai = ki(p-i).

i=l i-1 ki!

(proof.) Omitted.

For example, for n=15 and p=4, we have Gp(n) Z 7 x lo9

The algorithm in section 111 will generate at most 1/2 pn prod-

ucts. For example, for n-15 and p=4, 1/2 p" = 5 x lo8. This

shows that the algorithm generates at least 14 times less prod-

ucts than the elementary one. Table A.l compares Gp(n) and

1/2 p" for p=2 and p=4.

Table A.l Comparison with

Gp(n) and 1/2 pn

