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Abstract 
MACDAS(gu1ti-level AND-OR Circuit Design Auto- 

mation System) is a system for the design of fan-in 
limited-multi-level multi-output circuits: it is 
used for the design of masterslice LSI of NOR/OR 
gate arrays. In MACDAS, 1) a given expression is 
simplified; 2) the input variables are paired to 
form an expression of four-valued variables; 3) 
output phases are optimized; 4) the expression is 
minimized; 5) the expression is factored to solve 
fan-in limitation problem; 6) the expression is 
transformed into AND-OR multi-level circuit. Trans- 
formation into NOR/OR circuit is done by anothor 
system. MACDAS has been programmed in FORTRAN and 
statistical data has been obtained to demonstrate 
its efficiency in terms of gate counts. 

I. Introduction 

As integration size of LSI increases, time and 
cost for the logic design increase rapidly. In the 
logical design of LSI, we have to obtain a circuit 
of gate (AND, OR, NOT etc.) level which satisfies 
desired specification. Now, in most logical design 
practice, circuits are designed manually and then 
their errors are detected by logic simulation. No 
practical automatic design method is known except 
for the circuits having regular structure such as 
two-level AND-OR circuits (Fig.1) or PLA's. However, 
two-level circuits are impractical for complex func- 
tions and PLA's are unsuitable for high speed appli- 
cations. 

Gate arrays are widely used for custom LSI 
design for their low development costs. They are 
faster than PLA's and can be used for high speed 
applications. In the gate arrays, each gate has fan- 
in limitation. For example, if the gates in Fig.Z(a) 
have maximum fan-in 3, 9-input gates must be realized 
as shown in Fig.Z(b). We might design a circuit of 
Fig.1 and then replace each gate by ones shown in 
Fig.Z(b). But, circuits designed in this way have 
too many gates. To solve this problem, factoring 
algorithms have been developled[l]-[2]. However, 
these methods are still impractical because most 
circuits designed by these methods (Fig.3) have too 
many gates compared with manually designed ones. 

Design method in this paper use two-variable 
function generators (TVFG's). A TVFG generates all 
the function of one and two variables. When we use 
ECL technology, a TVFG can be realized as shown in 
Fig.4. Each gate is assumed to realize both NOR and 
OR outputs. 

The design steps of MACDAS are as follows: 
1) Pair the input variables to form variables of 

four-values. 
2) Find a near optimal output phase assignment. 
3) Minimize the expression of four-valued variables, 

and derive two-level AND-OR circuit with TVFG1s 
(Fig. 5). 

4) Factor the expression and derive multi-level AND- 
OR circuit (Fig. 6). 

5) Expand TVFG1s and replace each gate by NOR/OR 
gate (Fig. lo). 

Because MACDAS considers the properties of given 
function, it often produces better circuits than 
manually designed ones. MACDAS is an example of prac- 
tical applications of multiple-valued logic for the 
design of binary LSI's. It is written in FORTRAN 
about 10k steps. 

11. Definitions and Basic Properties. 

In this section, several definitions and basic 
properties are shown [3]. 

Definition 2.1: Let X=(x1,x2, ..., xn). X=(X X 
1' 2' ..., Xr) is a partition of X if'{X }u{X2}u ... u{Xr}= 

1 
{X}y where {Xi)n{x.}=$ (i#j), and {Xi}#$ . 

J 
Definition 2.2: Let X=(xl,x2,. . . ,xt), sc~t, and 

B={O,l}. X~ =I (if X==) and =O (if X#%). Let S 5 B". 

x = V X . An arbitrary t-variable logic function 
a.cS 
1 

S can be represented by a literal X . 
Theorem 2.1: Let X=(X1,X2, ..., X ) be a partition 

of X=(xl,x2, ..., x ). An arbitrary logic function can 
n 

be represented by the following expression: 

n ---- (1.1) 
i where S c B and n denotes the number of vari- 

i -  i 
ables in X 

i' 

Definition 2.3: Let P.=lO,l, ...,pi- 11 . 
n 

A function f: x P + B is called binary function. 
i=l i 

Binary function is a generalization of two-valued 
logic function. 
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Theorem 2.2: An arbitrary binary function can 
be represented by (1.1), where Si 2 Pi and 

Binary functions can be represented by posi- 
tional cuhes. 

Definition 2.4: A positional cube of a term 

S1 S2 'n X1 .X2. .... X is n 

where ai =O (if j h si) and =1 (if j F si). 
j 

A term and its cube are often used interchange- 
ably. 

Example 2.1: (a) When p =p =p =2. (Ordinary 1 2 3  
logic function). 
Product term Cube 
xo.xl.xl 
1 2 3  

10-01-01 

(b) When p1=2, p2=3, and p =4. 3 

Product term Cube 
0 1. 2 
X1.X2 X3 

10-010-0010 

{O,ll 2. {0,1,3} 
X1 .X2 X3 

11-001-1101 

Theorem 2.3: Let n=2r, and IX.I=2. The circuit 

in Fig.5 realizes a function represented by (1.1). 
(Proof) Each TVFG realizes an arbitrary 

function XSi of two variables (i=1,2,. . . , r) . AND i 
gates realize product terms, and the OR gate 
realizes logical sum. Hence, Fig.5 realizes (1.1). 

(Remark) In MACDAS, each variable X consists i 
of two binary variables. The reason for this is as 
follows. 

When 1x.I =1, we have conventional two-level 

AND-OR circuits (Fig.1). 
When )xi( =2, the number of distinct non- 
constant functions is z4 -2 =14. We can 
realize a TVFG by using 7 NOR/OR gates 
(Fig. 4). 
h%en 1x4 =3, the number of distinct non- 
constant functions is 28 -2=254, and we need 
too many gates to realize a three-variable 
function generator. 

The realization of Fig.5 has the following 
features : 

1) The number of gates and connections are 

Theorem 2.4131: Let t(f) denote the number of 
~roduct terms in a minimal sum-of-products expression 
in (1.1). 

For an arbitrary function : t(f) < 2n-2 ; 
For a function symmetric r-1 . : t(f) 5 3 , 
with respect to{x,}(i=l, ..., r) 

I r-1 
For a parity function : t(f) 5 2 , 

where n=2r and IX.l=2. 

An s-input AND gate is denoted by s-AND, and 
an s-input OR gate is denoted by s-OR. 

Lemma 2.1: The number of s-AND'S to realize an 
n-AND (n > s) is [(n+s-3)/(s-1) 1, where [x] denotes 
the integer part of x. 

Example 2.2: Consider the number of AND/OR gates 
necessary to realize a parity function p of n-vari- 
ables (n=2r). 

I) When p is realized in the circuit structure 
of Fig.1. 2n-1 
n-AND : gates . 
*n-1 

-OR: 1 gate. 
2) !&en each gate is realized by s-AND/OR1s in 

Fig.1. 2n-l ,n+s-3 
s-AND : gates. 

2n-1 s-1 
+s-3~ gates. s-OR : [ s-l 

3) When D is realized in the circuit structure 
of Fig.5. 2r-l 
r-AND : gates. 
r-1 

-OR : 1 gate. 
4) When each gate is realized by s-AND/OR1s in 

Fig.5. 2r-l. [r+s-3 
s-AND : ] gates. s-1 2r-l 
s-OR +S-3~ gates. . [ s-1 

For n=10 and s=3, the above numbers are 
1) 10-AND: 512 gates 
512-OR : 1 gate 

2) 3-AND: 2560 gates 
3-OR : 256 gates 

3) 5-AND: 16 gates 
16-OR : 1 gate 

4) 3-AND: 32 gates 
3-OR : 8 gates (End of.the example) 

From above example, it is clear that circuits 
using TVFG's require less gates than conventional 
ones for parity functions. In VI, it will be shown 
that circuits using TVFG's require less gates for 
randomly generated functions. 

111. Outline of the Design System 

In this section, we briefly describe the outline 
of MACDAS. 
Algorithm 3.1: MACDAS - 

Derive truth table from the given specification. 

- 
smaller than a conventional two-level circuit 4) 

(Fig. 1). 
2) The number of gates can be further reduced 5) 

by considering the assignment of input 
variables to the TVFG's. 6) 

- 
Obtain logical expressionsoftwo-valued variables 
from the truth table. Minimize them. 
Pair the input variables by considering the pro- 
perties of the function (see Appendix). 
Treat each paired variables as a four-valued one, 
and obtain expressions of four-valued variables. 
Optimize the output phase assignment (see the next 
section) . 
Minimize the expressions of four-valued variables 
141. 
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7) Partition the function by the output. 
8) Factor the expressions considering the fan-in 

of the gates[l]-[2]. 
9) Realize multi-level AND-OR circuit. 
10) Expand TVFG's, convert each gate by NOR/OR gate, 

and reduce inverters. 

* Step 1) and 10) will be done in other systems[6]- 
[71 

Example 3.1: Let's design a two-bit adder: 

X1 Xo 
+) y1 Yo 

z2 Zo 
The truth table for the above adder is shown in 
Table 1. 
Simplified expression of two-valued variables 
are : 

1 0  0 1  
z =x y 0 o o v X o Y o  ----(3.1) 

Table 2 is the cubical representation of above 
expressions. Fig.7 shows  AND/OR realization of 
(3.1). It contains 22 gates. By factoring (3.11, 
we have 

1 I 1 1 1 1  
z2=x1y1 v (xl v YQ (x0yo) , 

1 0  0 0 0 1  0 0 
zl=(xlyl) (x0 v yo) v (x1y1)(x0 v yo) 

0 1 1  0 1 1  v (xl v yl) (xl v yl) (x0yo) ' 

Fig.8 shows the 3-AND/OR realization of (3.2). 
It contains 20 gates. 
In the two-bit adder, the output functions are 
partially symmetric with respect to xl and y 1' 
and xo and yo. So we partition X=(xl,xo,yl,yo) 

into X =(x  
1 1,~1) and X2=(x0,yO). 

By minimizing expressions of four-valued vari- 
ables. we have 

Cubical representation 143 of (3.3) is shown in 
Table 3. 
An optimal output phase can be obtained by 
Algorithm 4.1 (shown in the next section). 
In this case, it is X =(z z z ) .  The correspond- 3 2 1 0  
ing cubical representation is shown in Table 4. 

6)---- 9) Fig.9 shows the AND/OR realization of 
this function. 

10) By using type I1 TVFG's, converting each gate 
by NOR/OR, and reducing inverters, we have the 
circuit in Fig.10. Note that it contains only 
14 gates. 

IV. Optimal Output Phase Assignment for 

Multiple-output Function 

When realizing a multiple-output function 
(fo,fl,...,fm-l), we have the option to realize 

- 

either f, or f, for each output. This is because 
I I 

ECL gates have both NOR and OR outputs[5]. 
The optimal output phase assignment of multiple- 

output function is to choose output phases which 
minimize the number of product kerns. In the case of 
k-output functions, there are 2 different phase 
assignments. Because the exhaustive method requires 
k 
2 minimizations, an efficient heuristic method has 
been desired[4]. 

This section considers a method which obtains a 
good solution efficiently. - 

Definition 4 .l: An &input m-output binary 
function is defined by 

fi 
: pn + B , (i=O,l,. . . ,m-I), p={O,l,. . . ,p-1). 

A positive phase characteristic function_ is 
difined as 

FD 
: pn x ?l + B , where ~={0,1,. . . ,2111-11, and 

=O (j=m,. . . ,2m-1) 
A negative phase characteristic function is 
defined as 

FN : P" x M + B , where 

FN(x1,x2,. . . ,xn, j)=O (j=O,l,. . . ,m-1) 
- 

= (xl ,x2,. . ,xn) (j=m, . . . ,2m-1) fj-m 
A double phase characteristic function is' 
defined as 

FD : pn x M-t B, where 

FD(x1,x2 ,..., xn,j)=fj(xi,x 2,...,~ (j=O,l, ..., m-1) 
n 

- 
=f (xl, x2, . . ,xn) ( j  =m, . . . ,2ml) 

J -m 
Lemma 4.1: Fp, FN, and F can be represented by 

D 
the following expression: 

(s~,s~,Y..,S n ,R) 

where S cPand R 5 M. i- 
Example 4.1: A positive phase characteristic 

function of two-bit adder in Example 3.1 is 
0001-1111-100000 
0111-0001-100000 

F = 0110-1110-010000 
P 1001-0001-010000 

1111-0110-001000 
A negative phase characteristic function is 

1111-1001-000001 
1000-1111-000100 
0110-1110-000100 
0110-0001-000010 
1001-1110-000010 



Table 1 Truth table for 

two-bit adder 

Table 2 Cubical representation 

of two-bit adder 

Table 3 Cubical representation 

of (3.3) 

TVFG ' s  

Table 4 
Fiq.11 PuZtiZeveZ AND-OR c i rcu i t  with T V F G r s  f o r  ROMpatteYn Cubical representation of 

output phase optimized function. 



A double phase characteristic function is 

F can be minimized to 
D 0001-1111-100000 

0110-1110-010100 
1001-0001-010000 

D 

.*= i 0110-0001-100010 1111-0110-001000 
1000-1111-000100 
1001-1110-000010 
1111-1001-000001 

Theorem 4.1131: To minimize the number of 
distinct product terms of the expression for the 
functions (fo,fl,...,fm-l ) , it is sufficient to 
obtain a minimal sum-of-products expression for F . * P 

Definition 4.2: Let FD be a minimal sum-of- 

products expression for FD. A connection matrix * 
G = {g..) for F; is the output part of F 

1 3  D '  
gij =1 iff j-th output of i-th cube is one. * 

Example 4.2: The connection matrix for F of 
D 

Example 4.1 is 
100000 

G = 
000100 
000010 6 

000001 7 

Definition 4.3: Let G be a connection matrix. 
A covering function Q of G ={g is 

i j 

An assignment vector of a product p .p ....pa 

is defined as al a2 S 

where i=al, a2, ..., a . 
Example 4.3: The covering function of G in 

Example 4.2 is 
Q(P~,P~,...~P~) 

=(p1p4 p2p6)'(p2p3 p4p7)<p5 p8) 

'P1P2P3P4P5 P1P2P3P4P8 P2P3p5P6 P2p3p6p8 

Algorithm 4.1: Near optimal output phase assign- 
ment for F. 
1) Obtain the double phase characteristic function 

FD, and minimize it. 

2) Obtain a covering function Q, and expand it into 
product terms. 

3) kind a product term p p , which has 
al a2....'a 

(near) minimal number of letters. 

4) Obtain the output assignment vector 
g=(go,gl,...,g2m-l) for the product obtained in 
3). * * *  

5) Obtain the output assignment F =(fo,fl,. . . ,fkl), 
where 

(if gi=u 
(i=O,l, ..., m-1) 

Theorem 4.2: Multiple-output function 
* * 

F* - (fo,fl,.. .,fz-l) can be realized at most s * 
product terms, where F and s are obtained in 
Algorithm 4.1. 

Example 4.4: In Example 4.3, the product term 
p2p3p5p6 has 4 letters and it is minimal. Subset of 

* 
F corresponding to p p p p D 2 3 5 6  is 

So F can be realized at most 4 terms and the assign- 
ment vector for it is represented by 

g =(0,1,0,1,0,0) v (0,1,0,0,0,0) v (0,0,1,0,0,0) 

v (0,0,0,1,0,0) 

=(o,lY~,~Yo,o) 

Obtained output phase assignment is (f f f ) .  
0 1 2  

For the function which has don't cares, the 
step 1 of Algorithm 4.1 should be modified as follows: 

1) Obtain double phase characteristic function F D' 
and double phase don't care characteristic func- 
tion %(Definition 4.4). Minimize FD by using KD. 
Definition 4.4: Let an n-input m-output function 

hi : gn + B (i=O, 1, . . . ,m-1) denote unspecified 
part of the function: i.e., i-th function is undefined 
iff h.=l. 

A don't care characteristic function is defined as 

H : g n X M  +B,where 

=O (j=m,. ..,2m-1 ) 
A double phase don't care characteristic function 
is defined as 

HD : g n x M +  B, where 

=hj-m(~1,~2,. . . ,X n ) (j=my.. . ,2m-1) 
Example 4.5: Consider the following 3-input 

3-output function with don't cares: 

10-10-10-100 
10-10-01-100 

10-01-01-101 
01-10-10-011 01-10-01-001 
01-10-01-110 01-01-01-111 
01-01-10-001 



Table 5. Number of products and gates to realize various functions * 

* These values do not count buffers, inverters, nor gates for TVFG's. 
Maximum fan-inof each gate is 3. 

* 
Table 6 Number of products and gates for randomly generated functions. 

- 

* These values do not count buffers, inverters, nor gates for TVFG's. 
Maximum fan-inof each gate is 3. 

Source 
(in/out/product) 

ROM pattern 
(10/4/511) 
ROM pattern 
(10/4/1024) 
3-bit multiplier 
(616149) 
2-bit adder 
(413115) 
4-bit adder 
(8151255) 

Circuits using TVFG' s 

products 
gates 
products 
gates 
products 
gates 
products 
gates 
products 
gates 

Output phase 
non-optimized 
(~ig.5lFig.6) 

3 8 
(87173) 

11 
(16113) 

21 
(35136) 

5 
(515) 
17 

(31126) 

Ordinary circuits 
Output phase 
optimized 
(Fig.5lFig.6) 

27 
(50148) 

7 
(16113) 

19 
(31135) 

4 
(414) 
14 

(24121) 

Output phase 
non-optimized 
(Fie.llFig.3) 

5 8 
(2261132) 

16 
(34123) 

3 1 
(83177) 

11 
(18116) 

75 
(191190) 

Output phase 
optimized 
(Fig.lIFig.3) 

37 
(1761114) 

7 
(21117) 
31 

(78174) 
9 

(16114) 
61 

(158176) 



1) Thedouble phase characteristic functions are: 
10-10-10-100000~ 
10-10-01-100000 
10-01-10-011000 
10-01-01-101000 
01-10-10-011000 10-10-01-011011 
01-10-01-110000 10-01-01-010010 

10-01-10-000100 01-10-01-001001 
10-10-10-000011 01-01-01-111111 
10-10-01-000011 
01-10-10-000100 
01-10-01-000001 
01-01-01-000111 
01-01-10-000110 * 

2) FD is minimized to F 

11-11-01-101000 
10-10-11-100011 

F = 01-10-11-011000 
D 10-01-10-011100 * i  01-01-11-001110 i 
3) The connection matrix for F; is 

4) The covering function Q is 
Q(p1,p2,- - . ,p5) 

'(P 1 2  p v p4p5)-(p3p4 v p2) 

5) The product p p p has three letters. Subset of * 1 2  5 

FD 
corresponding to p p p 1 2 5 i s  
11-11-01-101000 
10-10-11-100011 
01-01-11-001110 

Obtained output phase is (f f ? ) .  0 1 2  

V. Experimental Results 

Table 5 shows the selected results for several 
practical functions. For each functions, four dif- 
ferent realizations (Fig.1, Fig.3, Fig.5, and Fig.6) 
are compared. Maximum fan-in of each gate is assumed 
to 3.Each value does not count the number of buffers, 
inverters, nor gates for TVFGfs. 

Fig.11 shows the realization (type Fig.6) for 
the first function of Table 5. Manual design required 
110 gates to realize this function. It took 56.4 sec. 
to minimize an expression of 511 terms into 58 terms, 
1.1 sec. to assign the input variables to the decod- 
ers, 23 sec. to assign output phase and minimize it 
into 27 terms, 13 sec. to realize AND-OR multi-level 
circuit of 48 gates. 

Besides the functions of Table 5, many practical 
functions were examimed. In the case of practical 
functions with many inputs and outputs, our program 
failed to obtain better output phase assignments 
than trivial ones. 

Table 6 shows the results for randomly generated 
functions. In the case of 4-output functions, all 
the (near) optimal output phase assignments were 
trivial. 

VI. Observation 

Table 6 shows that even if the functions have 
no special properties, circuits using TVFG1s require 
far less gates than ordinary ones. For example, to 
realize the first function of Table 6, Fig.3 reali- 
zation requires 266 gates and 10invertors; whereas 
Fig.6 realization requires only 152 gates and 7x5 
=35 gates for TVFG's. We can save (266+10)-(152+35) 
=89 gates by using TVFGfs. 

The reason why the circuits with TVFG1s require 
far less gates even for randomly generated functions 
can be considered as follows: 

1) In the realization of Fig.3, fan-outs exist only 
in the inputs and outputs of inverters; whereas 
in the realization of Fig.6, fan-outs exist both 
inside and outputs of TVFG's. 

2) By using TVFG1s, ECL gates display OR and NOR 
output capability as shown in Fig.10. 
(No systematic design method for ECL logic cir- 
cuits have been known except for the integer 
programming method[8]). 

3) When the input variables are paired, the number 
of terms necessary to represent the function 
decreases about 10-30% for randomly generated 
functions [ 3 I .  

4) By using TVFG1s, we can reduce fan-in of the 
gates inside the broken line of Fig.6. 

VII. Conclusion 

Main results obtained are as follows: 
1) Circuits with TVFGfs usually require less gates 

than conventional ones. 
2) Circuits with TVFGfs can be designed by using 

binary functions of 4-valued variables. 
3) Output phase optimized circuits often require 

less gates than non-optimized ones. 
4) Near optimal output phase assignments can be 

obtained by double phase characteristic functions. 
5) MACDAS realizes good circuits. It often produces 

circuits having less gates than manually designed 
ones. 
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Appendix 

t(f: II ) denotes the number of terms in a 
ii 

minimal sum-of-products expression when xi and x 
are paired to form a 4-valued variables. j 

The smaller t(f:K..), the simpler the expression 
1 1  - 

for f becomes. Because it takes much computation time 
to obtain t(f: II..), we use an upper bound q(i,j) 
instead. 1 J 

Definition AP.3: An assignment graph for an 
n-variable function f(xl,x2, ..., x ) is a complete n 
graph satisfying the following conditions: 
1) G has n nodes (n=2r). 
2) The weight of the edge (i, j) is q (i, j) . 

~l~orithm AP.l: 
1) Obtain a near minimal sum-of-products expression 

for f. 
2) Obtain the assignment graph for f. 
3) Cover every node by disjoint edges so as to mini- 

mize the sum of the weights of the edges. 
4) Obtain the partition of the variables corresponding 

to the edges. 
Example AP.2:Consider the function in AP.1. 

1) Given expression is minimal. 
2) Fig.AP.l shows theassignment graph for the function 

of Example AP.l. 
3) Edges (1,3) and (2,4) cover all the nodes of G. 

The sum of the weights is 3+3=6 and is the minimum. 
4) The partition of X is X=(X ,X ) ,  where X1=(x1,x3) 1 2  

and X2=(x x ) . 
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Fig .AP. 1 

In this appendix, we briefly describe the Although Algorithm AP.l is quite simple, it 
details of the algorithms. We assumethat n=2r. obtains good assinmentswhirhareonthe average 10% 

AP.l Near Optimal Assignment of Input Variables to better than trivial ones r9]. In Algorithm  APT^, 
the TVFG's. most time are spent for obtaining a near minimal 

sum-of-vroducts ex~ressions: other time is 
Definition AP.l: Let I={1,2,. . . ,n} be the set relatively 

of subscripts of variables in {XI. The partition 
of I which corresponds to the partition of {XI is 
denoted by 11. The number of terms in a minimal 
sum-of-products expression for f(X) under the 
partition Il is denoted by t(f:Il). 

Definition AP.2: Let an expression which 
represents f(xl,x2, ..., x ) be P. The number of 

n distinct terms which are obtained by deleting 
literals of x and x from P is denoted by q(i,j). 

i i 
Example AP.l: Let 
0 0 1 1  0 1 1 0  1 0 0 1  1 0 1 0  f = x x x x  1 2 3 4 X1X2X3X4 " X1X2X3X4 X1X2X3X4 
1 1  0 0 

V X X X X  
1 2 3 4 '  

The terms which are obtained by deleting the literals 
of x3 and x4 are 

The number of distinct terms is 4. So, we have 
q(3,4)=4. Similarly, we have q(1,3)=q(2,4)=3, 
q(1,2)=q(1,4)=q(2,3)=4. 


