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Abstract 
m A function f:(O,l, ...,p- 11 -+ {0,11 is said to 

be shallow if 1f-l(1) 1.(m,log p) S pm. Approximation 
formulas for the average numger of prime 
implicants and essential prime implicants of the 
shallow functions are derived for p=2 and p=4. 
These formulas estimate the average size of progrm- 
mable logic arraysforthe shallow logic functions; 
the estimation needs only a pocket calculator. 
Experimental results and calculated results are 
compared. 

I. Introduction 

The number of basic elements used to realize a 
given function, i.e., the complexity of the logic 
function, is an important problem not only theoreti- 
cally, but also practically[l]-[2]. 

The advent of programmable logic arrays (PLA1s) 
has made two-level logic circuits important again. 
Glagolev[3] has shown that 

F 1 /  (log2n>(log210s,n) 

terms arenecessaryto represent almost all functions 
of n variables. Mileto and Putzolu[4] have derived 
formulas for the average number of prime implicants 
and essential prime implicants when the number of 
1's in a truth table is known. Cobham, Fridshal, 
and North[5] have obtained the average number of 
prime implicants, essential prime implicants, and 
terms in a minimal sum-of-products expression by 
computer simulation. We have obtained the average 
size of PLA's for randomly generated functions of 
up to 10 variables by computer simulation[6]. 

In this paper, we will derive approximation 
formulas for the average number of prime implicants 
and essential prime implicants of shallow binary 
functions. A binary function is a two-valued function 
of multiple-valued variables[8]. A shallow function 
is a function of small weight, where the weight of 
the function f is defined as the number of 1's in 
the truth table. By using the formulas obtained 
in this paper, we can easily estimate the size of 
PLA's for shallow logic functions; the estimation 
needs only a pocket calculator. 

In 11, basic ideas of the estimation of the PLA 
size are illustrated. 

In 111, a design theory for the minimization of 
the AND array is summarized. 

In IV, formulas for the number of prime impli- 
cants and essential prime implicants of binary func- 
tions are derived. 

In V, some properties of shallow binary functions 
are described and approximation formulas for the 

average number of prime implicants and essential 
prime implicants are derived. 

In VI, experimental results and calculated 
results are compared. 

Proofs are omitted form this paper because of 
the space limitation. 

11. Estimation of the Size of a 

Programmable Logic Array 

In this paper, two types of PLA's are con- 
sidered: two-level PLA's and PLA1s with two-bit 
decoders. The first type of PLAY a two-level PLA, 
consists of an AND array and an OR array. In the 
AND array, products of input variables are gener-. 
ated; and in the OR array, sums of products 
are generated. Fig.2.1 shows a two-level PLA which 
realizes the function of Table 2.1. The second 
type of PLA, a PLA with two-bit decoders, consists 
of decoders, an AND array, and an OR array. 
Fig.2.2 shows a two-bit decoder, which generates 
all the maxterms of its input variables. Fig.2.3 
shows a PLA with two-bit decoders which realizes 
the function of Table 2.1. 

As we will show in 111, the width W of the AND 
array of the PLA for the given function f is equal 
to the number of terms in the expression which 
represents f. In the case of the two-level PLA, the 
expression represents a function 

f:{o,lln -+ {O,ll, 
i.e., an ordinary boolean function of n-variables; 
whereas, in the case of the PLA with two-bit 
decoders, the expression represents a function 

f:~00,01,10,113n/2 -+ (0,11, 
i.e., a binary function of n/2 variables, where 
each variable takes four values. Therefore, in 
order to minimize the size of the PLA, we have to 
minimize the expression which represents the given 
function. 

Many methods are known for the minimization of 
logical expressions, butwhenthenumber ofvariables 
is large, it becomes a difficult problem: we need 
a large computer to solve it[9]-[13]. In practical 
applications, we often want to estimate the size 
of the PLA before actually minimizing the given 
expression. For example, consider a PLA which 
realizes an eight-variable function of weight 32. 
Let W denote the width of the AND array. Then, it 
is easy to see that 1 S W S 32. However, the 
functions for W=l and W=32 are special ones, and in 
most cases, 2 5 W S 31. Then how many terms are 
necessary to realize most functions? To obtain the 
average width of the PLA's, we randomly generated 
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Fig.2.1 Two-level PLA for Table 2.1 

Fig.2.2 Two-bit decoder 
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Fig.2.3 PLA with two-bit decoders for Table 2.1 
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10 functions of 8-variable whose weights are 32. 
Table 2.2 shows the distribution of the width of the 
PLA's. For each of these ten samples, the width of 
the two-level PLA is between 19 and 25, and the 
width of the PLA with two-bit decoders is between 
18 and 23. 

We also generated 8-variable functions of 
different weights. Fig.2.4 shows the average 
number of prime implicants, number of terms 
in a minimal sum-of-products expression(=W), 
and number of essential prime implicants. Fig.2.4 
shows that most prime implicants are essential 
when the weight is smaller than 32. 

For a PLA whichrealizesa given function, we 
have the following relation: 

The number of The width of The number of 
essential < the PLA 2 prime 
prime implicants (=W) implicants 

Therefore, we have 

The average The average The average 
number of < width of number of 
essential - thePLA1s ' prime 
prime implicants implicants 

------ (2.1) 
As we will show in V, shallow binary functions 

have the following properties: 
1) We can derive simple approximation formulas for 

the average number of prime implicants and 
essential prime implicants. 

2) We can estimate the average number of terms in a 
minimal sum-of-products expression by obtaining 
the number of prime implicants and the number of 
essential prime implicants, because most prime 
implicants are essential. 

In the case of the 8-variable functions, the condi- 
tion for the shallowness implies that the weight 
is smaller than 32. 

Therefore, we can easily estimate the average 
width of PLA's. With the formulas derived in V, 
the average width of PLA's for the 8-variable 
functions of weight 32 can be 

Average width of 
21.09 two-level PLA'S 

Average width of 
17.54 < PLA's with two- 

bit decoders 

These theoretical results 
experimental results in Table 

estimated as follows: 

2 25.33 , and 

2 25.76 

agree with the 
2.2. 

111. Minimization of the AND array 

In this section, a design theory for minimi- 
zation of the size of AND arrays is summarized 
[6l-I7l. 

Definition 3.1: Let X=(xl,x2, ..., x ) be a 
n 

variable in Bn, where B={O,~). The set of variables 
in X is denoted by {XI. (X1,X2, ..., X ) is a 
partition of X iff {Xl}u{X2}u ... u{Xr}={X}, 
IXilnIXj I=$ (i#j), and {Xi}#$. 

Definition 3.2:. Let z=(al,a2, ..., an) be a 
n 

constant in B . A mapping 

a 
X- : Bn -+ B 

denotes a function such that X& = 0 if X+s, and 
n S 

X~ = 1 if X=a. Let S 5 B . A symbol X denotes 
the function 

xs =;V x% . 
a+€ S 

Example 3.1: Let X=(x1,x2), s=(0,1) and b=(1,0). 

X{(Oyl) ' (lyO)l is sometimes denoted by X 
IO1,lOl 

S 
Definition 3.3: X is said to be a literal. 

A product of distinct literals is said to be a term. 
A sum of termsis said to be a sum-of-products 
expression. The number of the terms in a sum-of- 
products expression P is denoted by t(P). P is 
said to be minimal if there exists no expression 
Q such that t(Q) < t(P) and that Q denotes the 
same function as P. 

Theorem 3.1: Let (X1,X 2,...,X ) be a partition 

of X. An arbitrary function 

can be represented in a form 

---- (3.1) 
n 

where S c B n =d(X ) and d(X ) denotes the 
i - i i i 

number of variables in (Xi}. 
- 

Theorem 3.2: In a PLA with decoders, if each 
decoder generates all the maxterms of {XI for 
i=1,2, ..., r, then an arbitrary term which has the 
form S 

X;2.. . . . x 
can be realized in each column of the AND array. 

Example 3.2: In the case of a two-level PLA. 
Let X =(x ), X =(x ), X =(x ), and X =(x ) be a 1 1  2 2  3 3  4 4 
(trivial) partition of X=(xl,x2 ,x3,x4). 

The function of Table 2.1 can be represented as 
follows : 

This expression can be simplified as follows: 

Fig.2.1 is a two-level PLA realization of this 
function. Each column of the AND array corresponds 
to each term of (3.2). Therefore, the number of 
columns of the AND array is equal to the number of 
the terms in (3.2). 



Table 2.2 Distribution of the width of PLA's for 

8-variable functions of weight 32. 

Sample Two-level * PLA with two- bit decoders 
19 

192 - 

176 - 
$ 

160 - 

144 
- 

128 - 

112 - 
96 .. 

80 - 

64 - Number of terms in a minimal sum-of-products 
expression 

-1 
Weight: Number of 1's in a truth table, u=lf (1)l 

Fig.2.4 Average number of prime implicants, terms in a minimal sum-of-products 

expression, and essential prime implicants of 8-variable functions. 



Example 3.3: In the case of a PLA with two-bit 
decoders. 

Let x=(X ,X ), X =(x 1s~2) and X2=(~3y~4) be a parti- 

tion of X=(xl,x2,x3,x4). The function of Table 2.1 

can be represented as 

This expression can be simplified.as follows: 

{00,011 (01) (01,101 (10) f(X X)=X1 .X2 vxl .X2 
1' 2 

Fig.2.3 is a PLA with two-bit decoders which 
realizes the function of Table 2.1. Each column 
of the AND array corresponds to each term of (3.3). 

Theorem 3.3: By obtaining a minimal sum-of- 
products expression of f(X) which have the form 
(3.1), we can minimize the size of the AND array 
for f(X). In the case of the two-level PLA, the 
expression denotes the function 

whereas in the case of the PLA with two-bit decoders, 
the expression denotes the binary function of 
four-valued variables 

where n=2r. 

IV. Average Number of Prime Implicants and 

Essential Prime Implicants of Binary 

Function 

In this section, we derive formulas for the 
average number of prime implicants and essential 
prime implicants of binary functions. By using 
multiple-valued variables instead of two-valued 
variables, we can treat PLA's with decoders. 

Definition 4.1: Let P={O,l, ...,p- 1) and B={O,l}. 

A function f: pm -+ B is said to be a binary func- 
-1 

tion. u=l f (1) 1 ,  i.e., the number of 1's in the 
truth table, is said to be the weight of f. The 
fraction of 1's in the truth table, i.e., 

d=ulpm is said to be the density of f. 
m 

Lemma 4.1: A function f: P -t B can be repre- 
sented by the following expression. 

(s1,s2;. . . ,s m 
S 

where Sic P, xSi = 0 if Xi(Si , and xii=l if X iS 
i i' 

Definition 4.2: A term which has the form 
S 

XS1*XS2- .X is said to be an implicant of f if 
2 " '  
S S 

X:1*X22e-- X 5 f. An implicant of f which is 
m 

maximalissaid to be a prime implicant of f. An 
expression of f which consists of the minimum number 
of prime implicants is said to be a prime minimal 
sum-of-products expression. A prime implicant which 
is contained in every prime minimal sum-of-products 
expression is said to be an essential prime impli- 
cant of f. 

S s S 
Definition 4.3: Let X xZ2.. . X be a term. 

1 m 
If there are k i 's such that I S  I=j for j=1,2, I i 
...,p, then this term is said to be a &-term, where 
k=(k ,k - 2,...,kv). Akterm is said to be a &-cube 
when it is interpreted geometrically. 

Example 4.1: For p=4 and m=4: 

{0,1,31 {0,1! {LqX{0} is a (1,2,1,0)-term. 
X1 sX2 X3 4 

Definition 4.4: The average number of &-cubes, 
prime &-cubes, and essential k-cubes of the m- 
variable functions of weight u are denoted by 

G (m,&,u) , G' (m,&,u) , and G"(m,&,u) , respectively. 
P P P 

By definition, we have 

G1'(m,&,u) S G' (m,&,u) 5 G (m,lc,u) 
P P P 
Definition 4.5: The average number of terms in 

a minimal sum-of-products expression for the func- 
tions of m-variable of weight u is denoted by 
T (m,u). 

The following lemma is a restatement of (2.1). 
Lemma 4.2: 

By Lemma 4.2, if we can obtain G:(m,&,u) and 

G1'(m,&,u), the upper and lower bounds for T (m,u) 
P P 
can be calculated. 

Lemma 4.3: Let N (m,&,u), N1(m,&,u), and 
P P 

N1'(m,&,u) denote the total number of m-variable 
1) 

functions of weight u which contain a fixed kcube, 
a fixed prime kcube, and a fixed essential &-cubes, 
respectively. Then 

(k) ( :) ki , F'U)=(:) and w=p m . Where C - =(m!) I[ 
i=l i 

Lemma 4.4: 
w - w(&) m 

Np(m,&,u){u - ) , where w=p and 
w (&I 

ki w(&)= II (i) . 
i=1 



Lemma 4.5: 

C - Gp(m,&,u)= - 
t 

m where F(u)=(:) , w = p ,  

t=(tl,t2,...,t ) is a partition of t and - D-1 

When p=2, the result of Lemma 4.5 agree 
with the result of [4]. 

Lemma 4.6: Let Nt8(m,k,u) denote the number of 
P (k) functions of weight u such that a fixed &-cube C - , 

0 
and A be the corresponding set of ~(k) vertices 

j 
c(O) (h=1,2,. . . ,n(k)). Where c(O) u c(O) denotes 
jh j jh 

(k) the (n-1,1,0, ..., 0)-cube not contained in C - . 
0 

Then 
w (&I 

+ (-l)w(&)+l M(0,1,2, ..., w(k)), where 

Lemma 4.7: For e(n-l,O, ..., O,l,O, ..., 0) , 

V. Approximation Formulas for the Complexity 

of Shallow Binary Functions. 

In this section, we investigate the properties 
of shallow binary functions and derive the approx- 
imation formulas for the average numbers of prime 
implicants and essential prime implicants. Thevalues 
of m and n are supposed to be sufficiently 
large. 

Definition 5.1: Let the weight of the function 

f: pm-+ B be u, where P={O,l, ..., p-1) and B={0,1). 
The function f is said to be shallow if 

m 
u.m*log p < p . 2 
Lemma 5.1: 

1) If 1 5  a < u < w  , then 

2) If 1 < a <<u < w, then 

i=l 
and d=u/p . 

Lemma 5.3: If w(&)< < u, then 

m 
w(&) i+l.[~k)~~-~(&)-{i(p-l>(n-l)+(p-s) where a i =k i ~(p-i) and d=u/p . 

N1'(n,k,u)= 1 (-1) 
P Lenuna 5.4: If k=(n-k,k) and w(&)< <u, 

i-1 u-w(k) 

,where w(&)=s. *2n-k dW(s{l- [1-(1-d) n-k ] w(k) - 1 , 
Lemma 4.8: For k=(n-2,2,0,. . . ,0), 

w-44 (plxn-2)+2 (p-2) 1 where d=u/2". 
N" P (n.&,~)=4[~-~ 1 Lemma 5.5: Let u.m-log2p < p m . 

~-4-I2(p-l>(n-1)+4(~2) 1) For p=2, except the cubes for k=(m,O) and 
4(u-4 - 4 2 p 1 n 2 3 p 2  ) k= (m-1, 1) , G P (n,&,u) are small-enough to be 

w-4-I3 (p-l)(n-2)+4(p2) neglected. 
+4L-4 

w-4-'4(p-1)'(n-2)+4(p-2) '1 2) For p=4, except the cubes for k= (m,O ,O ,0) , 
k=(m-l,l,O,O), &=(m-l,0,1,0), and &=(a-2,2,0,0), - 

Lemma 4.9: For &=(n-k,k) , 
G (m,k,u) are small enough to be neglected. 
P 

i-1 

The result of Lemma 4.9 agree with the result of [4]. 



Table 6.1 Average width of two-level PLA's for n-varible functionsofdensity d, 

and upper and lower bounds on W calculated by (5.1), (4.1), and (4.2). 

Two-level PLA 
I Average number of essential I Average width/ Average number of prime I 

d 

1/32 
2/32 
3/32 
4/32 
1/32 
2/32 
3/32 
1/32 
2/32 
1/32 

Approximation 

A;, + A; 
7.20 
13.44 
19.38 
25.33 
28.25 
52.87 
77.43 
111.19 
209.96 
438.36 

of PLA's 
Experimental 
value * 

T~ (n,u) 

7.2 
13.1 
18.3 
22.5 
29.1 
50.9 
68.4 
109.7 
192.2 
430.7 

Table 6.2 Average width W of PLA's with two-bit.decoders for n-variable functions 

of density d, and upper and lower bounds on W calculated by (5.2),(5.3), 

and (4.1) 

implicants 
Exact value 

CG; (n,k,u) 
7.26 
13.49 
19.48 
25.68 
28.31 
53.03 
78.22 
111.29 
210.92 
439-24 

prime implicants . 

PLA with two-bit decoders 

1~vera~e number of essential I~verage width 1 Average number of prime implicants 

Exact value 

l~y(n,k,u) 

7.24 
13.17 
18.01 
21.74 
28.09 
50.02 
66.38 
109.53 
190.38 
427.93 

prime-implicants 1 of PLA's 
Approximation l~pproximation I Experimental I Exact value 

Approximation 

A' 0 + A" 1 
7.17 
13.02 
17.69 
21.09 
27.99 
49.68 
65.33 
109.36 
189.20 
427.46 

'+B"+B"+B1' 
B 0 1 2 3  

6.82 

Approximation 

'+B'+B1+B' 
B o 1 2 3  

6.91 
12.87 
19.00 
25.76 
27.08 
51.56 
79.19 
106.80 
209.95 
423.59 

Approximation 

B;) + B; 
6.86 
12.47 
17.61 
22.39 
26.83 
49.47 
71.79 
105-57 
199.46 
417.77 

B;) + By 
6,79 

* n 
T4(7 , U) 

6.9 

1~: (?,k,u) 
6.96 



Lemma 5.6: Gt(n,k,u) are approximated by the 
2 

following formulas: 

Fork=(n,O): 2"*d*(l-d)" ; 
n-1 2 2n-1 n 

for k=(n-1,l): n.2 0 d ~(1-d ) , where d=u/2 . 
Lemma 5.7: GT'(n,k,u) are approximated by the 

2 
following formulas: 

For k=(n,O) : 2"~d.(l-d)~ ; 
n-1 2 

for &=(n-1,l) : n.2 *d .{1-[1-(l-d)n-1]21 , 
n 

where d=u/2 . 
Lemma 5.8: Gi(m,k,u) are approximated by the 

following formulas : 

m 3 3(m-1). 
for k=(m-l,O,l,O): m.4 .d3 .(I-d ) (1-d) ; and 

9 4 4 3(m-2) 2 4 
for k=(m-2,2,0,0): -1n(m-l)-4~.d -(l-d ) 8 -(l-d , 

m 
where d=u/4 . 

Lemma 5.9: G1'(m,k,u) are approximated by the 4 
following formulas: 

For k=(m,O,O,O) : 4m-d.(l-d)3m ; 

3 2 3m-1- 
for &=(m-l,l,O,O) : 7m.4m*d {2(1-d) (1-d) 6m-4 I ; 

3 3m-2- for &=(m-l,O,l,O) : m.4m. d .{3(1-d) (1-d) 6m-5 

+ (l-d)9m-8~ ; 
9 m 4 3m-2 for k=(m-2,2,0,0) : p(m-114 ad .{4(l-d) 

+4 (1-d) 9m-10- (1-d) lZm-16 1 s 

where d=u14~. 

T2(n,u) denotes the average width of the 

AND arrays of two-level PLA's for n-variable func- 

tions of weight u, and T @,u) denotes that of the 4 2 
the PLA's with two-bit decoders. The following 
theorem is the main result of this paper. 

Theorem 5.1: Let d < l/n and the value of n 
n 

be sufficiently large, where d=u/2 . 
A' + A; 5 T2(n,u) 5 A' + A; 
0 0 

---- (5.1) . 
B;)+B;+B;+B; < T~(:,U) B*+B~+B~+B~~ ----(5.2). 

0 1 2 3  

Where 

A'= (~-d)~u; 0 

Especially when d << l/n, 

VI. Experimental Results 

To investigate the usefulness of the formulas 
(5.1), (5.2), and (5.3), both expressions of two- 
valued variables and four-valued variables are 
minimized for numerous randomly generated functions. 
Table 6.1 and Table 6.2 show the average width W of 
PLA's for n-variable functions of density d, and 
also show the upper and lower bounds on W calculated 
by using (5.1) , (5.2), and (5.3) . In the columns 
labelled "experimental value", each entry denotes 
the average of ten sample functions. .In the case of 
PLA's with two-bit decoders, assignments of the 
input variables to the decoders[6] are not optimized. 
The formulas (5.2) for the bounds on T @,u) are 

4 2 
somewhat complicated. For a rough estimation, we can 
use the bounds (5.3) instead of (5.2). These tables 
also show exactvaluesof average numbers of prime 
implicants and essential prime implicants which are 
calculated by using (4.1) and (4.2). From these 
tables, we can conclude that the formulas are useful 
for estimation of the average size of PLA's. 

VII. Conclusion and Comments 

In this paper, several properties of shallow 
binary functions areobtained, and approximation 
formulas for the average numbers of prime implicants 
and essential prime implicants are derived. By using 
these formulas, we can estimate the average size of 
PLA's for shallow logic functions. 

It is known that the width of PLA's with two- 
bit decoders can be reduced by optimizing the 
assignment of the input variables[6]. For example, 
our experiment shows that optimally assigned PLA's 
are 7.2% smaller than non-optimally ones 
in the case of n=12 and d=1/32. The formulas for 
the optimally assigned PLA's remain to be derived. 
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