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Abstract

A programmable logic arrays (PLA's) with
decoders consists of three parts; the fixed size
decoders, the AND array, and the OR array. Basic
problems on the design of PLA's with decoders are
considered. Main subjects included are 1) The
minimization of the AND array: it corresponds to the
minimization of multiple-valued logic function; 2)
The sizes of PLA's for various classes of functionms
which are obtained theoretically; 3) The assignment
problem of input variables; 4) The average sizes
of PLA's for randomly generated functions which are
obtained by computer simulation; and 5) The average
number of prime implicants of multiple-valued logic
functions which is obtained theoretically.

1. Introduction

The problem of logic minimization - covering
switching function - is classical. The use of
programmable logic arrays (PLA's) as a solution to
an acute problem of LSI fabrication has led to a
resurgence of interest in this problem [1]-[7].

In this paper, two types of PLA's will be con-
sidered: two level PLA's and PLA's with decoders.
The first type of a PLA, the two-level PLA is shown in
Fig.1.1l. It consists of the AND array and the OR
array. For example, the four-input function shown in
Table 1.1 can be realized by the two-level PLA shown
in Fig.1.2. This PLA corresponds to a two-level AND-
OR circuit. The size of this PLA is defined as C(n)=
(2Zntm)W. In order to realize an arbitrary function
of n variables, a PLA with the size of (n+(l/2))2n
is necessary. Therefore, PLA's of this type require
large arrays for complex functions. The second type
of a PLA, the PLA with decoders is shown in Fig.1.3.
Each decoder generates all the maxterms of its
input variables. For example, the function of Table
1.1 can be realized as shown in Fig.l.4. The size of
this PLA is defined as C(n)=(H+m)W. The two-level
PLA can be considered as a special case of PLA of
this type,i.e, the PLA with one-bit decoders.

Table 1.2 shows the sizes of PLA's in order to
realize various kind of functions for each type of
realization. Table 1.3 shows the average size of
PLA's in order to realize randomly generated func-
tions. From these tables, PLA's with two-bit decoders
require smaller arrays than two-level PLA's.

* This work is supported in part by the Ministry of
Education of Japan under the Grant 375187, (Tsutomu
Sasao, 1978). ** The number of the terms in a sum-

of-products expression P is denoted by t(P).*#%* The
number of the variables in {Xi}is denoted by d(Xi).
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In II, basic ideas of the design of PLA's with
decoders are considered, and it is shown that the
minimization of the AND array corresponds to the
minimization of multiple-valued input two-valued
output function. In III, sizes of PLA's to realize
various classes of functions are derived by using
the theory of multiple-valued decomposition. In IV,
the assignment problem of input variables is intro-
duced. In V, the average numbers of prime implicants
of multiple-valued logic functions are derived.
This result is useful for the estimation of the
computation time and the memory requirement for the
classical minimization of logic functions. In VI,
the result of computer simulation is summarized.

II. Programmable Logic Arrays with Decoders

In this section, a design method which mini-
mizes the size of a PLA with decoders will be con-
sidered {6]-[7].

Definition 2.1: Let X=(x ,xn) be a

1%
variable in B, where B={0,1}. The set of variables
in X 1is denoted by {x}. (Xl,Xz,...,Xr) is said

to be a partition of X iff {Xl}u{Xz}u - u{Xr}={XL
{Xi}n{Xj}=¢ (i#j), and {Xi}#¢.

Definition 2.2: Let a=(a 2,...,an) be a con-

a
t]
n .a .n 1

stant in B'. X—: B »B is a function such that

¥2=0 if Xfa and ¥2=1 if X=a. Let ScB". X° denotes

function such that XS= aVvs 21 . XS
—i

to be a literal. A product of distinct literals is

gaid to be a term. A sum of terms is said to be a

sum-of-products expression. P is said to be minimal

if there is no expression Q such that t(Q)<t(P) and

that Q denotes the same function as P.*%*

Theorem 2.1: Let (Xl,X ,...,Xr) be a partition

the is said

2
of X. An arbitrary function f£(X) can be represented
in a form Sl 52 Sr
f(xl,XZ,...,Xr)=( ) Xl .Xz....-Xr s
S.sS,,. S
1’ 2) AL
i — (2.1).

n FH¥
where S, cB 1 ana ni=d(Xi). In a PLA with decoders,

if each decoder generates all the maxterms of {Xi}

for i=1,2,...,r, then an arbitrary term which has
S 82 S

the form X l-X . °'~-er

1 72
column of the AND array.

can be realized in each

If P is a minimal sum-of-
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Fig. 1.1 Two-level PLA

Table 1.1 4-variable function

@ denotes AND
x denotes OR

r, x, T, x f
1 %2 %5 %

+ ++ AND
, r-l“l> ! array 00 0 0 1
' 000 1 1
' f 0010 1
P 1 T 0 0 1 1 O
l—[>o—|—1 0100 1
m. 0101 1
3 0110 0
X l 0111 1

T +
4 1000 1
—+— 1001 o0
L+t +++- 1010 O
1011 1
ol 114 OR array 1100 0
1101 1

f

T1T T™17T . 1110 1
1111 0

Fig.1l.2 Realization of Table 1.1 by a
two-level PLA
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— AND array /4
. f0
m OR array .
—
—L — fm—l
Fig. 1.3(a) PLA with two-bit decoders
_ Jl01,10,11}
1 Ty VT X
— v"—::X{OO,]O,]]}
X 1 2 1
1 — _ {00,01,11}
xl v x2— X]
—  —  {00,01,10}
T2 TV IS X

Fig. 1.3 (b) Two-bit decoder

1
|
xl t @ denotes AND
¥ % —f—" x denotes OR
1 1 -

x

2

xs —
X2 9

Tq

Fig. 1.4 Realization of Table 1.1 by a PLA with two-bit decoders,
When the input variables are assigned as Xl=(x1,x2), X2=(x3,x4).
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Table 1.2 Sizes of thePLA's to realize n-variable functions (worst case).

Two-level PLA| PLA with two-bit decoders
Parity Arbitrary | Symmetric [Parity
n function function function function
6 416 208 117 52
8 2,176 1,088 459 136
10 10,752 5,376 1,701 336
12 51,200 25,600 6,075 800
14 237,568 }118,784 21,141 1,856
16 1,081,344 540,672 72,171 4,224
n | @2 [ 20 /3% (mip) V2"

Table 1.3 Average size of PLA's in order to realize randomly generated
functions of n variables.*

Two-level PLA PLA with two~bit decoders
d d
n 10% 20% 30% 407 507 10% 207% 30% 40% 50%
6 75.4 109.2 148.2 170.3 185.9 63.7 88.4 117.0 128.7 132.6

8 321.3 537.2 661.3 759.9 770.1( 280.5 464.1 535.5 578.0 564.4
10 | 1545.6 2478.0 3009.3 3234.0 3423.0 |1383.0 2068.5 2349.9 2446.5 2520.0

“n" denotes the number of the external input variables. "d" denotes the percentage of
input combinations which are mapped to 1.

* The entries of 40% and 50% of 10-variable function denote the average of 5 near
minimal solutions; the other entries are the average of 10 minimal solutions.

Table 5.1 Average Number of Prime Implicants

o
p=2 (Two-valued function) Gz(“’“) Y= To0 xd
d G, (n)
n 10% 20% 30% 407 50% 60% 70% 80% 907 2
6 5 9 15 19 24 28 31 31 25 24
8 20 42 65 90 118 145 168 181 157 118
10 83 181 294 421 585 757 940 1109 1100 585
12 342 790 1311 1988 2902 3909 5265 6677 7663 2902
14 1418 3428 5849 9380 14225 19934 28993 39348 51714 14225
=4 21’1
P=% (Four-valued function) Ga(n,u) u= 765~ *d
d G, (n)
n 10% 20% 30% 407 507% 607% 707 807 907% 4
3 5 9 14 19 24 28 31 31 24 24
4 19 42 68 99 136 176 218 249 223 136
5 83 191 330 515 757 1067 1464 1931 2210 758
6 353 871 1580 2636 4093 6232 9355 13991 20050 4095
7 1521 3915 7508 13219 21561 35153 56857 95966 165243 21565

"n" denotes the number of variables. "d" demotes the percentage of input combinations

which are mapped to 1.
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products expression having a form (2.1), then
n-mgx{n,}
t(P)< 2 t - , where ni=d(Xi).

Example 2.1:
(i) In the case of the two-level PLA.

Let X1=(xl), X2=(x2), X3=(x3), and X4=(x4) be a

(trivial) partition of X=(x1,x2,x3,x4).The function

*
of Table 1.1 can be represented as follows.

£t 5y R o SO, v
R v B v e 0
¢ el v il

This expression can be simplified as follows.

X)Xy Xg0 X, )=X X go = g ZO = Xg XX X
bl X0 o s b
v XiXéXéXi. —————— (2.2)

Fig.1.2 is a two-level PLA realization of this
function. Each column of the AND array corresponds
to each term of (2.2).

(ii) In the case of the PLA with two-bit decoders.
Let X=(X X ), X =(x ’XZ)’ and X2=(x3,x4) be a

partition of X= (x » X x4). The function of Table

2%
1.1 can be represented as

f(X X ) X(OO)XEOO) v x£002X§01) v XioozxélO)

(Ol) (00) (o1)_(01) (01)(11) (10),(00)
v Xl -Xz v X1 .X v Xl -X2 \% X1 X2

(lO) (11) (ll) (01) (11) (10)
v Xl X2 X1 1 -X2 . "
This expression can be simplified as follows.
£(xX),X,)= X{00 01},{00,01} {00,11}X{01,10}

2 1 2
XiOl,lO}Xgoo,ll} ______ (2.3)

Fig.l.4 is a PLA with two - bit decoders realization
of this function. Each column of the AND array
corresponds to each term of (2.3).

(End of the example).

By Theorem 2.1, in order to minimize the size

of the AND array for £(X), it is sufficient to
obtain a minimal sum—of-products expression of f£(X)
having the form (2.1). In the case of PLA with two-
bit decoders, the expression denotes the four-valued

logic function {00,01,10,11}%> {0,1}, where n=2r.

Theorem 2.2: Let Wl and w2 be the widths of the

two-level PLA and the PLA with decoders in order to

realize a function, respectively. Then wl>w2

In fact, PLA's with two-bit decoders require
smaller arrays than two-level PLA's. The result of
computer simulation in VI shows this fact.

0 .0 .0 .0 0,0,0.0
% .
Xl X2 X3 X4 is sometimes denoted by X1X2X3X4.
{0}
Xi

is sometimes denoted by Xg

. xi“’o)*(ll)} {00,113

is sometimes denoted by X
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1II. Sizes of PLA's in order to Realize

Various Classes of Functions.

In this section, sizes of PLA's with two-bit
decoders in order to realize various classes of
functions will be considered.

Definition 3.1: Let (Xl,Xz,...,Xr) be a par-
tition of X, and f(X) be a function such that
oy i) oy

f: B x B X ... X B -+ B.

For a,b ¢ B 1, define the relation
a~b <= fXla¥ )‘f(X]E?X,),

where f(XIa»X ) denotes f(X . X 1102 ,X

?"" i+1’° "’
X ). Obv1ously, the relatlon ~ is an equlvalence
relatlon. Let II —(L ,L ; _
n, i .
of B * induced by the equivalence relation S
n

A function wi:B *

.. L l) be a partition

1’

> M,; M.={0,1,...,k.-1} such that
1 1 1

wi(§)=j <=> g.eL; is called a partition function

i
Definition 3.2: Let M={0,1,...,k-1}, teM, and
¥': MsB be a function such that Y=o if Y#t and

of B

Yt =1 if Y=t. Let TcM. YT is a function such that

TV oyt

teT

Lemma 3.1: Let (Xl,X ...,Xr) be a partition

2’
of X, d(Xi)=ni, and let wi be a partition function
n,
of B . There exists a function
g: M, x M, x ... x Mr + B such that

1 2
(X)X ys e oK) =800 (K 51y (X)) vt (X))
——————— (3.1
The function g can be represented in a form
T1 T2 Tr
g(Y ,Yz,...,Y )= Y, oY, Y,
1 2
1 Ty T) ¥
——————— (3.2)

where T.c M., and M,={0,1,...,k,~1}.

Theorem 3.1: Let two expressions (2.1) and
(3.2) satisfy the relation (3.1). If P and Q are
minimal expressions for f(X) and g(Y), respectively,

then
r

t(@)=t(Q) < (1 k.)/(max{ki}) .
i=1 * 4

ki can be reduced by one.
Lemma 3.2: There exists a symmetric function

of n variables which requires 31-_1 terms in a PLA
with two-bit decoders realization, where n=2r.

(Proof) Let f(X) be a symmetric function.
f(X) can be written as

f(Xl’XZ: e er)=g(wl(Xl) ,lllz (Xz) e ,llJr(Xr)),



where Xi=(x21_1,x21), wi(00)=0, ¢1(01)=wi(10)=1,
and wi(11)=2. Let g(Y) be a function such that

if Y +Y +...4Y —0 (Mod 3).

g(Yl,Yz,...,Yr)={- 12
0 otherwise.
g(Y) can be written as
\\// f1.52 b
8(¥],Y,,00 0¥ )= L S
r £ 4E oL e =3k
k=0,1,2,3,... tie{O,l,Z}.

——————— (3.4)

Each term of a expression for g(¥) is minterm,
because if the expression has a term having a form

t t S t

1 2 i v T -

LORED SATRELE FIORRLS SN ISiI_Z

then, it cannot satisfy the condition for g(Y).
Therefore, the minimal expression which represents

g(Y¥) has the form (3.4). For arbitrary t2,t3,...,
t 5{0,1,2}, there exists tle{O,l,Z} such that

t1+t2+...+t =3k. So the number of terms of (3.4)

is 3 l. Hence, the number of terms which is neces-

sary to represent f(X) is 3r-1. Q.E.D.
Lemma 3.3: There exists an n-variable function

which requires 2n—2 terms in a PLA with two-bit

decoders realization, if the assignment of the

variables to the decoders is fixed, where n=2r.
(Proof) f(X) can be written as

£(X Xy see s X )= (¥ (X)) 50, (X)) 500009 (X)),

where ¢i(00)=0, wi(01)=1, wi(10)=2, and wi(11)=3.
Let g(Y) be a function such that
if Y +Y +...+Y =0 (Mod 4).

1
12
g(Yl,Yz,.-.,Yr)={ o

otherwise.

g(Y) can be written as
t t t
1,72 r
g(Y.,¥, ,...,Y )= Y55 LY
12 Tt =0k 2 r

172
k=0,1,... ti€{0,1,2,3}

———————— (3.5)
Similar to Lemma 3.2, we can show that (3.5) is
the minimal expression and the number of the terms

in (3.5) is 45 -1 2 2. Therefore, the number of
terms which is necessary to represent f is 2074,
Q.E.D.

Theorem 3.2: In order to realize an n-variable
function in a PLA with two-bit decoders, the fol-
lowing sizes are necessary and sufficient, when
the assignment of the variables are fixed to the
decoders, where n=2r.

1) For an arbitrary function: %(n+%)2“
2) For a symmetric function:

2,1 n
§(n+§)/§

3) For a parity function :

(n+%)/§ n

(Proof) The size of a PLA with two-bit decoders
is defined as ¢(n)=(2n+1)W.
1) Sufficiency: By Theorem 2.1. Necessity: By
Lemma 3.3,
2) Sufficiency. By the definition of the symmetric
function, there is a partition function wi

such that wi(00)=0,wi(01)=¢i(10)=1, and
wi(ll)=2 for each i. By Theorem 3.1, we have
r
< (m3)/3=3"1
i=1
3) Sufficiency: By the definition of the parity
function. There is a partition function wi

such that wi(00)=wi(11)=0 and wi(10)=¢i(01)=1,
for each i. By Theorem 3.1,

. Necessity: By Lemma 3.2.

T
< (n 2)/2= Zr_l. Necessity: Similar to
i=1

Lemma 3.2. Q.E.D.

The sizes of PLA's with two-bit decoders in
order to realize the various classes of functions
are shown in Table 1.2.

IV, The Assignment Problem of Input Variables

In this section, the assignment problem of
input variables is introduced [20]-[23]. In the
case of PLA's with two-bit decoders, we often have
an option of the assignment of the input variables
to the decoders. We explain this by using the
following example.

Example 4.1: Let us realize the function of
Table 1.1 by using a PLA with two-bit decoders.
Assume that X=(X1,X2) is a partition of the input

variables X. There exists three possible way of
assignment of four input variables to two decoders.
1) When the input variables are assigned as
X1=(xl,x2) and X2=(x3,x4).
As shown in Example 2.1 and Fig.l.4, three
columns are necessary to realize f(xl,Xz):

f(X ) X{00 01} {oo 01} iOO,ll}X§01,lO}
{01,10} {00,11}
X, "X, .

2) When the input variables are assigned as
X1=(xl,x3) and X2=(x2,x4). (See Fig. 4.1)

f(xl’XZ) can be written as

f(X )_X{oo 01,10} {00 11},

3) When the input variables are assigned as
(x ’X4) and X (xz,x ). (See Fig. 4.2)

{00,11}X{01,10}
1 2 )

f(X1 XZ) can be written as

f(X ) X{00 11} £01 10} iOl,lO}XQOO,ll}

X{OO,OllX{OO,lO}
1 2 .
Therefore, when the input variables are assigned as
shown in Fig.4.1, the array is the minimum.
(End of the example).
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T r
x r * 1 @ denotes AND x il @ denotes AND
1 = T ' x denotes OR 1 — x denotes OR
1
+
1 1 t_‘-»: 1 1
zz | x,
Tog x2 .
X2 2 X2 2
z, Ty
f
Fig. 4.1 Realization of Table 1.1 Fig. 4.2 Realization of Table 1.1
When the input variables are assigned as When the input variables are assigned as
Xl=(x1,x3), X2=(x2,x4). Xl=(xl’x4)’ X2=(x2,x3).

Table 6.1 Average number of terms in order to realize 8-variable functions.

density : d (%)

Type of PLA sz |10% 15% 20% 30% 40%
When the assignment
PLa with peath 8.4 |14.7 | 19.9 | 24.2 | 28.4 | 30.2
two-bit Average1 10.10 |17.27 22,71 | 27.80 | 31.77 33.58
decoders When the assignment) ., o 1195 | 25,5 | 31.1 | 35.3 | 37.0
1s worst

Standard deviation?| 0.629| 0.984| 1.23 | 1.41 | 1.42 | 1.41

Two-level PLA 10.8 (19.2 26.5 33.1 39.5 44.4

* Each entry isthe average of 10 randomly generated functions.

1. The average of 105 assignments.

2_ 1 ¢ - -~ 1 B
2.0 = I (¢,-D, T== Tt
n o i=1 1 n i=1
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The problem to find an assignment of the input
variables to the decoders which minimize the size
of the PLA is called "Assignment Problem of Input
Variables". In order to find the optimal assginment,
the concept of the previous section is sometimes
useful. We explain this by using the following
example.

Example 4.2: Consider the function of Table 1.1.
Let (Xl’XZ) be a partition of X.

1) When the input variables are assigned as
X1=(X1,X2) and X2=(x3,x4). By definition 3.1,

_,100,01,10}
f(Xl(OO)*Xl)—X2 .

{00,01,11}
5 .

f(XI(00)+X2)=XiOO’01’1”}

{00,01,11}
1

{00,11}

1

{01,103}

1

f(X!(Ol)+Xl)=X f(X|(01)+X2)=X

{00,111}

9 .

f(X!(ll)+X1)=X§01’1O} .
We have k1=k2=4.

2) When the input variables are assigned as
X1=(x1,x3) and X2=(x2,x4).

£(x1(00)-x,)=x_ 0> 0110, 11)

{00,11}

2 .

{00,11}

2 .

£x1 D-x)=x 0100

We have kl=3 and k2=2.

f(XI(lO)*X1)=X f(X|(10)+X2)=X

f(XI(ll)+X2)=X

{00,01,10}
1

{00,11}

1

{00,11}

1
{00,01,10}
1

f(X|(00)+X2)=X

f(Xl(Ol)+X1)=X f(Xl(Ol)+X2)=X

f(XI(lO)+Xl)=X f(X|(10)+X2)=X

f(X|(11)+X2)=X

3) When the input variables are assigned as
X1=(X1,X4) and X2=(x2,x3).

f(xl(00)+x1)=X;00,01,10}'

{00,10,11}
5 .

{00,01,10}
1
f(X|(01)+X2)=Xioo’ll}
{00,01,11}
1

{01,101}

1

f(X|(00)+X2)=X

£(X| (01)+xl)=x
{00,11}

2 .
f(X|(11)+x1)=x§°1’10} '

We have kl=k2=4.

f(x|(10)+xl)=x f(xl(lO)»x2)=x

f(xl(11)+x2)=x

Let Pi be a minimal sum-of-products expression of
f(xl,Xz) for each assignment, where i=1,2,3. By

Theorem 3.1, we have
1) For the assginment X1=(x1,x2), X2=(x3,x4):
t(Pl) < 4,

2) For the assignment X =(x,,x,), X,=(%,,x%,6):
t(Pz) < 9. 171’73 2 72774

3) For the assignment X1=(xl,x4), X2=(x2,x3);
t(P3) < 4,

Because the assignment Xl=(xl,x3), X2=(x2,x4)

has the minimum upper bound, it is the first candi-
date of the optimal assignment.
(End of the example).
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V. Number of Prime Implicants

In order to minimize the size of the PLA, it
is sufficient to obtain a minimal sum-of-products
expression. Classical method, which first obtains
the set of all the prime implicants and thenobtains
the minimal covering of it, can be extend to ma-
nipulate multiple-valued variables [8]-[9]. The
number of prime implicants shows the inherent
complexity of the classical algorithm.

5.1 Maximal Number of Prime Implicants.

Lemma 5.1: Let u(n,p) be the maximal number
of prime implicants of the p-valued n-variable

function {0,1,...,p—1}n + {0,1}. When n=tm and
t=2P-1, the following relation holds.

@/ @D < um,p) s " o s s
(Proof) First, consider a term X1¥X2?...Xnn.

The number of distinct subsets Sig{O,l,...,p—l}

n .
is t, therefore we have u(n,p) < t . Next consider
a term

Sl sl Sl SZ SZ SZ St St St
X ),

e SRS S Y¢S SRS N PR Sl S
yeresS

(X

where §.,S are distinct sets. The number

1’72 t
of different terms, when the variables are per-
mutated, is (n!)/(m!)%. Each term is not contained

by other terms and is maximal. So all the terms

are prime. Hence (n!)/(m!)t < u(n,p). Q.E.D.
Corollary 5.1: There exist positive constants

Kl’ KZ’ and K3 such that
p-1
28 -1)
Kl(Zp—l)n/ nf Y u(n,p),
K,(3%/m) < un,2),

K3(15n/n7) < u(n,4).
(Proof) By using Stirling's formula

1
n! = V2r n 2 e—n, we have

(n!)/(m!)t ~ (2,”)"((‘-_1)/2‘ (t(t/Z))_tn'n(l—t)/Z

where t=2p-1.

Q.E.D.

Corollary 5.1 shows that there is an n vari-
albe function of two~valued variables which has

*
QﬁSn/n) prime implicants [12],[18},[19]. In the
case of four-valued variables, there exists a

function which has 9‘15n/n7) prime implicants.
These functions are pathological ones and for the
most functions, the numbers of prime implicants
are much smaller.

* A function f(n) is said to be 0(g(n)) iff there
exists a positive constants K such that

[£(n)/g(n)|> K , when n » =,



5.2 Average Number of Prime Implicants

Definition 5.1: Let f be a function such that

£:{0,1,...,p-1}" > {0,1}. Let U=f 1(1). u=|U| is
said to be the weight of f.

Theorem 5.1: The average number of prime impli-
cants of p-valued n-variable function of weight u
is given by

1 (k)n(p t v - wk,t)
G (n,u)= ) 7 c= ey (-1) 2 Alk,t) ( s
P F k t=0 t u - w(k,t)
where Eé(kl,kz,...,kp) is a partition of n,
P P ot p-1
c®en () 001 a8k 00,
i=1 "i° i=1
p-1 a; p-1 ti
Ak,t)= 1 (t ), wik,t)=w(k)-(1 + Z i )s
i=1 i i=1
n
P k P
wi=1 @ L, wep®, W) e=e, b,
. - 1’72 p-1
i=1 u
is a partition of t, and ti < a,.

(Proof) See [21].
Theorem 5.2: The average number of prime impli~
cants of p-valued n-variable function is given by

¢ -] R L S
k

i=1

(Proof) See [21].
Table 5.1 shows the values of Gp(n,u) and Gp(n)

for p=2 and p=4. In the case of p=2, these results
coincide with the results of [13] and [14]. We can
obtain the following results form the numerical
calculation.

1. Gp(n,u)increases monotonously as u increases

from 0, and at some u it takes the maximum value,
then it decreases monotonously as u increases to
2%, For example, 02(14,u) takes its maximum when
u=214xo.92, and G4(7,u) takes its maximum when

uw=21%0.96.
2). Ga(n/Z,u)sz(n,u), when n and u are sufficient-

ly large.
n ~
3. Gp(n, p/2) —Gp(n).

VI. Statistical Results

6.1 Average size of PLA's with two bit decoders

In order to estimate the size of two-level PLA's
and PLA's with two-bit decoders, both expressions
of two-valued variables and four~valued variables
are minimized for numerous randomly generated
functions. The program developed consists of two
parts: the first part generates all the prime
implicants of multiple~valued variables; the second
part detects essential terms, row and column domi-
nance relations, and obtains a minimal covering.
Table 1.3 shows the average size of PLA's up to
10-variables. d=(u/2n)XI00 denotes the percentage
of minterms which are mapped to one.
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For 0<d<50, the larger d, the more complex the
function. When n=10 and d=50, PLA's with two bit
decoders are about 26% smaller than two-level PLA's.

6.2 Average Number of Prime Implicants .

Fig.6.1 shows the average number of prime
implicants, number of terms in a minimal solution,
and number of E~terms for randomly generated
functions of 10 variables. E-term includes the
essential terms and the terms which are selected by
row and column dominance relations. The number of
prime implicants agree with the theoretical results
shown in Table 5.1 within errors of a few percents.
The fraction of E-terms rapidly decreases in the
case of four valued variables as d increases to 50.
In the case of four-valued variables, the number of
prime implicants is larger but the number of E-terms
are smaller than that of two-valued variables.

6.3 The Effect of the Assignment of Input
Variables

In order to investigate the dependance on the
way of assignment of input variables, ten randomly
generated functions of 8 variables were generated
for each density. Then, 105 expressions which
corresponds to all possible ways of assignments
were minimized: for each function, there are 105
different ways of assignment of 8 input variables
to the 4 two-input decoders. Table 6.1 shows the
statistical data of this exhaustive investigation.
When the densityis 40%,optimally assigned PLA's are
about 10% smaller than non-optimally assigned PLA's.
Table 6.1 also shows the average widths of two-level
PLA's for the same functions. In the case of d=40%,
optimally assigned PLA's with two-bit decoders are
about 32% smaller than two-level PLA's.

VII. Conclusion and Comments

1). PLA's with two-bit decoders require smaller
arrays than two-level PLA's. In the case of n=8
and d=40%, the former are 247 smaller than the
latter.

The size of the arrays of PLA's with two-bit
decoders can be reduced by optimizing the assign-
ment of input variables. In the case of n=8 and
d=40%, optimally assigned PLA's are 107 smaller
than non-optimally assigned PLA's, and are 327
smaller than two-level PLA's. We have recently
developled eight different heuristic algorithms
which find optimal or near optimal assignments
quickly [22],[23].

Minimization of the PLA's with two-bit decoders
can be done by minimizing the expressions of
four-valued logic functions.

The number of the prime implicants of four-
valued function is greater than that of the
corresponding two-valued function.

Classical method is statistically unsuitable to
solve large minimization problem. We are now
developing a heuristic program which finds a near
minimal solution quickly.
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O denotes the number of prime implicants
A denotes the number of terms in a minimal solution®
x denotes the number of E-terms
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Fig. 6.1. Average numbers of prime implicants, terms

in a minimal solution and the E-terms.

* The entries of 40%Z and 50% denote the average of 5 near minimal solution.
The other entries denote the average of 10 minimal solution.

36



(1]

(21

[3]

(4]

[5]

(61

[71

{81

{91

[10]

f11]

f12]

[13]

f14]

f15]

(16]

{17]

{18]

[19]

References

H.Fleisher and L.I.Maissel, "An introduction
to array logic," IBM J.Res. Develop. Vol. 19,
Pp.98-109, March 1975.

S.J.Hong, R.G.Cain, and D.L.Ostapko, "MINI: a
heuristic approach for logic minimization,"
IBM J.Res. Develop., Vol.18, pp.443-458, Sept.
1974.

D.L.Greer, "An associative logic matrix," IEEE
J. Solid-State Circuits, Vol.SC-11, pp.679-
691, Oct. 1976.

R.A.Wood,"High-speed dynamic programmable
logic array chip, " IBM J.Res. Develop.,
Vol.19, pp.379-383, July 1975.

W.N.Carr and J.P.Mize, MOS/LSI Design and
Applications, Texas Instruments Electronics
Series, MacGraw-Hill, New York, 1972.

T.Sasao, '""Basic considerations on the reali-
zation of programmable logic arrays (1) and
(2)," (in Japanese), The Institute of Electro-
nics and Communication Engineers of Japan,

EC 77-12 and EC 77-13, June 1977.

T.Sasao, "An application of multiple-valued
logic to a design of programmable locic
arrays,' The Eighth International Sumposium
on Multiple~Valued Logic, May 1978.

S.Y.Su and P.T.Cheung, "Cubical notation for
computer aided processing of multiple-valued
switching functions,'" IEEE Trans. Comput.,
Vol.C~21, pp.995-1003, Sept. 1972.

W.R.Smith III, "Minimization of multivalued
functions,” in Computer Science and Multiple-
Valued Logic, North-Holland, 1977.

M.Breuer, Design Automation of Digital Systems,

Printice-Hall, Englewood Cliffs, U.S.A., 1972.
M.Davio, J.P.Deschamps, and A.Thayse, Discrete
and Switching Functions, George Publishing Co.
and McGraw-Hill, New York, 1978.

R.E.Miller, Switching Theory, Vol.I: Combi-
national Circuits, Jhon Wiley & Sons. Inc.,

New Yorkd, 1965.

F.Mileto and G.Putzolu, "Average values of
quantities appearing in Boolean function
minimization," IEEE Trans. Electron.Comput.,
Vol.EC-13, pp.87-92, April 1964.

F.Mileto ana G.Putzolu, “Average values of
quantities appearing in multiple-output bool-
ean minimization," IEEE Trans. on Electron.
Comput. Vol.EC~14, pp.542-552, August 1965.
A.Cobham, R.Fridshal, and J.H.North, "A
statistical study of the minimization of bool-
ean functions using integer linear program—
ming," IBM Res. Rept. RC-756, June 1962.
E.Morreale and MMennucci, '"Computer experience
on partitioned list algorithms," IEEE Trans.
Comput., Vol.C~19, pp.1099-1105, Nov. 1970.
L.Gilli, A.Laurentini, and A.R.Meo, "'Statisti-
cal properties of switching function," IEEE
Comput. Group Repository, R-70-207, 1970.
B.Dunham and R.Fridshal, "The problem of
simplifying logical expressions," Journal of
Symbolic Logic, Vol.24, pp.17-19, 1959.
V.V.Glagolev, '"Some bounds for disjunctive
normal forms of the algebra of logic,"Problemi
Kibernetiki, Vol.19, pp.74-93, 1970. (Transl:
Systems Theory Research, Consultants Bureau,
New York).

37

[20]

[21]

[22]

[23]

[24]

(251

[26]

T.Sasao,"Basic considerations on the realiza-
tion of programmable logic arrays (3)" (in
Japanese), The Institute of Electronics and
Communication Engineers of Japan, EC 77-74,
March 1978.

T.Sasao and H.Terada,''Basic considerations on
the realization of programmable logic arrays
(4) ~-—0On the number of prime implicants of
multiple-valued logic functions" (in Japanese),
ibid, EC 78-65, Feb. 1979.

K.Ishikawa,T.Sasao and H.Terada, "Basic consid-
erations on the realization of programmable
logic arrays (5)-—-On the assignment problem
of input variables for PLA's with decoders'

(in Japanese), ibid., EC 78-66, Feb. 1979.
T.Sasao, K.Ishikawa, and H.Terada, "A heuristic
method for the assignment of input variables
to the PLA's with decoders" (in Japanese),
National Convention of the Institute of Elec-
tronics and Communication Engineers of Japan,
No.1176, March 1979.

T.Sasao and H.Terada, "On the number of prime
implicants of multiple-valued logic functions"
(in Japanese),ibid., No.1175, March 1979.
J.P.Roth, "Programmed logic array optimization,
" IEEE Trans. Comput., Vol.C-27, pp.l74-176,
Feb. 1978.

Z.Arevalo and J.G.Bredeson, "A method to
simplify a boolean function into a near minimal
sum-of-products for prgrammable logic arrays,"
IEEE Trans. Comput., Vol. C-27, pp.1028-1039,
Nov. 1978.



