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Abstract In 11, basic ideas of the design of PLA's with 

A programmable logic arrays (PLA1s) with 
decoders consists of three parts; the fixed size 
decoders, the AND array, and the OR array. Basic 
problems on the designof PLA's with decoders are 
considered. Main subjects included are 1) The 
minimization of the AND array: it corresponds to the 
minimization of multiple-valued logic function; 2) 
The sizes of PLA1s for various classes of functions 
which are obtained theoretically; 3) The assignment 
problem of input variables; 4) The average sizes 
of PLA1s for randomly generated functions which are 
obtained by computer simulation; and 5) The average 
number of prime implicants of multiple-valued logic 
functions which is obtained theoretically. 

I. Introduction 

The problem of logic minimization-covering 
switching function - is classical. The use of 
programmable logic arrays (PLA1s) as a solution to 
an acute problem of LSI fabrication has led to a 
resurgence of interest in this problem [I]-171. 
In this paper, two types of PLA1s will be con- 
sidered: two level PLA's and PLA1s with decoders. 
The first type of a PLA, the two-1-evelPLAis shownin 
Fig.l.1. It consists of the AND array and the OR 
array. For example, the four-input function shown in 
Table 1.1 can be realized by the two-level PLA shown 
in Fig.l.2. This PLA corresponds to a two-level AND- 
OR circuit. The size of this PLA is defined as C(n)= 
(2n+m)W. In order to realize an arbitrary function 
of n variables, a PLA with the size of (n+(1/2))2" 
is necessary. Therefore, PLA's of this type require 
large arrays for complex functions. The second type 
of a PLA, the PLA with decoders is shown in Fig.l.3. 
Each decoder generates all the maxterms of its 
input variables. For example, the function of Table 
1.1 can be realized as shown in Fig.l.4. The size of 
this PLA is defined as C(n)=(H+m)W. The two-level 
PLA can be considered as a special case of PLA of 
this type,i.e, the PLA with one-bit decoders. 

Table 1.2 shows the sizes of PLA's in order to 
realize various kind of functions for each type of 
realization. Table 1.3 shows the average size of 
PLA's in order to realize randomly generated func- 
tions. From these tables, PLA's with two-bit decoders 
require smaller arrays than two-level PLA1s. 

* This work is supported in part by the Ministry of 
Education of Japan under the Grant 375187, (Tsutomu 
Sasao, 1978). ** The number of the terms in a sum- 
of-products expression P is denoted by t(P).*** The 
number of the variables in {X.}is denoted by d(Xi). 

decoders are considered, and it is shown that the 
minimization of the AND array corresponds to the 
minimization of multiple-valued input two-valued 
output function. In 111, sizes of PLA's to realize 
vardous classes of functions are derived by using 
the theory of multiple-valued decomposition. In IV, 
the assignment problem of input variables is intro- 
duced. In V, the average riumbers of prime implicants 
of multiple-valued logic functions are derived. 
This result is useful for the estimation of the 
computation time and the memory requirement for the 
classical minimization of logic functions. In VI, 
the result of computer simulation is summarized. 

11. Programmable Logic Arrays with Decoders 

In this section, a design method which mini- 
mizes the size of a PLA with decoders will be con- 
sidered [ 6 ] -  [7]. 

Definition 2.1: Let X=(xl,x2,...,x ) be a n 
variable in B, where B={0,1). The set of variables 
in x is denoted by 1x1 . (X1,X2,. . . ,Xr) is said 
to be a partition of X iff {Xl)u{X2)u ... u{Xr}={X], 

- 

IxilnIXjl=O (i#j), and {Xi}#$. 

Definition 2.2: Let a=(al,a2, ..., a ) be a con- n 
n a n  

stant in B . X-: B +B is a function such that 
S XLO if X#a and ~ 5 1  if X=a. Let SG". X denotes 

the function such that xS= V X% . xS is said 
a.eS 
1 

to be a literal. A product of distinct literals is 
said to be a term. A sum of terms is said to be a 
sum-of-products expression. P is said to be minimal 
if there is no expression Q such that t (Q)<t (P) and 
that Q denotes the same function as P.** 

Theorem 2.1: Let (X1,X 2,...,X ) be a partition 

of X. An arbitrary function f(X) can be represented 
in a form 

f(X1,X 2 , . . . ,  X )= 
r 

'Xr 3 

------ (2.1). 
n . . 

Y Y Y  

where SizB and n =d(Xi). In a PLA with decoders, 
i - 

if each decoder generates all the maxterms of {X i 1 
for i=1,2, ..., r, then an arbitrary term which has 

S s s 
the form X 

1 
x,~. . . . X can be realized in each 

- 

column of the AND array. If P is a minimal sum-of- 



Fig. 1.1 Two-level PLA 

Table 1.1 4-variable function 

denotes AND 
x denotes OR 

x x x x  f 
1 2 3 4  
0 0 0 0  1 

Fig.l.2 Realization of Table 1.1 by a 

two-level PLA 



AND array 

m OR array 

I - - 
Fig. 1.3(a)  PLA with two-bit decoders 

Fig. 1 . 3  (b) Two-bit decoder 

denotes AND 
denotes OR 

f 

Fig. 1 . 4  Realization of Table 1 .1  by a PLA with two-bit decoders. 
When the input variables are assigned a s  X1=(x1,x2), X2=(x x ). 3' 4 



Table 1.2 Sizes of theP~A's to realize n-variable functions (worst case). 

1 Two-level PLA~ PLA with two-bit decoders 
I I 

I parity j~rbitrar~ I Symmetric Parity 
function 

5 2 
136 
336 
800 

1,856 
4,224 

(n+$ f l  

n 
6 
8 
10 
12 
14 
16 

n 

Table 1.3 Average size of PLA's in order to realize randomly generated 
functions of n variables.* 

function 
416 

2,176 
10,752 
51,200 
237,568 

1,081,344 

(n4)P 

"n" denotes the number of the external input variables. "d" denotes the percentage of 
input combinations which are mapped to 1. 

Two-level PLA 

* The entries of 40% and 50% of 10-variable function denote the average of 5 near 
minimal so1utions;theother entries are the average of 10 minimal solutions. 

function 
208 

1,088 
5,376 
25,600 
118,784 
540,672 

I(n+;i'2 

PLA with two-bit decoders 

Table 5.1 Average Number of Prime Implicants 

2" u= - p'2 (Two-valued function) 100 xd 

function 
117 
459 

1,701 
6,075 
21,141 
72,171 

$(n+$Jjn 

p"4   our-valued function) G4(n,u) 
2" u= - 
100 X d  

I ,  ,I n denotes the number of variables. I'd'. denotes the percentage of input combinations 
which are mapped to 1. 



products expression having a form (2.1), then 
n-maxtn.) 

t(P)< 2 
1 1  , where n .=d (Xi). 

Example 2.1: 
(i) In the case of the two-level PLA. 
Let X =(xl), X =(x ) ,  X =(x ), and X =(x ) be a 

1 2 2  3 3  4 4 
(trivial) partition of X=(X x2, x3, x4) . The function 

4. 

of Table 1.1 can be represented as follows, 

0 0 0 1  0 0 1 0  
f(X ,x ,x ,x )=xOxOxOxO v x1x2x3x4 v XlX2X3X4 

1 2  3 4 1 2 3 4  
0 1 0 0  0 1 0 1  0 1 1 1  1 0 0 0  v X X X X  v X X X X  v X X X X  v X1X2X3X4 
1 2 3 4  1 2 3 4  1 2 3 4  

This expression can be simplified as follows. 

0 1 1 1  1 0 0 0  1 0 1 1  1 1 0 1  V X X X X  V X X X X  V X X X X  VX1X2X3X4 
1 2 3 4  1 2 3 4  1 2 3 4  
1 1 1 0  

v X1X2X3X4. ------ (2.2) 
Fig.l.2 is a two-level PLA realization of this 
function. Each column of the AND array corresponds 
to each term of (2.2) . 
(ii) In the case of the PLA with two-bit decoders. 
Let X=(X ,X ) ,  X1=(x1,x2), and X =(x3,x4) be a 

1 2  2 
partition of X=(x 1,~2,~3,~4). The function of Table 

1.1 can be represented as 

** 
This expression can be simplified as follows. 

- -  - 

{Ol,lOI {OO,llI ,v XI .X2 
------ (2.3) 

Fig. 1.4 is a PLA with two - bit decoders realization 
of this function. Each column of the AND array 
corresponds to each term of (2.3). 

(End of the example). 
By Theorem 2.1, in order to minimize the size 

of the AND array for f(X), it is sufficient to 
obtain a minimal sum-of-products expression of f(X) 
having the form (2.1). In the case of PLA with two- 
bit decoders, the expression denotes the four-valued 

logic function {00,01,10,11}~+ {0,1}, where n=2r. 
Theorem 2.2: Let W and W be the widths of the 1 2 

two-level PLA and the PLA with decoders in order to 
realize a function, respectively. Then WltW2. 

In fact, PLA'S with two-bit decoders require 
smaller arrays than two-level PLA1s. The result of 
computer simulation in VI shows this fact. 

0 0 0. xo 0 0 0 0 * X1* X2* X3 is sometimes denoted by X X X X 1 2 3 4 '  - - 

X:" is sometimes denoted by X 
0 
i 

C(OO) ' ('l)' is sometimes denoted by X ** Xi IO0,llI 
i 

111. Sizes of PLA1sin order to Realize 

Various Classes of Functions. 

In this section, sizes of PLA1s with two-bit 
decoders in order to realize various classes of 
functions will be considered. 

Definition 3.1: Let (X1,X 2,...,X ) be a par- 

tition of X, and f(X) be a function such that 

n 
i For +,b G B , define the relation 

a ?. a <=> f(xlz+xi)=f (Xlk+Xi), - 
where f(xla-+xi) denotes f(X1,X 2,-..,Xi-1,~,Xi+19..7 

X ) . Obviously, the relation is an equivalence 
i i i 

relation. Let IIi=(LO,L1,...,Lti-l) be a partition 
n. 

of B induced by the equivalence relation A . 
n 

A function $ :B + Mi; Mi={O,l,. . . ,k.-1) such that 
i 

i 
$i(a)=j <=> a cL is called a partition function - j 

n 
of B 

Definition 3.2: Let M={O,l, ..., k-11, ~ G M ,  and 
t 

yt: M+B be a function such that Y =O if Y#t and' 
t T Y =1 if Y=t. Let TcM. Y is a function such that 

Lemma 3.1: Let (X1,X 2,...,X ) be a partition 

of X, d(Xi)=ni, and let be a partition function 
n. 

of B i. There exists a function 
g: MI x M2 x ... x Mr + B such that 

- 

f(Xl,X2,. a .  ,Xr)=g(*,(X1) ,$2(X2)". . . dbr(Xr) 1. 
------- (3.1) 

The function g can be represented in a form 

where T.c Mi, and M.={O,l, ..., k.-11. 
1- 

Theorem 3.1: Let two expressions (2.1) and 
(3.2) satisfy the relation (3.1). If P and Q are 
minimal expressions for f(X) and g(Y), respectively, 
then r 

t(~)=t(q) 2 ( n ki)/(maxIkil) . 
i=l i - - - - - - - (3.3) 

If there exists 2 E B ~ ~  such that f(X\++Xi)EO, then 

k. can be reduced by one. 

Lemma 3.2: There exists a symmetric function 
r-1 

of n variables which requires 3 terms ina PL.4 
with two-bit decoders realization, where n=2r. 

(Proof) Let f(X) be a symmetric function. 
f(X) can be written as 



where X i = ( x ~ ~ - ~ , x ~ ~ )  , J,i(OO)=O, $i(O1)=$i(lO)=l, 

and 1+~(11)=2. Let g(Y) be a funct ion such t h a t  

1 i f  Y +Y +. . .+Yr=O (Mod 3) .  
g(Y1,Y2,. . . J r ) =  

1 2  

0 otherwise. 

g(Y) can be wr i t t en  a s  \ I 

------- (3-4) 
Each term of a expression f o r  g(Y) is  minterm, 
because i f  t he  expression has a term having a form 

then, i t  cannot s a t i s f y  t he  condit ion f o r  g(Y). 
Therefore, the  minimal expression which represen ts  
g(Y) has the  form (3.4). For a r b i t r a r y  t t 

2' 3'"" 
t ~ { 0 , 1 , 2 } ,  t he r e  e x i s t s  t l e ~ 0 , 1 , 2 }  such t h a t  

t +t  +...+ t =3k. So t he  number of terms of (3.4) 1 2  

i s  3'-'. Hence, t he  number of terms which i s  neces- 
r- 1 

sa ry  t o  represent  f(X) is  3 . Q.E.D. 
Lemma 3.3: There e x i s t s  an n-variable funct ion 

n- 2 
which requi res  2 terms i n  a PLA with two-bit 
decoders r e a l i z a t i on ,  i f  t he  assignment of the  
va r i ab l e s  t o  t he  decoders is f ixed ,  where n=2r. 

(Proof) f(X) can be wr i t t en  a s  
f (X1J2,. . . ,xr)=g($l(xl) ,$J2(X2), . . . ,$Jr(Xr)), 

where $.(00)=0, Jli(Ol)=l, $i(10)=2, and 1)~(11)=3. 

Let g(Y) be a funct ion such t h a t  

1 i f  Y +Y +...+ Y =O (Mod 4 ) .  
1 2  

0 otherwise. 

g(Y) can be wr i t t en  a s  , , 

k=0,1,. . . tic{0,1,2,31 

- - - - - - - - (3.5) 
Similar  t o  Lemma 3.2, we can show tha t  (3.5) i s  
the  minimal expression and t he  number of t he  terms 

i n  (3.5) i s  4r-1=2n-2 . Therefore, the  number of 
terms which i s  necessary t o  represent  f i s  2n-2. 

Q.E.D. 
Theorem 3.2: I n  order  t o  r e a l i z e  an n-variable 

funct ion i n  a PLA with two-bit decoders, t he  fo l -  
lowing s i z e s  a r e  necessary and s u f f i c i e n t ,  when 
the  assignment of t h e  va r i ab l e s  a r e  f ixed  t o  t he  
decoders, where n=2r. 

1 l n  1 )  F o r a n a r b i t r a r y  funct ion:  ?(n+?.)2 - - - 
2 

2) For a symmetric funct ion:  $n$) 6 

3) For n p a r i t y  funct ion : (n+) fi A" 

(Proof) The s i z e  of a PLA with two-bit decoders 
is defined a s  c (n)=(Zn+l)N. 

1 )  Suff iciency:  By Theorem 2.1. Necessity: By 
Le- 3.3. 

2) Suff iciency.  By t he  d e f i n i t i o n  of t he  symmetric 
funct ion,  t he r e  is  a p a r t i t i o n  funct ion J, 

i 
such t h a t  J,,(00)=0,J,,(Ol)=1$ (10)=1, and 

i 
J,,(11)=2 f o r  each i. By Theorem 3.1, we have 

W 2 ( ; 3) /3  = 3r-1. Necessity: By Lemma 3.2. 
i=l 

3) Sufficiency:  By the  d e f i n i t i o n  of the  p a r i t y  
funct ion.  There is  a p a r t i t i o n  funct ion J, 

i 
such t h a t  $ (OO)=$i(ll)=O and $ (lO)=$Ji(O1)=l, 

i i 
f o r  each i. By Theorem 3.1, 

W < ( ; 2)/2 = zr-'. Necessity: Similar  t o  
i=l 

Lemma 3.2. Q.E.D. 

The s i z e s  of PLA's with two-bit decoders i n  
order  t o  r e a l i z e  t he  various c l a s s e s  of func t ions  
a r e  shown i n  Table 1.2. 

I V .  The Assignment Problem of Input Variables  

I n  t h i s  s ec t i on ,  the  assignment problem of 
input  va r i ab l e s  i s  introduced [20]-[23]. I n  t h e  
case of PLA's with two-bit decoders, we o f t en  have 
an option of t he  assignment of the  input  va r i ab l e s  
t o  the  decoders. We expla in  t h i s  by using the  
following example. 

Example 4.1: Let us r e a l i z e  t he  funct ion of 
Table 1.1 by using a PLA with two-bit decoders. 
Assume t h a t  X=(X , X  ) is  a p a r t i t i o n  of t he  input  

1 2  
va r i ab l e s  X. There e x i s t s  t h r ee  poss ib le  way of 
assignment of f ou r  input  va r i ab l e s  t o  two decoders. 

When t he  input  va r i ab l e s  a r e  assigned a s  
X =(x  ,x  ) and X =(x  , x  ). 

1 1 2  2 3 4  
As shown i n  Example 2.1 and Fig.l.4, th ree  
columns a r e  necessary t o  r e a l i z e  f(X X ) :  1' 2 

I01,lOl. CO0,lll 
X1 X2 

When t he  input  va r i ab l e s  a r e  assigned a s  
X =(x , x  ) and X =(x2,x4). (See Fig. 4.1) 1 1 3  2 
f(X ,X ) can be wr i t t en  a s  1 2  

When t he  input  va r i ab l e s  a r e  assigned a s  
X =(x  , x  ) and X =(x  x ) . (See Fig. 4.2) 

1 1 4  2 2 ' 3  
f(X X ) can be wr i t t en  a s  

1' 2 

Therefore, when t he  input  va r i ab l e s  a r e  assigned a s  
shown i n  Fig.4.1, the  a r ray  i s  the  minimum. 

(End of the  example). 





The problem to find an assignment of the input 
variables to the decoders which minimize the size 
of the PLA is called "Assignment Problem of Input 
Variables". In order to find the optimal assginment, 
the conceptof the previous section is sometimes 
useful. We explain this by using the following 
example. 

Example 4.2: Consider the function of Table 1.1. 
Let (X ,X ) be a partition of X. 

1 2  
1) When the input variables are assigned as 

X =(x x ) and X =(x ,x ). By definition 3.1, 1 1'2 2 3 4  

IO0,01,1Cl {O0,OlJ0,. f(xl(00)+x2~=x1 f (XI (0O)+X1)=X2 

~00,01,11~ {0",OlJ1}. £(XI (0l)+X2)=X1 f (X 1 (0l)+X1)=X2 

f (XI (10)+X1)=X IO0,ll) {00,11) 
2 . f(Xl(10)+X2)=X1 

We have k =k =4. 
1 2  

2) When the input variables are assigned as 
X =(x ,x ) and X =(x x ) .  1 1 3  2 2'4 

~OO,Ol,lO,lll f(xl f (Xl (0O)+X1)=X2 

{00,11) f(XI(01)+X1)=X2 . f(Xl 

IOO, 11 I f (X l (1O)+X1)=X2 . f(Xl 

IO1,lOl f (X l (11)+X1)=X2 . f(Xl 

We have k =3 and k2=2. 
1 

3) When the input variables are assigned as 
X =(x ,x ) and X2=(x x ). 1 1 4  2' 3 

~00,01,10~ {OO*OIJO). f (XI (00)+X2)=X1 f (X I (0O)+X1)=X2 

f (XI (01)+X1)=X2 tOOJOJ1}. f(Xl (0l)+X2)=X1 I00,ll) 

IO0,ll) f (XI (10)+Xl)=X2 . f(~l(lO)+x~)=X~ {00,01,11} 

{01,103 
f (XI (11)+X1)=X2 . f (XI (11)+X2)=X1 I01,lO) 

We have k =k =4. 
1 2  

Let P .  be a minimal sum-of-products expression of 

f(X ,X ) for eachassignment,where i=1,2,3. By 
1 2  

Theorem 3.1, we have 
1) For the assginment xl= (x1,x2), X2= (x3 ,x4) : 

t(P1) < 4. 

2) For the assignment X =(x ,x ), X2=(x2,x4) : 
t(P2) 5 2. 1 1 3  

3) For .the assignment X1=(x1,x4), X2=(x2,x3) ; 

t(P < 4. 
3 

Because the assignment X =(x ,x ) X2'(x2,x4) 
1 1 3  

has the minimum upper bound, it is the first candi- 
date of the optimal assignment. 

(End of the example). 

V. Number of Prime Implicants 

In order to minimize the size of the PLA, it 
is sufficient to obtain aminimalsum-of-products 
expression. Classical method, which first obtains 
the set of all the prime implicants and thenobtains 
the minimal covering of it, can be extend to ma- 
nipulate multiple-valued variables [ 8 ] - [ 9 ] .  The 
number of prime implicants showsthe inherent 
complexity of the classical algorithm. 

5.1 Maximal Number of Prime Implicants. 

Lemma 5.1: Let p(n,p) be the maximal number 
of prime implicants of the p-valued n-variable 

n function {O,l, ...,p- 1) -+ {0,1}. When n=tm and 
t=2P-1, the following relation holds. 

n 
(n!)~(m!)~ < u(n,p) 5 t . 

S S S 
(Proof) First, consider a term X 'X 2.. .X ". 

1'2' n 
The number of distinct subsets ~,c(O,l,. . . ,p-l} 

A n 
is t, therefore we have p(n,p) 5 t . Next consider 
a term 

where S1,S2, ..., S are distinct sets. The number 
t 

of different terms, when the variables are per- 
mutated, is (n!)~(m!)~. Each term is not contained 
by other terms and is maximal. So all the terms 

t 
are prime. Hence (n!)/(m!) 5 u(n,p). Q.E.D. 

Corollary 5.1: There exist positive constants 
K1, K2, and K such that 

3 

~~(l5'ln~) < u(n,4). 

(Proof) By using Stirling's formula 

& n! = 4s n 2 e-", we have 

where t=2'-1. Q.E.D. 

Corollary 5.1 shows that there is an n vari- 
albe function of two-valued variables which has 

0(3~/n) prime implicants*[12], [la] , [19]. In the - 
case of four-valued variables. there exists a 

n 7 function which has c(15 /n ) prime implicants. 
These functions are pathological ones and for the 
most functions, the numbers of prime implicants 
are much smaller. 

* A function f(n) is said to be O(g(n)) iff there 

exists a positive constants K such that 



5.2 Average Number of Prime Implicants 

Definition 5.1: Let f be a function such that 

f: IO,~,. . . ,p-l~n -+ {o,~I. Let u=f-l(l). U=IUI is 
said to be the weight of f. 

Theorem 5.1: The average number of prime impli- 
cants of p-valued n-variable function of weight u 
is given by 

n (k) 
1 (k) t G (n,u)= - 1 C - *I (-1) *I X(k,t) 

P F(~) k t=O 
- t - 

where &=(kl,k 2,...,k ) is a partition of n, 
P 

, a =k (p-i), 
i i 

is a partition of t, and t 5 a i i' - - 

(Proof) See [21]. 
Theorem 5.2: The average number of prime impli- 

cants of p-valued n-variable function is given by 

(Proof) See [21]. 

Table 5.1 shows the values of G (n,u) and G (n) 
P P 

for p=2 and p=4. In the case of p=2, these results 
coincide with the results of [13] and [14]. We can 
obtain the following results form the numerical 
calculation. 
1). G (n,u)increases monotonously as u increases 

P 
from 0, and at some u it takes the maximum value, 
then it decreases monotonously as u increases to 

zn. For example, G (14,u) takes its maximum when 
2 

u=214x0. 92, and G (7 ,u) takes its maximum when 
4 

u=~'~x0.96. 
2). G (n/2,u)>G2(n,u), when n and u are sufficient- 

4 
ly large. 

3). Gp(n. pn/2) =Gp(n). 

VI. Statistical Results 

6.1 Average size of PLA's with two bit decoders 
In order to estimate the size of two-level PLA's 

and PLA's with two-bit decoders, both expressions 
of two-valued variables and four-valued variables 
are minimized for numerous randomly generated 
functions. The program developed consists of two 
parts: the first part generates all the prime 
implicants of multiple-valued variables; the second 
part detects essential terms, row and column domi- 
nance relations, and obtains a minimal covering. 
Table 1.3 shows the average size of PLA's up to 
10-variables. d=(~/2~)*100 denotes the percentage 
of minterms which are mapped to one. 

For OSd550, the larger d, the more complex the 
function. When n=10 and d=50, PLA's with two bit 
decoders are about 26% smaller than two-level PLA's. 

6.2 Average Number of Prime Implicants . 
Fig.6.1 shows the average number of prime 

implicants, number of terms in a minimal solution, 
and number of E-terms for randomly generated 
functions of 10 variables. E-term includes the 
essential terms and the terms which areselected by 
row and column dominance relations. The number of 
prime implicants agree with the theoretical results 
shown in Table 5.1 within errors of a few percents. 
The fraction of E-terms rapidly decreases in the 
case of four valued variables as d increases to 50. 
In the case of four-valued variables, the number of 
prime implicants is larger but the number of E-terms 
are smaller than that of two-valued variables. 

6.3 The Effect of the Assignment of Input 
Variables 

In order to investigate the de~endance on the - 
way of assignment of input variables, ten randomly 
generated functions of 8 variables were generated 
for each density. Then, 105 expressions which 
corresponds to all possible ways of assignments 
were minimized: for each function, there are 105 
different ways of assignment of 8 input variables 
to the 4 two-input decoders. Table 6.1 shows the 
statistical data of this exhaustive investigation. 
When the densityis 40%,optimally assigned PLA's are 
about 10% smaller than non-optimally assigned PLA's. 
Table 6.1 also shows the average widths of two-level 
PLA's for the same functions. In the case of d=40%, 
optimally assigned PLA's with two-bit decoders are 
about 32% smaller than two-level PLA's. 

VII. Conclusion and Comments 

1). PLA's with two-bit decoders require smaller 
arrays than two-level PLA's. In the case of n=8 
and d=40%, the former are 24% smaller than the 
latter. 

2).The size of the arravs of PLA's with two-bit 
decoders can be reduced by optimizing the assign- 
ment of input variables. In the case of n=8 and 
d=40%, optimally assigned PLA's are 1.0% smaller 
than non-optimally assigned PLA's, and are 32% 
smaller than two-level PLA's. We have recently 
developled eight different heuristic algorithms 
which find optimal or near optimal assignments 
quickly [22]; [23]. 

3).Minimization of the PLA's with two-bit decoders 
can be done by minimizing the expressions of 
four-valued logic functions. 

4).The number of the prime implicants of four- 
valued function is greater than that of the 
corresponding two-valued function. 

5).Classical method is statistically unsuitable to 
solve large minimization problem. We are now 
developing a heuristic program which finds a near 
minimal solution quickly. 
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0 denotes the number of prime implicants 
A denotes the number of terms in a minimal solution* 
x denotes the number of E-terms 

2-Valued 10-Variable function &Valued 5-Variable function 

10 20 30 40 50 (%) lo 20 30 40 50 

d: Percentage of Minterms d: Percentage of Mintems 

Fig. 6.1. Average numbers of prime implicants, terms 

in a minimal solution and the E-terms. 

* The entries of 40% and 50% denote the average of 5 near minimal solution. 
The other entries denote the average of 10 minimal solution. 
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