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Abstract: A three-level programmable logic array 
(three-level PLA) consists of three main parts, the 
D array, the AND array, and the OR array, and each 
of these arrays can be programmed. In this paper, a 
design method for three-level PLA's is described. 
Main results obtained are I) The minimization of the 
AND array corresponds to the minimization of a 
multiple-valued input two-valued output logic 
function; 2) By using the theory of multiple-valued 
decomposition of two-valued function, the computation 
time and the memory requirement for the minimization 
of the AND array can be reduced; and 3) The design of 
multiple-output function can be done in a similar 
way by introducing a variable which denotes the 
outputs. 

I. Introduction 

In the development of new integrated circuits, 
high cost as well as excessive lead time have long 
been recognized as serious problems by both the 
manufacturers and users of semiconductor devices. 
One approach to solve these problems that has appears 
commercially over the years involves customing only 
the interconnection pattern of standard prediffused 
array of logic gates. The other approach is now 
generally known as programmable logic arrays[l]-[5]. 

In this paper, a design method for three-level 
PLA's is.described. The three-level PLA consists of 
three main parts, the D array, the AND array, and 
the OR array as shown in Fig.l.l, and each of these 
arrays can be programmed. For example, a six-input 
three-output function can be realized by the three- 
level PLA shown in Fig.l.2. In the D array, the 
horizontal lines are distributed OR gates with inputs 
represented as X's at selected line crossing. In the 
AND array, the dots are analogous to AND gate inputs 
where the gate is represented by the vertical line. 
In the OR array, the X's denote the OR gate inputs 
where the gate is reprsented by the horizontal line. 

Three-level PLA's have several advantages to 
the conventional two-level PLA's[5]. 

(i) In order to realize an arbitrary function 

of n-variables, the array size of O(2 n) is 
sufficient in a three-level PLA realization 

while O(n2 n) is necessary in a conventional 
two-level PLA realization. 

(2) Array size can be further reduced by utiliz- 
ing the partial symmetry, the decomposabili- 
ty, and the redundancy of the given function. 

Major disadvantages of three-level PLA's are as 
follows: 

(3) Three-level PLA's are slower than two-level 
PLA's. 

(4) For small n, three-level PLA's sometimes 
require larger arrays than two-level PLA's. 

In Section II, a design method for three-level 
PLA's which is obtained in [5] will be discussed. 
And it will be shown that the minimization of multi- 
ple-valued input two-valued output function corre- 
sponds to the minimization of the AND array. In 
Section III, the theory of multiple-valued decompo- 
sition of two-valued function will be introduced. 
And it will be shown that the computation time and 
memory requirement for the minimization of the AND 
array can be reduced by using the theory. In Section 
IV, a design method for multiple-output functions 
will be discussed. 

II. Three-level Programmable Logic Arrays. 

In this section, a design method which minimizes 
the size of a three-level PLA will be considered. 
As shown in Fig.l.l, the three-level PLA can realize 
an arbitrary OR-AND-OR circuits. Several works are 
known about OR-AND-OR circuits minimization[6]-[7], 
but these methods need too much computation even if 
the number of input variables is small. To avoid 
this difficulty, the design of three-level PLA is 
divided into two parts. The first part is the design 
of the D array, and the second part is the design of 
the AND array. It will be shown that in order to 
minimize the size of the AND array for a given 
function, it is sufficient to obtain a minimal sum- 
of-products expression for the corresponding multi- 
ple -valued input two-valued output function. 

Definition 2.1: A three-level PLA consists of 
the D array, the AND array, and the OR array as 
shown in Fig.l.l. The size of n-variable m-output 
three-level PLA is defined as C(n)=(2n+W)H+Wm, where 
W is the number of columns of the AND array, H is 
the number of rows of the AND array, and m is the 
number of rows of the OR array. 

Definition 2.2: Let X=(Xl,X2,...,Xn) be a 

vaiable in Bn={0,1} n. The set of variables in X is 
denoted by {Xl,X 2 .... ,x n} or by {X}. The number of 

the variables in {X} is denoted by d(X). (Xi,X 2 .... 

,X r) is said to be a partition of X iff {Xl}U{X2}u 

...u{X }={X}, {X.}n{X.}=~ (i#j) and {Xi}# ~ . 
r i 3 ' 

Definition 2.3: Let a=(al,a2, .... an) be a 

constant in B n. X~: B n÷ B is a function such that 

xa~-0 if X#a and xa~-i if X=£. Let ScB n, X S is defined 

as x S = V  X&. 
• S 

- - 1  
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Lenmna 2.1: Let (Xi,X 2, .... ,Xr) be a partition 

of X. An arbitrary function f(X) of n variable is 
expressed in the form 

V a f (el 'e2 .... -- -- "" X--rr ' 

(e 1 ,e 2 ..... ~r) 

where a.~ B ni, d(X)=n, and d(Xi)=n i. 

Example 2.1: Consider the four-variable 
function 

f(X)=XlX2X3X4 v XlX2X3X 4 v x172x 3x 4 v ~ix2x3x 4 . 

Let  (Xl,X 2) be a p a r t i t i o n  of  X=(Xl,X2,X3,X4) and 

l e t  Xl=(Xl,X2),  X2=(x3,x4) .  f(X) can be r e p r e s e n t e d  

in the form 
f ...... (Ii). (00) . (ii). (01) . (i0). (ii) 
£AJ=Ai "A2 V ~i " A2 V Ai "A2 

v , . (01). . (11) 
a I "a 2 • n 
Lemma 2.2: Let d(X)=n and Si,S2!B =I. 

S 1 S 2 SinS 2 S 2 SiuS 2 
X " X =X , X S1 v X =X , 

S 1 I-S 1 
X =X , XI=i, and X~=0. 

Definition 2.4: X S is said to be a literal. 
A product of distinct literals is said to be a term. 
A sum of terms is said to be a sum-of-products 
expression. The number of terms in a sum-of-products 
expression P is denoted by t(P). P is said to be 
minimal if there is no expression Q such that 
t(Q)<t(P) and that Q denotes the same function as 
P. Let E 1 and E 2 be terms. E 2 is subterm of E 1 iff 

Ei#E 2 and ElSE 2. E 1 is said to be a prime implicant 

of f if EISf and if there is no subterm E 2 of E 1 

such that E2~f. 

Lemma 2.3: Let (Xi,X2,...,X r) be a partition 

of X. An arbitrary function f(X) can be represented 
in a form 

Sy S 1 S 2 S 
f(X) = X 1 .X 2 .... .X r, ____ (2.1) 

(S I .... ,Sr) r 

ni 
where S.cB , and d(Xi)=n i. In a three-level PLA, 

l-- 
if the D array generates all the maxterms of {X.} 

i 
for i=l,2,...,r, then an arbitrary term which has 

S 1 S 2 S 
the form X 1 .X 2 ,...-X r can be realized in each 

r 
column of the AND array. 

Example 2.2: The function of Example 2.1 can 
be represented as 

Theorem 2.1: Let (Xl,X2,...,X r) be a partition 

of X, and let the D array generate all the maxterms 
of {X i} for i=l,2,...,r. In order to minimize the 

size of the AND array for f(X), it is sufficient to 
obtain a minimal sum-of-productsexpression of f(X) 
having the form X / Si $2 Sr 

f(XI'X2'''',Xr )= V X 1 .X 2. ....X 
(Si,S2,...,Sr) r 

If P is minimal expression for f(X), then 
n-max{n. } 

t(P) ~ 2 i i , where ni=d(Xi). 

Proof: By Lemma 2.3, we have the first part. 
Assume without loss of generality that nl=max{ni}._ 

1 
f(X) can be represented as 

V S. aA a_ a 
f(Xl'X2' "" 'Xr)= Xl~XT~X~ ~" "" X--rr 

(Si,a_2, a_ 3 .... ~r ) 
...... (2.2) 

The number of terms in (2.2) is at most 
r n. n-n I n-max{n. } 

2 i =2 =2 i i Q.E.D. 

i=2 
Corollary 2.1: The size of three-level PLA 

which is sufficient to realize an arbitrary function 
of n variable is C(n)=(2n+W)H+W, where 

n-max{n.} r n. 
W=2 i i, H = ~. 2 i and _n=(nl,n2,''',nr) is a 

i=l 
vector which represents the partition of input 
variables. 

III. Multiple-Valued Decomposition of 

Two-Valued Lo$ic Function. 

In this section, the theory of muliple-valued 
decomposition of two-valued function will be 
described. By using this theory, we can reduce the 
computation time and the memory reqirement for the 
minimization of the AND arrays. 

Definition 3.1: Let (Xi,X2,...,Xr) be a par- 

tition of X, and f(X) be a function such that 

n I n 2 n 
f: B x B × ... x B r ~ B. 

n 
For e, k E B i, define a relation 

i 
a ~ b <=> f(Xle+Xi)=f(XIb+Xi) , 

where f(Xla+X.) denotes f(XI,X 2_ .. -- i "''Xi-l'e'Xi+l' 
X ). Obviously, the relation ! is an equivalence 

i i i 
relation. Let ~i=(L0,Li,...,Lk._l ) be a partition 

n. 1 
i i 

of B induced by the equivalence relation ~ 
n. 

A function ~i:B 1 ÷ M.1 " M i = { O ' l ' ' ' ' ' k i - 1 }  such t h a t  

~i(e)=J <=> e eL~ J is called a partition function 
n. 
i 

of B 
Example 3.1: Consider a six-variable function 

f(X)=(x I v x2).(x 3 ~ x4)°(x 5 v x6) 

v (x I v x2)°(X 3 @ x4)x 5 v (x I @ x2),(x 5 @ x6). 

Let (Xi,X2,X3) be a partition of X, where Xl=(Xl,X2) 

,X2=(x3,x4), and X3=(x5,x6). Note that 

f(X[(01)÷Xl)=f(Xl(10)+Xl), 

f(XI(00)+X2)=f(Xl(ll)+X2) , and 

f(xl(10)+X2)=f(XI(01)÷X2). 
n. 

The partition functions of B I are shown in 
Table 3.1. 
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Table 3.1 Partition functions 

X i ~l(Xl ) ~2(X2 ) ~3(X3 ) ' 

00 0 0 0 
01 1 1 1 
i0 1 1 2 
ii 2 0 3 

Lemma 3.1: Let (Xi,X2,...,Xr) be a partition of 

X, d(Xi)=ni, and let ~ibe a partition function of B ni. 

There exists a multiple-valued input two-valued 
output function 

g: M I x M 2 x ... x M ÷ B such that 
r 

f(Xl,X 2 ..... Xr)=g(~l(Xl),~2(X 2) ..... ~r(Xr)). 

L i (i=1,2,.. ,r), then let Proof: If ai • b. 
1 

g(bl,b 2 ..... br)=f(al,a2 ..... ar ). It is easy to show 

that this function satisfies the condition. Q.E.D. 

This lemma is similar to the well known 
decomposition theorem of Ashenhurst[8]-[ll]. But ~i 

is, in general , a multiple-valued function. When 
M.={0,1} (i=l,2,...,r), this lemma reduced to the 
i 

ordinary decomposition theorem. 
Example 3.2: Consider the function of Example 

3.1. By Lemma 3.1, f(X) can be represented as 

f(Xi,X2,X3)=g(~l(Xl),~2(X2),~3(X3)), where 

g(Yi,Y2,Y 3 ) _ _  is shown in Table 3.2. 

Table 3.2 

Yi Y2 Y3 g 

0 0 0 0 
0 0 i 0 
0 0 2 0 
0 0 3 0 
0 i 0 i 
0 i i I 
0 I 2 i 
0 i 3 0 
i 0 0 0 
i 0 i 1 
1 0 2 1 
1 0 3 1 
1 1 0 1 
1 1 1 1 
1 i 2 1 
1 1 3 0 
2 0 0 0 
2 0 1 0 
2 0 2 1 
2 0 3 1 
2 1 0 0 
2 1 1 0 
2 1 2 0 
2 i 3 0 

102 
v YiY2Y3 

202 
v YIY2Y3 

or in a form 

Definition 3.2: Let M={0,1,...,k-1}, tcM, and 

yt: M-~B be a function such that yt=0 if Y#t and 

yt=l if Y=t. Let To_M, yT is a function such that 

yT = V yt 

teT 
Lemma 3.2: Let Ti, T 2 c M=I. 

T 1 =yTlnT 2 = yT1uT2 Y " Y T2 , Y TI V Y T2 , 

T I yI-T 1 
Y = , yI=i , and Y~=0. 

Lemma 3.3: A multiple-valued input two-valued 
output function 

g: M I x M 2 x ... x Mr + B 

can be represented in the form 

g (Yi 'Y2 ..... Yr ) = 

ty t I t 2 t 
g(tl't2 .... 'tr) Yi " Y2 ..... yr 

(t I ..... tr ) r 

..... (3.1) 
or in a form 

V T I T 2 T 
g(Yi 'Y2 ' ' ' ' 'Yr  )= Y1 "Y2 . . . .  .y r , 

(Ti,T2 ..... Tr ) r 

. . . . .  (3.2) 

where tiETi, Tic Mi, and Mi={0,1,...,k.-l}. 
i 

Proof: By Definition 3.2, it is easy to show 
that (3.1) holds. By Lemma 3.2 and (3.1), we have 
(3.2). Q.E.D. 

Example 3.3: The function g of Example 3.2 can 
be represented in the form 

010 011 v 012 v i01 
g (Yi'Y2'Y3) =Y1Y2Y3 v Y1Y2Y 3 Y1Y2Y 3 Y1Y2Y3 

i03 v ii0 iii v 112 
v Y1Y2Y3 Y1Y2Y 3 v Y1Y2Y 3 Y1Y2Y3 

203 
v YiY2Y3 , - .... (3.3) 

. { 0 , i }  1 { 0 , i , 2 }  v . { 1 , 2 } . 0  . { 2 , 3 }  
g(Yi'Y2'Y3)=Yi "Y2"Y3 ~i "~2"~3 

1 {1,2} 
v yi.Y3 ..... (3.4) 

By using positional cube notations to represent 
terms[12]-[14], (3.3) and (3.4) can be represented 
as Table 3.3 and Table 3.4, respectively. 

Table 3.3 Table 3.4 

Y1 Y2 Y3 
012 01 0123 
Ii0-01-iii0 
011-i0-0011 
010-Ii-0110 

Yi Y2 Y3 

012 01 0123 
100-01-1000 
100-01-0100 
100-01-0010 
010-10-0100 
010-10-0010 
010-10-0001 
010-01-1000 
010-01-0100 
010-01-0010 
001-10-0010 
001-10-0001 
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Lemma 3.4: Let f'~i' and g be functions such 

that n. n 2 n 
f: BixB x ... xBr÷ B , 

n 
@i: B i ÷ Mi ; Mi={O,l,...,ki_l}, 

g: M1 x M 2 x ... x M ÷ B. 
r 

and f(X I,X 2 ..... Xr)=g(~l(Xl) '@2(X2)'''" '~r(Xr) )" 

i i i 
Let @i=(L0,Li , .... Lk._l) be a partition function 

ni i 
of B induced by the relation ~ , and let 

T. 
~i(a)=j <=> aeL. i . A literal y.l of the expression 

-- -- 3 1 

g(Yi,Y2,...,Yr ) corresponds to a literal 

s Q) 
X z L i 
i ; Si= 

jET. J 
1 

of the expression f(Xl,X2,...,Xr). And a term 
T 1 T 2 T 

Y1 "Y2' "'" "Y r of g(Y) corresponds to a term 
r 

S I S 2 S 
X 1 .X 2' ...'Xrr of f(X). 

Proof: It is easy to show by Definition 3.1 
and Definition 3.2. Q.E.D. 

Example 3.4: Consider the function f(X) of 
Example 3.1 and the function g(Y) of Example 3.3. 

{0,1} 1 {0,1,2} 
For the term Y1 'Y2"Y3 of g(Y), the 

corresponding term of f(X) is 
x~(O0), (01), (10) }. X~(01), (10) }.x~(O0), (01), (i0) } . 

{1,2} .0 ~2,3} 
For the term Y1 "x2" Y , the corresponding 

term'of f(X) is 

x~(Oi), (i0),(11)}, z~ 2" {(O0) '( i1)} .X~(iO) '( i i ) } ,  and 

Ii {1,2}, the corresponding term for the term Y .Y3 

of f(X) is Xli(O1)'(lO)}.X{q(O1)'(lO)}-- 
Theorem 3.1: Let two expressions 

V S I S 2 S 
f(Xi,X 2,...,xr)= X 1 "X 2 .... "X r 

(Si,$2 ' • • • ,St) r 

and \/ T 1 T 2 T 
g(Yi,Y2 , "'" Y1 "Y2" "'"Yrr 

'Yr)=(Ti ., .... T r) 

satisfy the relation 

f (Xl' X2 ..... Xr) =g (~i (Xi)' ~2 (X2) ..... ~r (Xr))" 

If P1 and Q1 are minimal expressions for f(X) and 

g(Y), respectively, then 
r 

t(Pl)=t(Q I) _< (~ ki)/(ma.x{ki}), 
n. i=l i 
1 

where ~i: B ÷ M i ; Mi={0,1,...,ki-l} , and 

d (X i) =n i . 

Proof: (i) For Pi' a minimal sum-of-products 

expression of f(X), consider the expression P2 

which has the form 

G 1 G 2 G 
Gr)Yi 'Y2 .... ,Yr r , where 

(Gi,G 

Gi={j i i i LjIA i} and A.={alaz . . . .  ~ b, beS.}.m Clearly, 

t(Pl)=t(P2). It is easy to show that P2represents 

g(Y). For Qi' a minimal sum-of-products expression 

of g(Y), consider the expression Q2 which has the 
form 

D I D 2 D U 
X 1 X 2 ... X r where D. = L~. 

(Di,D ...,D ) r ' z jET 3 
r i 

Clearly, t(Ql)=t(Q2). By Lemma 3.4, Q2 represents 

f(x). As P1 is a minimal expression of f(X), we 

have t(Pl)~t(Q2). As Q1 is a minimal expression of 

g(Y), we have t(Qi)Nt(P2). Therefore, t(Pl)=t(Ql). 

(2) Assume without loss of generality that 
m~x{ki}=k I. g(Y) can be represented in the form 

V T 1 t 2 t 3 t 
g(Yi'Y2 ..... Yr )= Y1 'Y2 "Y3 .... 'Yr r' 

(Tl,t 2 ..... t ) r 
...... (3.5) 

where TiEM 1 and t.eM. (i=2,3,...,r). The number of 
1 i 

terms in (3.5) is at most 
r r 

k. =( N ki)/(max{ki} ). 
i= 2 z i= 1 i 

Hence, we have the theorem. Q.E.D. 
Theorem 3.2: Let (Xi,X2,...,Xr) be a partition 

of X, and the D array generates all the maxterms 
of X. for i=l,2,...,r. In order to minimize the m 
size of the AND array for 

f(Xi,X 2 ..... Xr)=g(~i(Xi),~2(X 2) ..... ~r(Xr)), 

it is sufficient to obtain a minimal sum-of-products 
expression of g(Y) having the form 

V T 1 T 2 T 
g(Yi'Y2 .... 'Yr )= Y1 "Y2 .... .y r 

(Ti,T2,...,Tr) r 

Proof: By Theorem 3.1. Q.E.D. 
Example 3.5: The expression (3.4) of Example 

3.3 is a minimal sum-of-products expression for 
g(Y). Therefore, the corresponding minimal expres- 
sion for f(X) is given by f(Xi,X2,X3)= 

X{(00),(01),(10)} X~(01) (10)} .{(00),(01),(10)} v 
1 " ' "~3 

X{(01),(10),(11)} X~(00),(11)} X~(10),(11)} v 
l " " 

Table 3.5 shows the positional cube notation for 
f(X). 
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Table 3.5 Positional cubes for f 

X 1 X 2 X 3 

00 01 i0 ii O0 01 i0 ii 00 01 i0 Ii 
1 1 1 0 - 0 1 1 0 - 1 1 1 0 
0 1 1 1 - 1 0 0 1 - 0 0 1 1 
0 1 1 0 - 1 1 1 1 - 0 1 1 0 

Corollary 3.1: Let f(X) be a function such 
that 

f (Xl' X2 ..... Xr) =g (~I (Xl)' ~2 (X2) ..... @r (Xr))" 

The size of three-level PLA which is sufficient to 
realize f(X) is given by C(n)=(2n+W)H+W, where 

r r n. n. 
1 

W=( H ki)/(max{k }) H= ~ 2 i and ~i:B +Mi, 
i=l i i ' i= 1 ' 

M.={0,1 ..... k . - 1 } .  
1 1 

As shown in the examples of this section, it 
is clear that obtaining a minimal sum-of-products 
expression for g(Y) requires less computation time 
and less memories than obtaining that for f(X). 
The multiple-valued decomposition of two-valued 
logic function can be done in a similar way to 
ordinary two-valued decomposition. 

IV. Synthesis of Multiple-Output Functions. 

In the case of multiple-output functions, 
simultaneous minimization often produces better 
solution than individual minimization[15], [16]. 
In this section, we will show that the minimization 
of AND array for a multiple-output function as 
well as a single-output function can be done by a 
minimization of a multiple-valued input two-valued 
output function. 

Theorem 4.1: In order to minimize the AND array 
for m output functions 

n I n 2 n 
f.: B x B × ... x B r + B (j=0,1,...,m-1), 
J 

it is sufficient to obtain a minimal sum-of-products 
expression for the function 

n I n 2 n 
F : B x B  x . . .  x B r x M + B  

having a form \ / Sl $2 Sr 

F(Xi,X 2 .... ,Xr,Z)= V X I " X 2" • • -X r " ZR 
(Si,S 2 .... Sr,R) 

' n. 

where F(Xi,X 2 .... ,Xr,J)=fj(Xl,X 2 .... ,Xr) ' Sic_ B i, 

Re_M, and M={0,1 ..... m-l}. 
Proof: For expressions of f. (j=0,1 ..... m-l): 

JS I S 2 S 
fj(Xl,X2,...,Xr)=(Sl .... 'Sr) Xl .X2..... X r 

r ' 

consider a expression for F shown above. 
By definition, 

S 1 S 2 S S R 
r< f .xr.z < F Xl " X2 .... " Xr - j r - 

S 1 S 2 
<=> X 1 -X2-... 

and j e R. 

It is easy to see that the number of terms in F is 
equal to the number of columns of the AND array. 
Hence the theorem. Q.E.D. 

Example 4.1: Consider the six-variable three- 
output function shown in Table 4.l,where the func- 
tion is represented as a set of positional cubes. 
Let the partition of X be (Xi,X2,X3), where 

Xi= (Xl,X2) , X2=(x3,x4), and X3=(x5,x6). Let Z be a 

variable which denotes the outputs. Consider the 
function 

B 2 B 2 B 2 F(XI,X2,X3,Z): x x × {0,1,2} + B. 

F has the following properties: 

F(Xi,(01),X3,Z)=F(Xi,(10),X3,Z); 

F(Xi,X2,(00),z)=F(XI,X2,(ii),Z) ; and 

F(Xi,X2,(10),Z)=F(Xi,X2,(01),Z). 

So F can be decomposed as 

F(Xi,X2,XB,Z)=G(~i(Xi),~2(X2),$3(X3),Z), 

where $i are shown in Table 4.2. G is a function 

such that 
G: {0,1,2,3} × {0,1,2} × {0,i} × {0,1,2} ÷ {0,i} . 
By Theorem 4.1, in order to minimize the size of 
the AND array for the muliple-output function, it 
is sufficient to obtain a minimal sum-of-products 
expression for G. The terms of G are shown in Table 
4.3. It is easy to see that this is a minimal sum- 
of-products expression for G. The minimal sum-of- 
products expression for F which corresponds to G 
is shown in Table 4.4. The three-level PLA which 
realizes the given functions is shown in Fig.l.2. 

Table 4.1 Six-variable three-output function 

Input Output 

Xl x2 x3 x4 x5 x6 f0 fl f2 

01 01 01 01 01 01 
ii- i0- ii- 10- i0- i0 
ii- 10- ii- 10- 01- 01 
ii- 10- i0- ii- i0- i0 
ii- 10- I0- ii- 01- 01 
i0- Ii- ii- i0- i0- i0 
i0- ii- Ii- I0- 01- 01 
i0- ii- i0- ii- i0- i0 
i0- ii- 10- ii- 01- 01 
01- ii- 01- 01- i0- I0 
01- ii- 01- 01- 01- 01 
ii- 01- 01- 01- 10- 10 
ii- 01- 01- 01- 01- 01 
I0- 01- i0- 01- ii- ii 
i0- 01- 01- 10- ii- Ii 
01- i0- 01- ii- I0- i0 
01- i0- 01- ii- 01- 01 
01- 10- ii- 01- i0- i0 
01- i0- ii- 01- 01- 01 
I0- 01- 01- ii- I0- i0 
i0- 01- 01- ii- 01- 01 
i0- 01- ii- 01- i0- i0 
10- 01- ii- 01- 01- 01 

1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
0 1 1 
0 1 1 
0 1 1 
0 1 1 
1 0 1 
1 0 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
I" 1 1 
1 1 1 
1 1 1 
1 1 1 
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Table 4.2 Partition functions 

X i ~l(Xl ) ~2(X2 ) ~3(X3 ) 

00 0 0 0 
01 1 1 1 
I0 2 1 1 
Ii 3 2 0 

Table 4.3 Minimal expression for G. 

Y1 Y2 Y3 Z 

0123 012 Ol 012 
1110-110-10-110 
0111-001-10-011 
0100-010-11-101 
0110-011-10-111 

Table 4.4 Minimal expression for F 

X 1 X 2 X 3 Z 

00 Ol i0 ii 00 Ol i0 ii O0 01 i0 ii 0 i 2 
1 1 1 0 - 1 1 1 0 - 1 0 0 1 - 1 1 0 
0 1 1 1 - 0 0 0 1 - 1 0 0 1 - 0 1 1 
0 1 0 0 - 0 1 1 0 - 1 1 1 1 - 1 0 1 
0 1 1 0 - 0 1 1 1 - 1 0 0 1 - 1 1 1 

Corollary 4.1: Let F(Xi,X 2 ..... ,Xr,Z) be a 

function which represents a multiple-output function 
f. (j=O,l .... ,m-l), and can be represented as 
3 
F(X 1 ,X 2 ..... X r ,Z) =G(~i (X1) '~2 (X2) ..... @r (Xr) ,Z). 

The size of a three-level PLA which is sufficient 
to realize the function is given by 

C (n) = (2n+W) H+mW, where 
r+l r n. n. 

W=( ~ k°)/(max {k.}), H = ~ 2 ~, ~i: B i + M.; 
i=l l i ~ i=l l 

Mi={0,1 , . . . ,ki_l} ~ and kr+l=m. 

y. Cqncluding Remarks. 

In this paper, it is shown that the minimi- 
zation of the AND array corresponds to the minimi- 
zation of a multiple-valued input two-valued output 
logic function. The minimization of the multiple- 
valued input two-valued output function can be done 
in a similar way to that of Quine-McCluskey's, when 
the number of input variables is small. However, 
when the number of input variables is large, it is 
quite difficult to obtain a minimal expression. 
Because it is known that the number of prime 
implicants of multiple-valued input function is 
much larger than that of two-valued input function. 
Furthermore, Quine-McCluskey's method contains the 
problem of minimal covering which is known to be 
NP-complete[21]. Therefore, it will be practical 
to use the heuristic approach [2],[25], when the 
number of input variables is large. 
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