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A conservative logic element (CLE) is amultiple-
putput logic element whose weight of an input vector is
equal to that of the corresponding cutput vector, and
is a generalized model of magnetic bubble logic elements
,ete. Arbitrary 3-input 3-output conservative logic
circuits (3-3 CLC's) are realized by cascade connections
of 3-input 3-output CLE's called "primitives". It is
shown that the necessary and sufficient number of
different primitives to realize an arbitrary 3-3 CLC is
three in the case when the crossovers of lines are per-
mitted. The method of realizations is similar te that
of three-valued one-variable two-output logic funetions.
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which are obtained by cascade connections of ul,uz,...,
up. Tt is clear that [M]cK by definition. If [M] =K,

..,up] represents the set of the circuits

then M is said to be a universal set of 3-3 CLC's.
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Three-valued Representation of 3-3 CLC

Vectors of three-variable can be classified into
four classes according to their weights. We assign a

number to each vector §=(al,az,a3) as Table 1. Ei; :izulzi:i(u2)=0 f: iiiul'EZ::i . -
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Theorem 1: If M is universal, then M contains three

different elements Us By and My such that ufzﬂlannLl,
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Lemma 4: Any three-valued one-variable logic function
T=(t1 £y t3) can be realized Uy the three diffement

primitive functions P=(2 1 3), C=(2 3 1), and D=(1 1 3).
Lemma 5: Any 3~3 CLC can be realized as a cascade con~
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By the definitiom of CLC, the weight of an input vector
is equal to that of the corresponding cutput vector, so
any 3-3 CLC can be represented as Table Z. For the
inputs of weight O and 3, the outputs are uniquely de-
termined. So instead of two-valued representation, it
can be represented as (A). (A) is called three~valued
representation of 3-3 CLC. Any 3-3 CLC which is repre-
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sented as (A) can be regarded as a three-valued one- nections of six different primitives o and

variable two-output logiec function of Table 3.

Table 3

(al a, a3) input |1 2 3

u =EEI—E;1;;7 -— (&) output 1 a; 8, 3a,
output 2 bl b2 53

Universal Set of Primitives

Lemma 1: If two 3-3 CLC's Ul and u2 are comnected in a ]

cascade, then 3-3 CLC pqu is realized, where
a., a,) (c. c© c3)
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""" denotes the composition of transformations and
(a) a; ay)elep ¢ °3)=(°al ‘a, °a3) :
The set of all 3-3 CLG's is denoted by K.

Definition 1: Let M?{ul,uz,...,up]‘be a subset of K.

The minimal set 5§ which satisfies the following con-
ditions is said to be the set of composed functiomns,
written [M] of [ul,pz,...,up]:(i) McS, (id) ui,ujes =>

%, where I=(1 2 3).

Note that these six primitives are composed of
only three primitives when the crossovers of lines are
permitted.

Lemma 6: Any 3-3 CLC can be realized as a cascade con-
nnection of three different primitives

(223 (123 (231

a:» @z '™ T3 -
Theorem 2: Any 3-3 CLC can be realized as a cascade
connections of three different primitives {ul,u2 ,u3}
where uleMIann 1 ustlanﬁLz, and uBEMlannNI.
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