Tsutomu SASAO and (Department of Electronic Engineering, Osaka University, Osaka 565, Japan)

A conservative logic element (CLE) is a multipleoutput logic element whose weight of an input vector is equal to that of the corresponding output vector, and is a generalized model of magnetic bubble logic elements ,etc. Arbitrary 3-input 3-output conservative logic circuits (3-3 CLC's) are realized by cascade connections of 3-input 3-output CLE's called "primitives". It is shown that the necessary and sufficient number of different primitives to realize an arbitrary 3-3 CLC is three in the case when the crossovers of lines are permitted. The method of realizations is similar to that of three-valued one-variable two-output logic functions.

Three-valued Representation of 3-3 CLC

Vectors of three-variable can be classified into four classes according to their weights. We assign a number to each vector $\underline{a}=(a_1,a_2,a_3)$ as Table 1.

Table 2			
ut			
1			
2			
3			
1			
2			
3			

 $a_1, a_2, a_3, b_1, b_2, b_3 \in \{1, 2, 3\}$

By the definition of CLC, the weight of an input vector is equal to that of the corresponding output vector, so any 3-3 CLC can be represented as Table 2. For the inputs of weight 0 and 3, the outputs are uniquely determined. So instead of two-valued representation, it can be represented as (A). (A) is called three-valued representation of 3-3 CLC. Any 3-3 CLC which is represented as (A) can be regarded as a three-valued onevariable two-output logic function of Table 3. Table 3

$$\mu = \frac{(a_1 \ a_2 \ a_3)}{(b_1 \ b_2 \ b_3)} --- (A) \qquad \frac{\text{input}}{\text{output 1}} \qquad \frac{1 \ 2 \ 3}{a_1 \ a_2 \ a_3}$$

output 2 $b_1 \ b_2 \ b_3$

Universal Set of Primitives

Lemma 1: If two 3-3 CLC's μ_1 and μ_2 are connected in a cascade, then 3-3 CLC $\mu_1 \mu_2$ is realized, where

$$\mu_{1} = \frac{(a_{1} \ a_{2} \ a_{3})}{(b_{1} \ b_{2} \ b_{3})}, \quad \mu_{2} = \frac{(c_{1} \ c_{2} \ c_{3})}{(d_{1} \ d_{2} \ d_{3})}, \text{ and}$$

$$\frac{(a_{1} \ a_{2} \ a_{3}) \cdot (c_{1} \ c_{2} \ c_{3})}{\mu_{1}\mu_{2} = \frac{(b_{1} \ b_{2} \ b_{3}) \cdot (d_{1} \ d_{2} \ d_{3})}.$$
enotes the correspondence of transformations of transformations.

The set of all 3-3 CLC's is denoted by K.

<u>Definition 1:</u> Let $M=\{\mu_1, \mu_2, \dots, \mu_p\}$ be a subset of K. The minimal set S which satisfies the following conditions is said to be the set of composed functions, written [M] of $[\mu_1, \mu_2, \dots, \mu_p]$:(i) MCS,(ii) $\mu_i, \mu_j \in S =>$ Kozo KINOSHITA

 ${}^{\mu}_{\mathbf{i}} \cdot {}^{\mu}_{\mathbf{j}}, {}^{\mu}_{\mathbf{j}} \cdot {}^{\mu}_{\mathbf{i}} \epsilon^{\mathbf{S}}.$ $[\mu_1, \mu_2, \dots, \mu_p]$ represents the set of the circuits which are obtained by cascade connections of μ_1, μ_2, \ldots , μ_p . It is clear that [M] < K by definition. If [M] = K, then M is said to be a universal set of 3-3 CLC's. <u>Definition 2</u>: $\phi_1(u) = \delta(a_1 - a_2) + \delta(a_2 - a_3) + \delta(a_3 - a_1)$ $\phi_{2}(\mu) = \delta(b_{1}-b_{2}) + \delta(b_{2}-b_{3}) + \delta(b_{3}-b_{1})$ $\psi(\mu) = \delta(a_{1}-b_{1}) + \delta(a_{2}-b_{2}) + \delta(a_{3}-b_{3})$ where, $\mu = \frac{(a_1 \ a_2 \ a_3)}{(b_1 \ b_2 \ b_3)} \in K \text{ and } \delta(x) = \begin{cases} 0 \text{ if } x \neq 0 \\ 1 \text{ if } x = 0 \end{cases}$ Lemma 2: Let μ_1 , $\mu_2 \in K$. For i=1,2 Definition 3: $M_i = \{ \mu \mid \mu \in \mathbb{K}, \phi_i(\mu) = 0 \}$ (i=1,2) $\begin{array}{c} \bar{L_{i}} = \{ \ \mu \ | \ \mu \in K, \ \bar{\Phi_{i}}(\mu) = 3 \} \quad (i=1,2) \\ N_{i} = \{ \ \mu \ | \ \mu \in K \quad \psi(\mu) = i \} \quad (i=0,1,2,3) \end{array}$

<u>Lemma 3:</u> $[M_i] = M_i$, $[\overline{M}_i] = \overline{M}_i$, $[L_i] = L_i$ (i=1,2), $[N_3] = N_3$, $[\underline{M}_1 \cup \overline{\underline{M}}_2 \cup \underline{L}_1] = \underline{M}_1 \cup \overline{\underline{M}}_2 \cup \underline{L}_1, \quad [\overline{\underline{M}}_1 \cup \underline{M}_2 \cup \underline{L}_2] = \overline{\underline{M}}_1 \cup \underline{M}_2 \cup \underline{L}_2, \quad [\overline{\underline{M}}_1 \cup \overline{\underline{M}}_2] = \overline{\underline{M}}_1 \cup \overline{\underline{M}}_2,$ $[(N_0 \cup N_3) \cap M_1 \cap M_2] = (N_0 \cup N_3) \cap M_1 \cap M_2$

Theorem 1: If M is universal, then M contains three different elements μ_1 , μ_2 , and μ_3 such that $\mu_1 \in \overline{M}_1 \cap M_2 \cap \overline{L}_1$, $\mu_{2} \in M_{1} \cap \overline{M}_{2} \cap \overline{L}_{2}$, and $\mu_{3} \in M_{1} \cap M_{2} \cap N_{1}$. Lemma 4: Any three-valued one-variable logic function $T^{-1}(t_1, t_2, t_3)$ can be realized by the three different primitive functions P=(2 1 3), C=(2 3 1), and D=(1 1 3). Lemma 5: Any 3-3 CLC can be realized as a cascade connections of six different primitives $\frac{P}{I}$, $\frac{C}{I}$, $\frac{D}{I}$, $\frac{I}{P}$, $\frac{I}{C}$, and $\frac{1}{D}$, where I=(1 2 3).

Note that these six primitives are composed of only three primitives when the crossovers of lines are permitted.

Lemma 6: Any 3-3 CLC can be realized as a cascade connnection of three different primitives

$$\frac{(2 \ 2 \ 3)}{(1 \ 2 \ 3)}, \frac{(1 \ 2 \ 3)}{(2 \ 2 \ 3)}, \text{ and } \frac{(2 \ 3 \ 1)}{(1 \ 3 \ 2)}$$

<u>Theorem 2</u>: Any 3-3 CLC can be realized as a cascade connections of three different primitives $\{\mu_1, \mu_2, \mu_3\}$

where $\mu_1 \epsilon \overline{M}_1 \cap M_2 \cap \overline{L}_1$, $\mu_2 \epsilon M_1 \cap \overline{M}_2 \cap \overline{L}_2$, and $\mu_3 \epsilon M_1 \cap M_2 \cap N_1$. Acknowledgment The authors wish to acknowledge the support and encouragement of Prof. H. Ozaki. Reference: R.C.Minnick, P.T.Bailey, R.M.Sandfort and W.L.Semon, "Magnetic bubble logic", 1972 WESCON.