
Index Generation Functions: Theory and
Applications

Tsutomu Sasao
Department of Computer Science and Electronics,

Kyushu Institute of Technology,
Iizuka 820-8502, Japan

Abstract—This survey first introduces index generation func-
tions, which are useful for pattern matching in the commu-
nication circuit. Then, it shows various methods to realize
index generation functions by using LUTs and memories. These
methods are useful to design FPGAs with embedded memories.

I. INDEX GENERATION FUNCTION

This paper surveys new methods to design memory-based
pattern matching circuits [1], [3], [4], [5], [6]. Due to the page
limitation, all the proofs are omitted.

Definition 1.1: Consider a set of k different binary vectors
of n bits. These vectors are registered vectors. For each
registered vector, assign a unique integer from 1 to k. A
registered vector table shows the index of each registered
vector. An index generation function produces the corre-
sponding index if the input matches a registered vector, and
produces 0 otherwise. k is the weight of the index generation
function. An index generation function represents a mapping:
Bn → {0, 1, 2, . . . , k}. An index generator is a circuit that
realizes an index generation function.

Example 1.1: Table 1.1 shows a registered vector table with
k = 4 vectors.

An index generation function can be directly implemented
by a content addressable memory (CAM). However, a CAM
dissipates much power. So, in this paper, we use memories
instead of a CAM.

II. APPLICATIONS

Index generators are used in address table in the internet,
terminal access controller for local area networks, databases,
memory patch circuits, dictionaries, password lists, etc. [3].

A. Address Table in the Internet

IP addresses of the internet are often represented by 32
bits. An address table for a router stores IP addresses and
corresponding indexes for a memory that stores the details of

TABLE 1.1
REGISTERED VECTOR TABLE.

Vector Index
x1 x2 x3 x4

0 0 1 0 1
0 1 1 1 2
1 1 0 0 3
1 1 1 1 4

TAC

0B:97:26:34:08:76

81:0A:97:26:44:08

83:3A:57:26:46:29
64:6E :41:42:56: 73

73:6E :58:56:73: 52

53:03:74:59:03:32

46:05:76:75:39:89

92:6D:56:26:1E:63

Fig. 2.1. Terminal access controller.

the addresses. For example, in a typical problem, the number
of addresses in the table is 40, 000. Thus, the number of inputs
is 32 and the number of outputs is 16, which can handle 65,536
bits. Note that the address table must be updated frequently.

B. Terminal Access Controller

A terminal access controller (TAC) for a local area net-
work checks, whether the requested terminal has permission to
access Web outsize the local area network, e-mail, FTP, Telnet
or not. In Fig. 2.1, eight terminals are connected to the TAC.
Some can access all the resources. Others can access only
limited resources because of security issue. The TAC checks
whether the requested computer has permission to access the
Web, e-mail, FTP, Telnet, or not. Each terminal has its unique
MAC address represented by 48 bits. We assume that the
number of terminals in the table is at most 255. To implement
the TAC, we use an index generator and a memory. The
memory stores the details of the terminals. The number of
inputs for the index generator is 48 and the number of outputs
is 8. Note that the table for the terminal access controller must
be updated frequently.

Example 2.1: Fig. 2.2 shows an example of the terminal
access controller. The first terminal has the MAC address
53:03:74:59:03:02. It is allowed to access everything, includ-
ing is the Web outside the local area network, e-mail, FTP,
and Telnet. The second one is allowed to access both the Web
and e-mail. The third one is allowed to access only the Web.
And, the last one is allowed to access only e-mail. The index

585978-1-4244-7009-9/10/$26.00 ©2010 IEEE ISCIT 2010

Index Generator Memory
Address DATA

MAC Address Index Web E-mail FTP Telnet
53:03:74:59:03:32 1 ⇒ 1 1 1 1 1
92:6D:56:26:1E:63 2 2 1 1 0 0
0B:97:26:34:08:76 3 3 1 0 0 0
73:6E:58:56:73:52 4 4 0 1 0 0

︸ ︷︷ ︸ ︸ ︷︷ ︸
48-bit 4-bit

Fig. 2.2. Index generator for terminal access controller.

Fig. 2.3. Memory patch circuit.

generated by the index generator is used as an address to read
the memory which stores the permissions. If we implement
the TAC by a single memory, we need a memory with 256
Tera words, since the number of inputs is 48. To reduce the
size of memory, we use an index generator to produce the
index, and an additional memory to store the permission data
for each internal address.

C. Memory Patch Circuit

The firmware of an embedded system is usually imple-
mented by Read-Only Memories (ROMs). After shipping the
product, it is often necessary to modify a part of the ROM, for
example to upgrade to a later version. To convert the address
of the ROM to the address of the patch memory, we use the
index generator shown in Fig. 2.3.

The index generator stores addresses (vectors) of the ROM
to be updated, and their corresponding indexes. A patch
memory stores the updated data of the ROM. When the
address does not match any elements in the index generator,
the output of the ROM is sent to the output bus. In this
case, the output the patch memory is disabled. When the
address matches to an element in the index generator, the
index generator produces the corresponding index, and the
corresponding data of the patch memory is sent to the output
bus. In this case, the output of the ROM is disabled. This
method can be also used to improve the yield of large-scale
memory, which can ”patched” instead of discarded.

III. PROPERTIES OF INDEX GENERATION FUNCTIONS

The index generators in Section II have common properties:

1) The values of the non-zero outputs are distinct.

… … ……

8 8

…

8

…

8

…

8 8
…

8

…

Fig. 4.1. LUT cascade realization of index generator.

2) The number of non-zero output values is much smaller
than the total number of the input combinations.

3) High-speed circuits are required.
4) Data must be updated.

The third property is important in the communication net-
works. The last property requires that index generators must
be programmable.

IV. REALIZATION USING (p, q)-ELEMENTS

Lemma 4.1: Let F be an index generation function with
weight k. Then, there exists a functional decomposition [2]

F (X1, X2) = G(H(X1), X2),

where G and H are index generation functions, and the weight
of G is k, and the weight of H is at most k.

Definition 4.1: A (p, q)-element realizes an arbitrary p-
input q-output logic function. Its memory size is q2p.

Theorem 4.1: An arbitrary two-valued input n-variable in-
dex generation function with weight k can be realized as a
multi-level network of (p, q)-elements. The number of such
elements is at most �n−q

p−q �, where p > q and q = �log2(k+1)�.
We can generate various multi-level logic networks, including
cascades.

Example 4.1: Let us design index generator where n = 48
and k = 255. Let p = q + 2 and q = �log2(255 + 1)� = 8.
For each (p, q)-element, we can reduce the number of input
lines by two. So, by using 20 (p, q)-elements, we can reduce
the number of inputs into 8. For example, we have the LUT
cascade as shown in Fig. 4.1. Or, we have the multi-level logic
network shown in Fig. 4.2, where the number of levels is 10.
In this case, the variables are permutated during functional
decompositions. Note that both structures require the same
amount of memory: 160k bits.

When the weight k of the function satisfies the relation
�log2(k + 1)� < K, an index generation function can be
realized by a cascade of K-input cells as well as a multi-
level network of (K, q)-elements, or by a multi-level network
with K-LUTs. However, when k > 63, such methods are
inapplicable in most FPGAs, in the current FPGAs, the number
of inputs to an LUT is at most 6. That is K ≤ 6. In the next
section, we show a method to use embedded memories of
FPGAs.

V. INDEX GENERATION UNIT (IGU)

Fig. 5.1 shows the Index Generation Unit (IGU). The
programmable hash circuit has n inputs and p outputs. It
is used to permute the non-zero elements. We consider two

586

4

2

4

8

2

6 2

6

6

8

8

4

6

8

4

4

6

2

8

2

4

8

8

8k x 20 = 160 kbit

4
6

8
8

6

2

2 6

4

2

10

10

10

10

Fig. 4.2. Index generator (p = 10).

Fig. 5.1. Index generation unit (IGU).

types of programmable hash circuits. The first type is the
double-input hash circuit shown in Fig. 5.2. It performs
a linear transformation yi = xi ⊕ xj or yi = xi, where
i �= j. It uses a pair of multiplexers for each variable yi. The
upper multiplexers have the inputs x1, x2, . . . , xn. The lower
multiplexers have the inputs x1, x2, . . . , xn, except for xi. For
the i-th input, the constant input 0 is connected instead of xi.
By setting yi = xi ⊕ 0, we can implement yi = xi. The
second type of a programmable hash circuit is the single-
input hash circuit shown in Fig. 5.3. It consists of only p

n

n

+

n

n

+

n

n

+

111 ji xxy ��

222 ji xxy ��

tjtip xxy ��

Fig. 5.2. Double-input hash circuit.

n

nn
22 ixy �

11 ixy �

n
ipp xy �

Fig. 5.3. Single-input hash circuit.

multiplexers, and selects p variables from n input variables.
Note that both types of hash circuits produce only specific
kinds of hash functions. We have found that these functions
are suitable for our application. The main memory has p
inputs and �log2(k+1)� outputs. The main memory produces
correct outputs only for registered vectors. However, it may
produce incorrect outputs for non-registered vectors, because
the number of inputs to the main memory is reduced. In an
index generation function, if the input vector is non-registered,
then it should produce 0 outputs. To check whether the main
memory produces the correct output or not, we use the AUX
memory. The AUX memory has �log2(k + 1)� inputs and
n − p outputs: It stores the X2 part of the registered vectors
for each index. The comparator checks if the inputs are the
same as the registered vector or not. If they are the same,
the main memory produces a correct output. Otherwise, the
main memory produces a wrong output, and the input vector
is non-registered. Thus, the output AND gates produce 0
outputs, showing that the input vector is non-registered. Note
that the main memory produces the correct outputs only for the
registered vectors. A method to reduce the number of inputs
to the main memory is considered in [5].

Example 5.1: Consider the registered vectors in Table 1.1.
The number of variables is four, but only two variables x1 and
x4 are necessary to distinguish these four registered vectors.
Fig. 5.4 shows the IGU. In this case, the programmable hash
circuit produces Y1 = (x1, x4) from X = (x1, x2, x3, x4).
The main memory stores the indices for X1 = Y1 = (x1, x4),
and the AUX memory stores the values of X2 = (x2, x3) for
the corresponding registered vector.
When the input vector is registered:
Suppose that a registered vector (x1, x2, x3, x4) = (1, 1, 0, 0)
is applied to the IGU in Fig. 5.4. First, the programmable hash
circuit selects two variables, x1 and x4, and produces the value
X1 = (x1, x4) = (1, 0). Second, the main memory produces
the corresponding index (0, 1, 1). Third, the AUX memory
produces the values of X2 = (x2, x3) = (1, 0) corresponding
registered vector (1, 1, 0, 0). Fourth, the comparator confirms
that the values of X2 = (x2, x3) of the input vector are equal
to the output of the AUX memory. And, finally, the AND gate
produces the index for the input vector.
When the input vector is not registered:
Suppose that a non-registered vector (x1, x2, x3, x4) =
(1, 0, 1, 0) is applied to the IGU in Fig. 5.5. Also in this
case, the main memory produces the vector (0, 1, 1), and the
AUX memory produces the values of X2 = (x2, x3) for the
corresponding registered vector (1, 1, 0, 0). However, in this
case, the comparator shows that X2 = (x2, x3) = (0, 1) is
different from the output X2 = (x2, x3) of the AUX memory.
Thus, the AND gate produces zero output, which shows that
the input vector is not registered.

Consider the incompletely specified index generation func-
tion f∗, where the zero values of f are replaced by don’t cares.
The above example shows that in the main memory we can
implement f∗ instead of f . From the experimental results, we
have the following:

587

Fig. 5.4. When the input vector is registered.

Fig. 5.5. When the input vector is not registered.

Conjecture 5.1: Consider a set of uniformly distributed
incompletely specified index generation functions of n binary
input variables with weight k. Then, the fraction of the
functions represented with p = 2�log2(k + 1)� − 1 variables
approaches 1.0 as n increases.

Although there exist functions that require more than p =
2�log2(k + 1)� − 1 variables, the fraction of such functions
approaches 0.0 as n increase. When the value of k is large,
the main memory with p = 2�log2(k + 1)� − 1 inputs is too
large to implement. We need more efficient methods. From
the next section, we will consider such methods.

VI. REDUCTION BY A LINEAR TRANSFORMATION

As shown in Conjecture 5.1, most incompletely specified
index generation functions with weight k can be represented
by at most p = 2�log2(k + 1)� − 1 variables. However, there
exist functions that require more variables. In such a case,
we can often reduce the number of variables by a linear
transformation of the input variables. We have developed a
heuristic algorithm [6] to find a linear transformation that
reduces the number of variables, when the double-input hash
circuit is used. To find a linear transformation, we use the
following:

Theorem 6.1: Let f(x1, x2, . . . , xn) be an index generation
function. Let Y1 = (y1, y2, . . . , yp), where yi = xi ⊕ xj and

Fig. 8.1. Index generator implemented by hybrid method.

j ∈ {p + 1, p + 2, . . . , n}, and X2 = (xp+1, xp+2, . . . , xn).
Consider the transformed function g(Y1, X2) = f(X1, X2).
Then, f can be represented by using only Y1, if each column
of the decomposition chart (Y1, X2) has at most one non-zero
element.

VII. REGISTERED VECTORS REALIZED BY MAIN

MEMORY

From here, we assume that the non-zero elements in the
index generation function are uniformly distributed in the
decomposition chart. In this case, we can estimate the fraction
of registered vectors realized by the main memory.

Theorem 7.1: Consider a set of uniformly distributed index
generation functions f(x1, x2, . . . , xn) with weight k. Con-
sider an IGU whose inputs to the main memory are x1, x2, . . . ,
and xp. Then, the expected number of registered vectors of f
that can be realized by the IGU is 2p(1−e−ξ), where ξ = k

2p .
Corollary 7.1: Consider a set of uniformly distributed index

generation functions f(x1, x2, . . . , xn) with weight k. Con-
sider an IGU whose inputs to the main memory are x1, x2, . . . ,
and xp. Then, the fraction of registered vectors of f that can
be realized by the IGU is

δ =
1 − e−ξ

ξ
,

where ξ = k
2p .

For example, when ξ = 1
4 , we have δ
 0.8848, when

ξ = 1
2 , we have δ
 0.7869, and when ξ = 1, we have

δ
 0.63212.

VIII. EFFICIENT METHODS

From here, we are going to show efficient methods to
implement index generation functions using memories [4]. In
an index generation function, the number of registered vectors
k, is usually much smaller than 2n, the total number of the
input combinations.

Definition 8.1: The hybrid method is an implementation
of an index generation function using the circuit consisting of
IGU1 as shown in Fig. 8.1. IGU1 is used to realize most
of the registered vectors, while rewritable PLA is used to
realize remaining registered vectors. The OR gate in the output
combines the indices to form a single output. The rewritable
PLA can be replaced by another circuit, such as an LUT
cascade or a CAM.

588

Fig. 8.2. Index generator implemented by super hybrid method.

In the hybrid method, when the main memory of IGU1 has
p = �log2(k + 1)� + 2 inputs, we have ξ = 1

4 . Thus, about
88% of the registered vectors are implemented by IGU1, and
the remaining 12% of the registered vectors are implemented
by the PLA.

Definition 8.2: The super hybrid method is an imple-
mentation of an index generation function using the circuit
consisting of two IGUs as shown in Fig. 8.2. IGU1 is used to
realize most of the registered vectors, IGU2 is used to realize
the registered vectors not realized by IGU1, and the rewritable
PLA is used to realize registered vectors not realized by neither
IGUs. The OR gate in the output combines the indices to form
a single output. The rewritable PLA can be replaced by another
circuit, such as an LUT cascade, a CAM or an IGU.

The super hybrid method shown in Fig. 8.2 is more compli-
cated than the hybrid method, but requires smaller memories.
In the super hybrid method, when the main memory of the
IGU1 has p1 = �log2(k+1)�+1 inputs, and the main memory
of the IGU2 has p2 = �log2(k +1)�−1 inputs, about 80% of
the registered vectors are implemented by IGU1, about 16%
of the registered vectors are implemented by IGU2, and and
the remaining 4% of the registered vectors are implemented
by the PLA. By increasing the number of IGU’s, we have
the parallel sieve method, which is especially useful when the
number of the registered vectors is very large [1].

Definition 8.3: The parallel sieve method is an imple-
mentation of an index generation function using the circuit
consisting of multiple IGUs as shown in Fig. 8.3. IGUi+1 is
used to realize a part of the registered vectors not realized
by IGU1, IGU2, . . ., or IGUi. The OR gate in the output
combines the indices to form a single output. In the standard
parallel sieve method, the number of inputs to the main
memory is chosen as pi = �log2(ki + 1)�, where ki denotes
the number of registered vectors to be implemented by IGUi,
IGUi+1, . . . , and IGUr.

IX. DESIGN EXAMPLES

This part shows various designs of index generation func-
tions:

1) Single LUT.
When n = 10 and k = 500. The number of inputs for
the memory is n = 10, and the number of outputs is

IGU1

IGU2

IGU3

IGUr

OR

Fig. 8.3. Index generator implemented by parallel sieve method.

q = �log2(500 + 1)� = 9. Thus, the size of the memory
is 210 × 9 = 9 kilobits.

2) LUT Cascade.
When n = 10 and k = 15. Consider the LUT cascade
with (K = 6)-input LUTs. The number of rails is w =
�log2(15 + 1)� = 4, and the number of outputs is m =
w = 4. The number of cells is

s = � n − w

K − w
� = �10 − 4

6 − 4
� =

6
2

= 3.

The total amount of memory is

26 × 4 × 3 = 3 × 28 = 0.75 × 210.

Thus, 0.75 kilobits.
3) Hybrid Method.

When n = 48, k1 = 100. q = �log2(100 + 1)� = 7.
In this case, the LUT cascade would be too large. So,
we use the hybrid method. Let the number of inputs
to the main memory be p = q + 2 = 9. In this case,
by Corollary 7.1, the fraction of remaining registered
vectors is

γ1 = 1 − δ1 =
ξ − 1 + e−ξ

ξ

Since p = 9 and k1 = 100, we have ξ = 0.1953, and

γ1 = 1 − 0.9084 = 0.0916.

Thus, the number of remaining vectors is γ1k1
 9,
which can be implemented by an LUT cascade or a
rewritable PLA.
The sizes of memories are as follows:
Main memory: 9-input, 7-outputs: 3.5 kilobits.
AUX memory: 7-input, 41-outputs: 5.1 kilobits.
Thus, the total memory size is 8.6 kilobits.

4) Super Hybrid Method.
When n = 48, k1 = 1000. q1 = �log2(1000+1)� = 10.

589

In the hybrid method, the remaining vector is 10% of the
original vectors. That is, 100, which is fairly large. Thus,
we use the super hybrid method. In the super hybrid
method, we use the first main memory with p1 = q1 +
1 = 11 inputs, and q1 = 10 outputs. The fraction of
vectors not realized by the 1st IGU is

γ1 = 1 − δ1 =
ξ1 − 1 + e−ξ1

ξ1
.

When, k1 = 1000 and p1 = 11, we have ξ1 = 0.48828
and γ1 = 0.2088. The number of remaining vectors is
k2 = k1γ1
 209. q2 = �log2(209 + 1)� = 8.
The second main memory has p2 = q2 + 1 = 8 + 1 = 9
inputs and q2 = 8 outputs. The fraction of vectors not
realized by the 2nd IGU is

γ2 = 1 − δ2 =
ξ2 − 1 + e−ξ2

ξ2
.

When, k2 = 209 and p2 = 9, we have ξ2 = 0.398437,
and γ2
 0.1752. Thus, the number of remaining vectors
is k3 = k2γ2
 36, which can be implemented by an
LUT cascade or a rewritable PLA.
The sizes of memories are as follows:
1st main memory: 11-input, 10-outputs: 20 kilobits.
1st AUX memory: 10-input, 37-outputs: 37 kilobits.
2nd main memory: 9-input, 8-outputs: 4 kilobits.
2nd AUX memory: 8-input, 39-outputs: 9.75 kilobits.
Thus, the total memory size is 70.75 kilobits.

5) Standard Parallel Sieve Method.
When k1 = 500, 000, we have q1 = �log2(k1 + 1)� =
19. In the super hybrid method, the remaining vector is
4% of the original vectors. That is, 20000, which is very
large. Thus, we use the standard parallel sieve method.
In this method, the first main memory has p1 = q1 = 19
inputs and q1 = 19 outputs. The fraction of vectors not
realized by the 1st IGU is

γ1 = 1 − δ1 =
ξ1 − 1 + e−ξ1

ξ1

When k1 = 500000 and p1 = 19, we have ξ1 =
0.953674 and γ1 = 0.35546. Thus, the number of
remaining vectors is k2 = k1γ1
 177733. and q2 =
�log2(177733 + 1)� = 18.
The second main memory has p2 = q2 = 18 inputs and
q2 = 18 outputs. The fraction of vectors not realized by
the 2nd IGU is

γ2 = 1 − δ2 =
ξ2 − 1 + e−ξ2

ξ2

When, k2 = 177733 and p2 = 18, we have ξ2 =
0.6779976 and the number of remaining vectors is
k3 = k2γ2
 48662.

In the similar way, we have

p3 = 16, k4
 14316.

p4 = 14, k5
 4771.

p5 = 13, k6
 1155.

p6 = 11, k7
 273.

p7 = 9, k8
 62.

Thus, the number of remaining vectors is k8
 62,
which can be implemented by an IGU, an LUT cascade
or a rewritable PLA.
For each IGUi, the main memory has pi inputs and
pi outputs, while the AUX memory has pi inputs and
(n − pi) outputs. Thus, the total amount of memory is

pi2pi + (n − pi)2pi = n2pi .

So, the total amount of memory for the parallel sieve
method is

r∑
i=1

n2pi = 32 · (219 +218 +216 +214 +213 +211 +29).

It is about 24 megabits.

X. CONCLUSIONS

In this paper, we introduced index generation functions,
which have wide applications in pattern matching circuits for
the Internet. We also presented various methods to implement
index generation functions: Method using (p, q)-elements,
method using an IGU, the hybrid method, the super-hybrid
method and the parallel sieve method.

ACKNOWLEDGMENTS

This research is partly supported by the MEXT Regional
Innovation Cluster Program (Global Type, 2nd Stage). The
author thanks Prof. Jon T. Butler, Dr. Hiroki Nakahara, and
Mr. M. Matsuura for discussion.

REFERENCES

[1] H. Nakahara, T. Sasao, M. Matsuura, and Y. Kawamura, “A
parallel sieve method for a virus scanning engine,” 12th EU-
ROMICRO Conference on Digital System Design, Architectures,
Methods and Tools, Patras, Greece (DSD-2009), Aug. 2009,
pp.809-816.

[2] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[3] T. Sasao, “Design methods for multiple-valued input ad-
dress generators,”(invited paper) International Symposium on
Multiple-Valued Logic (ISMVL-2006), Singapore, May 2006.

[4] T. Sasao and M. Matsuura, “An implementation of an address
generator using hash memories,” DSD-2007, Aug. 27 - 31, 2007,
Lubeck, Germany, pp.69-76.

[5] T. Sasao, “On the number of variables to represent sparse logic
functions,” ICCAD-2008, San Jose, California, USA, Nov.10-13,
2008, pp. 45-51.

[6] T. Sasao, T. Nakamura, and M. Matsuura, “Representation of
incompletely specified index generation functions using minimal
number of compound variables,” DSD-2009, Aug. 2009, pp.765-
772.

590

