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Realization of Multi-Terminal Universal Interconnection Networks
Using Contact Switches

Tsutomu SASAO†a), Takashi MATSUBARA††, Katsufumi TSUJI†††, and Yoshiaki KOGA††, Members

SUMMARY A universal interconnection network implements arbitrary
interconnections among n terminals. This paper considers a problem to
realize such a network using contact switches. When n = 2, it can be
implemented with a single switch. The number of different connections
among n terminals is given by the Bell number B(n). The Bell number
shows the total number of methods to partition n distinct elements. For n =
2, 3, 4, 5 and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203,
respectively. This paper shows a method to realize an n terminal universal
interconnection network with 3

8 (n2−1) contact switches when n = 2m+1 ≥
5, and n

8 (3n + 2) contact switches, when n = 2m ≥ 6. Also, it shows that
a lower bound on the number of contact switches to realize an n-terminal
universal interconnection network is �log2 B(n)�, where B(n) is the Bell
number.
key words: interconnection network, partition number, Bell number, com-
plexity of circuits, contact switch, multi-position switch, universal network,
contact network

1. Introduction

Problem 1.1: Consider a controller of a solar energy sys-
tem consisting of the following seven units:

1. Solar panel 1
2. Solar panel 2
3. Rechargeable battery unit 1
4. Rechargeable battery unit 2
5. Load unit 1
6. Load unit 2
7. Voltage meter unit

We need to change the interconnections among these units
depending on various conditions. What kind of network
should be used to allow necessary connections? For ex-
ample, in the day time, assume that Solar panel 1 is con-
nected to Rechargeable battery unit 1, and Solar panel 2
is connected to Rechargeable battery unit 2. This con-
figuration is denoted by the partition of unit numbers:
{[1, 3], [2, 4], [5], [6], [7]}. At night, assume that Recharge-
able battery unit 1 is connected to Load unit 1, and
Rechargeable battery unit 2 is connected to Load unit 2.
This configuration is denoted by {[1], [2], [3, 5], [4, 6], [7]}.
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At the maintenance time, assume that Voltage meter
unit is connected to Solar panel 1 to check the perfor-
mance of the panel. This configuration is denoted by
{[1, 7], [2], [3], [4], [5], [6]}. Also, assume that Voltage me-
ter unit is connected to Battery unit 1 to check the volt-
age of the battery. This configuration is denoted by
{[1], [2], [3, 7], [4], [5], [6]}.

This problem can be solved by using a universal inter-
connection network among seven terminals.

In this paper, we show that to implement an n-
terminal universal interconnection network, 3

8 (n2 − 1) con-
tact switches when n = 2m + 1 ≥ 5, and n

8 (3n + 2) contact
switches, when n = 2m ≥ 6, are sufficient. The rest of this
paper is organized as follows: Sect. 2 introduces terminol-
ogy used in this paper. Section 3 shows a method to realize
a universal interconnection network. Section 4 shows a re-
alization of universal interconnection network using multi-
position switches. Section 5 shows a graph representation
of universal interconnection networks. Section 6 concludes
the paper, and shows future problems. And, Sect. 7 surveys
related research.

A preliminary version of this paper was presented as
[16].

2. Definitions and Basic Properties

This section defines terminology used in this paper.

Definition 2.1: Fig. 1 shows a contact switch. When x =
0, the terminal a is disconnected from the terminal b. When
x = 1, the terminal a is connected to the terminal b. It is also
called a single-pole single-throw switch.

A contact switch can be implemented by a magnetic
relay [8], [12], MEMS, or semiconductors.

A contact switch is bidirectional, i.e, the terminals
connected together have the same electrical potential. Thus,
an analog signal can be transmitted. Since only contact
switches are used in this paper, a contact switch is simply
called a switch.

Fig. 1 Contact switch
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Table 1 Bell numbers B(n) and �log2 B(n)�
n B(n) �log2 B(n)�
2 2 1
3 5 3
4 15 4
5 52 6
6 203 8
7 877 10
8 4140 13
9 21147 15
10 115975 17

Definition 2.2: A partition of a set S is a set of non-null
subsets of S . Each element in S belongs to exactly one of
these subsets. An element of a partition is called a block.

Example 2.1: The set S = {1, 2} has two partitions:
{[1], [2]} and {[1, 2]}.
Example 2.2: The set S = {1, 2, 3} has five parti-
tions: {[1], [2], [3]}, {[1, 2], [3]}, {[1, 3], [2]}, {[1], [2, 3]}, and
{[1, 2, 3]}.
Example 2.3: The set S = {1, 2, 3, 4} has the fol-
lowing 15 partitions: {[1], [2], [3], [4]}, {[1, 2], [3], [4]},
{[1, 3], [2], [4]}, {[1], [2, 3], [4]}, {[1, 2, 3], [4]}, {[1, 4], [2],
[3]}, {[1, 2, 4], [3]}, {[1, 3, 4], [2]}, {[1, 4], [2, 3]}, {[1, 2, 3, 4]},
{[1], [2, 4], [3]}, {[1, 3], [2, 4]}, {[1], [2, 3, 4]}, {[1], [2], [3, 4]},
and {[1, 2], [3, 4]}.
Definition 2.3: The number of partitions of a set of n
distinguishable elements into non-empty, indistinguishable
boxes is the Bell number. It is denoted by B(n).

Table 1 shows the values of B(n) for n = 2, 3, . . . , 10.
The n-th Bell number B(n) is given by the following

recurrence relation [3]:

B(n + 1) =
n∑

k=0

(
n
k

)
B(k).

Definition 2.4: An n-terminal universal interconnection
network U(n) realizes arbitrary interconnections among n
terminals. It realizes B(n) different connection patterns.

3. Realization of Universal Interconnection Networks

3.1 Lower Bound on the Number of Switches

Theorem 3.1: To realize U(n), at least �log2 B(n)�
switches are necessary, where B(n) denotes the Bell num-
ber.

(Proof) Suppose that U(n) consists of s contact
switches. Then, since U(n) has B(n) states, the following re-
lation holds: 2s ≥ B(n). From this, we have s ≥ �log2 B(n)�.

�
The last column of Table 1 shows the values for

�log2 B(n)�, for n = 2, 3, . . . , 10.

3.2 Upper Bound on the Number of Switches

Lemma 3.1: A 3-terminal universal interconnection net-
work U(3) can be realized with three switches.

Fig. 2 Three-terminal universal interconnection network U(3)

Table 2 Combination table for U(3)

Class x1 x2 x3 Partition
1 0 0 0 [1],[2],[3]
2 1 1 0 [1,2],[3]
3 1 0 1 [1,3],[2]
4 0 1 1 [1],[2,3]
5 1 1 1 [1,2,3]

Fig. 3 Realization of a (k+1)-terminal universal interconnection network

(Proof) Consider the circuit in Fig. 2. It shows the state
where all the switches are in the open states. This state is
selected when the control inputs are (x1, x2, x3) = (0, 0, 0).
In this state, all the terminals are isolated. In this case, the
network realizes the partition {[1], [2], [3]}. Other states can
be realized as shown in Table 2. �

Lemma 3.2: A (k + 1)-terminal universal interconnection
network U(k + 1) can be realized by connecting k switches
to the k-terminal universal interconnection network U(k), as
shown in Fig. 3.

(Proof) Assume that U(k) can realize any partition of k
elements.

We can append the (k + 1)-th element to an arbitrary
block of a partition of k elements, by setting one of the
switches to the closed position as shown in Fig. 3. Also, by
setting all the switches to the open positions, we can make
the (k + 1)-th element isolated. In this way, all the partitions
of k + 1 elements are realized. �

Theorem 3.2: An n-terminal universal interconnection
network U(n) can be realized with C1(n) = n(n−1)

2 switches.

(Proof) We use mathematical induction on the number
of terminals n.

• When n = 2, U(2) can be realized with C1(2) = 1
switch.
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Fig. 4 Five-terminal universal interconnection network U(5)

Fig. 5 Three-position switch

• When n = 3, U(3) can be realized with C1(3) = 3
switches, by Lemma 3.1.
• Assume that a k-terminal universal interconnection net-

work U(k) can be realized with C1(k) = k(k−1)
2 switches.

By Lemma 3.2, a (k + 1)-terminal universal intercon-
nection network U(k + 1) can be realized by connect-
ing k switches to U(k). Let C1(k + 1) be the sufficient
number of switches to realize U(k+1). Then, C1(k+1)
satisfies the following relation:

C1(k + 1) = C1(k) + k.

By replacing C1(k) with k(k−1)
2 , we have

C1(k + 1) =
(k + 1)k

2
.

Hence, we have the theorem. �

Lemma 3.3: A five-terminal universal interconnection
network U(5) can be realized with nine switches.

(Proof) Consider the network shown in Fig. 4. Let us
introduce ternary signals Xi (i = 1, 2, 3, 4, 5) that control
the connections among terminals. Also consider the three-
position switch [7] shown in Fig. 5. This switch works as
follows: When Xi = 0, the common armature is connected
to the upper contact a; when Xi = 1, the common armature
is connected to the middle contact b; and when Xi = 2, the
common armature is connected to the lower contact network
c.

In the network, each terminal i is connected to no bus
line when Xi = (0, 0); to L1 (the red bus line) when Xi =

(0, 1); and to L2 (the green bus line) when Xi = (1, 0).
By setting the values of Xi as shown in Table 3, we can

realize all 52 different partitions.
Note that the three-position switch for terminal 1 can

be replaced by a switch. Also, each of the three-position
switches for terminals 2 to 5 can be replaced by a pair of
switches. In Fig. 4, contacts a for three-position switches
are isolated, so no switch is necessary for the contacts a.
Thus, the circuit can be implemented by nine switches. �

Table 3 Combination table for U(5)

Class X1 X2 X3 X4 X5 Partition
1 0 0 0 0 0 [1], [2], [3], [4], [5]
2 1 1 0 0 0 [1, 2], [3], [4], [5]
3 1 0 1 0 0 [1, 3], [2], [4], [5]
4 1 0 0 1 0 [1, 4], [2], [3], [5]
5 1 0 0 0 1 [1, 5], [2], [3], [4]
6 0 1 1 0 0 [2, 3], [1], [4], [5]
7 0 1 0 1 0 [2, 4], [1], [3], [5]
8 0 1 0 0 1 [2, 5], [1], [3], [4]
9 0 0 1 1 0 [3, 4], [1], [2], [5]

10 0 0 1 0 1 [3, 5], [1], [2], [4]
11 0 0 0 1 1 [4, 5], [1], [2], [3]
12 1 1 2 2 0 [1, 2], [3, 4], [5]
13 1 1 2 0 2 [1, 2], [3, 5], [4]
14 1 1 0 2 2 [1, 2], [4, 5], [3]
15 1 2 1 2 0 [1, 3], [2, 4], [5]
16 1 2 1 0 2 [1, 3], [2, 5], [4]
17 1 0 1 2 2 [1, 3], [4, 5], [2]
18 1 2 2 1 0 [1, 4], [2, 3], [5]
19 1 2 0 1 2 [1, 4], [2, 5], [3]
20 1 0 2 1 2 [1, 4], [3, 5], [2]
21 1 2 2 0 1 [1, 5], [2, 3], [4]
22 1 2 0 2 1 [1, 5], [2, 4], [3]
23 1 0 2 2 1 [1, 5], [3, 4], [2]
24 0 1 1 2 2 [2, 3], [4, 5], [1]
25 0 1 2 1 2 [2, 4], [3, 5], [1]
26 0 1 2 2 1 [2, 5], [3, 4], [1]
27 0 1 2 1 2 [3, 5], [2, 4], [1]
28 0 1 1 2 2 [4, 5], [2, 3], [1]
29 1 1 1 2 2 [1, 2, 3], [4, 5]
30 1 1 2 1 1 [1, 2, 4], [3, 5]
31 1 1 2 2 1 [1, 2, 5], [3, 4]
32 1 2 1 1 2 [1, 3, 4], [2, 5]
33 1 2 1 2 1 [1, 3, 5], [2, 4]
34 1 2 2 1 1 [1, 4, 5], [2, 3]
35 1 2 2 2 1 [2, 3, 4], [1, 5]
36 1 2 2 1 2 [2, 3, 5], [1, 4]
37 1 1 2 2 2 [3, 4, 5], [1, 2]
38 1 1 1 0 0 [1, 2, 3], [4], [5]
39 1 1 0 1 0 [1, 2, 4], [3], [5]
40 1 1 0 0 1 [1, 2, 5], [3], [4]
41 1 0 1 1 0 [1, 3, 4], [2], [5]
42 1 0 1 0 1 [1, 3, 5], [2], [4]
43 1 0 0 1 1 [1, 4, 5], [2], [3]
44 0 1 1 1 0 [2, 3, 4], [1], [5]
45 0 1 1 0 1 [2, 3, 5], [1], [4]
46 0 0 1 1 1 [3, 4, 5], [1], [2]
47 1 1 1 1 0 [1, 2, 3, 4], [5]
48 1 1 1 0 1 [1, 2, 3, 5], [4]
49 1 1 0 1 1 [1, 2, 4, 5], [3]
50 1 0 1 1 1 [1, 3, 4, 5], [2]
51 0 1 1 1 1 [2, 3, 4, 5], [1]
52 1 1 1 1 1 [1, 2, 3, 4, 5]

Note that when n = 5, Theorem 3.2 gives C1(5) = 10.
However, the realization shown in Fig. 4 requires only nine
switches, and thus requires fewer switches. Bus lines are
used to implement blocks with more than two elements,
such as [1,2] and [3,4,5]. With this, when n ≥ 5, the up-
per bound of Theorem 3.2 can be reduced by one.

Theorem 3.3: An n-terminal universal interconnection
network U(n) can be realized with C2(n) = (n+1)(n−2)

2
switches when n ≥ 5.

(Proof) We use mathematical induction on the number
of terminals n.

• When n = 5, U(5) can be realized with C2(5) = 9
switches by Lemma 3.3.
• Similarly to the proof of Theorem 3.2, by solving the

recurrence relation C2(k+1) = C2(k)+k and C2(5) = 9,
we have C2(k + 1) = (k+2)(k−1)

2 .

�
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Fig. 6 Six-terminal universal interconnection network U(6)

Fig. 7 Four-position switch

4. Realization Using Multi-Position Switches

In the previous section, three-position switches were used
to realize a universal interconnection network U(5). In this
section, we show a method to realize a large-scale network
with multi-position switches and bus lines.

Lemma 4.4: A six-terminal universal interconnection net-
work U(6), can be realized with six four-position switches.

(Proof) We show that Fig. 6 realizes an arbitrary par-
tition of six elements. In the upper part of this figure, six
four-position switches are used. The operation of a four-
position switch shown in Fig. 7 is as follows: When X = 0,
the common armature is connected to the contact a; when
X = 1, the common armature is connected to the contact b;
when X = 2, the common armature is connected to the con-
tact c; and when X = 3, the common armature is connected
to the contact d.

The number of partitions of distinct n = 6 elements is
B(6) = 203. Note that the set of partitions has a symmetric
property. That is, if a partition is realized by a network,
then the partition that is obtained by any permutation of the
variables, is also realized by the same network.

For example, suppose that Fig. 6 realizes the partition

{[1, 2], [3, 4], [5, 6]},
then the partition

{[1, 6], [2, 5], [3, 4]},
is also realized by the same network, when x1, x6, x2, x5,
x3 and x4 are connected to the terminals 1, 2, 3, 4, 5 and 6,
respectively.

Table 4 Partition numbers P(n)

n P(n)
2 2
3 3
4 5
5 7
6 11
7 15
8 22

Table 5 Realization of U(6) using four-position switches

Class Partition X1 X2 X3 X4 X5 X6

1 [1], [2], [3], [4], [5], [6] 0 0 0 0 0 0
2 [1, 2], [3], [4], [5], [6] 1 1 0 0 0 0
3 [1, 2, 3], [4], [5], [6] 1 1 1 0 0 0
4 [1, 2], [3, 4], [5], [6] 1 1 2 2 0 0
5 [1, 2, 3, 4], [5], [6] 1 1 1 1 0 0
6 [1, 2, 3], [4, 5], [6] 1 1 1 2 2 0
7 [1, 2], [3, 4], [5, 6] 1 1 2 2 3 3
8 [1, 2, 3, 4, 5], [6] 1 1 1 1 1 0
9 [1, 2, 3, 4], [5, 6] 1 1 1 1 2 2
10 [1, 2, 3], [4, 5, 6] 1 1 1 2 2 2
11 [1, 2, 3, 4, 5, 6] 1 1 1 1 1 1

Fig. 8 Realization of a four-position switch

Thus, the number of partitions to consider is reduced to
the number of partitions of six indistinguishable elements.

In general, the number of partitions of n indistinguish-
able elements is called the partition number†, and is de-
noted by P(n) [2]. Table 4 shows P(n) for up to n = 8.

To prove the lemma, it is sufficient to show that all
P(6) = 11 partitions shown in the second column of Table 5
are realized.

As shown in the last six columns of Table 5, by setting
the values to the variables Xi (i = 1, 2, . . . , 6), we can real-
ize all 11 partitions. Here, when the value of variable Xi is
j > 0, the terminal i is connected to the bus line Lj. While,
when the value of the variable Xi is equal to 0, the terminal
is isolated. Note that Fig. 6 shows the state where all the
variables Xi are zeros. From these, we have the lemma. �

In Fig. 6, replace each four-position switch with the cir-
cuit in Fig. 8, and we have U(6) with 6×3 = 18 switches. In
Fig. 6, contacts a are isolated. Thus, no switch is necessary
for the contacts a.

Lemma 4.5: When n = 2m and m ≥ 3, an n-terminal uni-
versal interconnection network U(n) can be realized with n
(m + 1)-position switches.

(Proof) Consider the network which is a generalized

†Ferrers diagram or Young diagrams can be used to derive this
number.
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version of U(6) in Fig. 6. Assume that the number of termi-
nals is n = 2m, the number of bus lines is m, and in each
column, there is a (m + 1)-position switch. In this case, the
generalized network realizes an arbitrary partition. �

Theorem 4.4: When n = 2m and n ≥ 6, an n-terminal
universal interconnection network U(n) can be realized with

C3(n) =
m
2

(3m + 1) =
n
8

(3n + 2)

switches.

(Proof) First, realize an n-terminal universal intercon-
nection network U(n) using n (m + 1)-position switches, by
Lemma 4.5. Then, replace each (m+1)-position switch with
m switches. In this case, the total number of switches is

2m × m = 2m2.

However, we can remove redundant switches. In Fig. 6,
we can remove the three contacts with black circles. This
can be done using the strategy: A terminal with the smaller
index uses the bus line with the smaller index.

So, the terminal 1 can be connected to only the bus line
L1. Also, the terminal 2 can be connected to the bus line L1

or L2. With this method, we can remove

(m − 1) + (m − 2) + · · · + 2 + 1 =
m(m − 1)

2

switches. Thus, the total number of switches is

2m2 − m(m − 1)
2

=
m
2

(3m + 1).

�
Note that when n = 6, C1(6) = C3(6) = 15, and

C2(6) = 14. However, when n = 8, C1(8) = 28, C2(8) = 27,
and C3(8) = 26†.

Similarly, we have the following result.

Theorem 4.5: When n = 2m + 1 and n ≥ 5, an n-terminal
universal interconnection network U(n) can be realized with

C3(n) =
3
2

m(m + 1) =
3
8

(n2 − 1)

switches.

A design method for U(n) is summarized as:

Algorithm 4.1: 1. Make a combination table for U(n)
such as Table 2 and Table 3.

2. Prepare � n
2 � bus lines.

3. Prepare n � n
2 �-position switches.

4. Connect the terminals and bus lines according to the
combination table.

5. Replace the multi-position switches with contact
switches.

6. Remove redundant switches.

†C1 denotes the upper bound derived from Theorem 3.2, C2 de-
notes the upper bound derived from Theorem 3.3, and C3 denotes
the upper bound derived from Theorems 4.4 and 4.5.

5. Graph Representation

This part considers graph representations of universal inter-
connection networks. They are useful to analyze the number
of switches for an n-terminal universal interconnection net-
work.

Definition 5.5: A graph representation of an n-terminal
universal interconnection network is G = (V, E), where V
denotes the set of nodes, while E denotes the set of edges.
In an interconnection network, a node corresponds to an ex-
ternal terminal or an internal node (a bus line), while an edge
corresponds to a contact switch.

Example 5.4: Graph representations of U(3) are shown in
Fig. 9. Figure 9 (a) corresponds to the three-terminal univer-
sal interconnection network U(3) shown in Fig. 10. On the
other hand, Fig. 9 (b) corresponds to the three-terminal uni-
versal interconnection network U(3) shown in Fig. 2. Both
graphs have three edges, and require three switches. Fig-
ure 9 (b) has one internal node (denoted by red), which cor-
responds to a bus line.

Graph representations of U(4) are shown in Fig. 11.
Both Fig. 11 (a) and (b) have 6 edges and require 6 switches.
Figure 11 (a) corresponds to a crossbar switch realization.
On the other hand Fig. 11 (b) corresponds to the circuit in
Fig. 12. This circuit is obtained from the U(2) unit shown in
Fig. 2 by applying Lemma 3.2. Note that Fig. 11 (b) has one
internal node (denoted by red), which corresponds to a bus
line.

Fig. 9 Graph representation of U(3)

Fig. 10 Three-terminal universal interconnection network U(3)
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Fig. 11 Graph representation of U(4)

Fig. 12 Four-terminal universal interconnection network U(4)

Fig. 13 Graph representation of U(5)

Graph representations of U(5) are shown in Fig. 13.
Note that Fig. 13 (a) has 10 edges, while Fig. 13 (b) has 9
edges. Figure 13 (b) has two internal nodes, which corre-
spond to bus lines. Note that Fig. 13 (b) corresponds to U(5)
shown in Fig. 4.

Graph representations of U(6) are shown in Figs. 14,15,
and 16. Both Fig. 14 and Fig. 15 have 15 edges, while
Fig. 16 has only 14 edges. Figure 15 has three internal
nodes, while Fig. 16 has two internal nodes. Figure 16 corre-
sponds to Fig. 15 where the red node and the terminal 6 are

Fig. 14 Graph Representation of U(6): without internal node

Fig. 15 Graph representation of U(6): with three internal nodes

Fig. 16 Graph representation of U(6): with two internal nodes

merged. Figure 16 can be also obtained from U(5) shown
in Fig. 13 (b) by applying Lemma 3.2 to obtain U(6). Fig-
ure 15 corresponds to U(6) shown in Fig. 6. The graph pre-
sentations of U(3), U(4), U(5), and U(6) without bus line
nodes correspond to complete graphs K3, K4, K5, and K6,
respectively.

Definition 5.6: Let C(n) be the minimum number of
switches to realize an n terminal universal interconnection
network U(n).
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The next theorem shows that the minimum number of
switches to realize a four-terminal universal interconnection
network U(4) is 6.

Theorem 5.6:

C(4) = 6.

(Proof) Since U(4) can be realized with six switches,
it is sufficient to show that U(4) cannot be realized with
five switches. Removal of any edge from Fig. 11 makes
the network not universal. For example, assume that the
edge (1, 2) is removed from Fig. 11 (a). Then, the par-
tition {[1, 2], [3, 4]} cannot be realized. Assume that the
edge (1, 4) is removed from Fig. 11 (b). Then, the par-
tition {[1, 4], [2, 3]} cannot be realized. Assume that the
edge (1, 5) is removed from Fig. 11 (b). Then, the parti-
tion {[1, 3], [2, 4]} cannot be realized. From the symmetry
property of the graphs, we can conclude that no edge can
be removed from Fig. 11 while maintaining the universal-
ity of the networks. It is possible to consider the network
with more bus lines, but realization with five switches is im-
possible. Consider the case where two bus lines are used.
For each node, at least two edges are necessary. Otherwise,
the graph does not show the universal network. For exam-
ple, assume that the external node 1 is connected to only the
external node 2 by a single edge. Then, the graph cannot
represent the partition [{1, 3}, {2, 4}]. Thus, for each exter-
nal node, at least two edges are connected. It is clear that
an internal node (bus line) also requires at least two connec-
tions to other nodes. Since each node requires two edges,
and there are 6 nodes, the graph has at least 6 edges. �

From Lemmas 3.1 and 3.3, and Theorems 3.2, 3.3, 4.4,
4.5, 5.6, and Fig. 16 we have the following:

Corollary 5.1:

C(2) = 1,

C(3) = 3,

C(4) = 6,

C(5) ≤ 9,

C(6) ≤ 14,

C(n) ≤ 3
8

(n2 − 1), (n = 2m + 1, n ≥ 5)

C(n) ≤ n
8

(3n + 2), (n = 2m, n ≥ 6)

6. Concluding Remarks

In this paper, we showed a method to realize an n-terminal
universal interconnection network using n

8 (3n + 2) contact
switches, when n = 2m ≥ 6, and 3

8 (n2 − 1) contact switches,
when n = 2m + 1 ≥ 5.

These switches can be controlled by multi-valued sig-
nals Xi (i = 1, 2, . . . , n), shown, for example, in Tables 3 and
5. The design of such a circuit is a future problem.

The problem that appeared in the introduction can be
solved by Theorem 4.5. We can use at most C3(7) = 18
switches. In many cases, only a proper subset of B(7) = 877
different connections is used. Thus, the number of necessary
switches can be less than 18. Given the necessary connec-
tion patterns, the minimization of switches is a future prob-
lem.

7. Related Work

Pioneering work on two-terminal contact networks was
started by Nakashima [13] and Shannon [17].

The upper and lower bounds on the number of switches
to realize an arbitrary logic function were derived by Shan-
non [18].

Minimization on the number of switches to realize a
given logic function using a series-parallel network was con-
sidered by Lawler [11].

As for n-terminal interconnection networks, Harri-
son [9] showed a method to analyze the transmission func-
tions using transitive closure of the connection matrix.

Consider the case with two groups of n terminals,
where one terminal in a group is connected to exactly one
terminal in the other group. Since such networks are fre-
quently used in telephone exchange networks, many papers
have been published [5], including non-blocking minimal
spanning switch [6].

A realization of transmission function using a lattice of
four-terminal switches was considered in [1].

As for hardware that generates all possible partitions,
Butler and Sasao [4] showed an FPGA realization. This cir-
cuit generates all partitions (for example, the last column of
Table 3), but is not an interconnection network.

As for three-terminal networks, Koga [10] showed var-
ious logic circuits, but they are unidirectional networks.

A universal logic module realizes an arbitrary n-
variable logic function. It can be implemented by a logic
network with m 	 O(2n/ log n) inputs. Since it is quite im-
portant, many papers have been published [19].

However, within the authors knowledge, no paper on
universal interconnection network has been published.
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