
1076
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

Classification Functions for Handwritten Digit Recognition

Tsutomu SASAO†a), Member, Yuto HORIKAWA†, Nonmember, and Yukihiro IGUCHI†, Member

SUMMARY A classification function maps a set of vectors into several
classes. A machine learning problem is treated as a design problem for
partially defined classification functions. To realize classification functions
for MNIST hand written digits, three different architectures are considered:
Single-unit realization, 45-unit realization, and 45-unit ×r realization. The
45-unit realization consists of 45 ternary classifiers, 10 counters, and a max
selector. Test accuracy of these architectures are compared using MNIST
data set.
key words: linear decomposition, partially defined function, support min-
imization, classification, digit recognition, MNIST, index generation func-
tion, machine learning, neural network, ensemble method

1. Introduction

Given disjoint sets of elements, the problem to find a simple
rule to distinguish these sets is a major topic of machine
learning and data mining. A partially defined classification
function is the mapping:

f : D→ {1, 2, . . . ,m},
where D ⊂ {0, 1}n represents the training set. When the
number of elements in the training set |D| is much smaller
than the total number of input combinations 2n, the original
function f can be represented by compound variables y j as
follows:

f (x1, x2, . . . , xn) = g(y1, y2. . . . yp), (1)

where g is a reduced classification function of p variables,
and y j (j = 1, 2, . . . , p) are linear functions of the input vari-
able x1, x2, . . . , xn:

y j = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn,

where ai ∈ {0, 1}, and p < n.
Interestingly, the reduced classification function g pro-

duces correct responses not only for the training set, but
also for much of the unknown test set. For the real data,
such as handwritten digits, the reduced classification func-
tion correctly recognizes much of the test set. That is, the
reduced classification function g has a generalization abil-
ity [5]. Although the test accuracy based on reduced classi-
fication functions is lower than that of neural networks, the

Manuscript received August 22, 2020.
Manuscript revised February 11, 2021.
Manuscript publicized April 1, 2021.
†The author is with the Department of Computer Science,

Meiji University, Kawasaki-shi, 214–8571 Japan.
a) E-mail: sasao@ieee.org

DOI: 10.1587/transinf.2020LOP0002

presented method requires no complex learning. So, it is
promising for simple image recognition.

The rest of this paper is organized as follows: Sect. 2
introduces classification functions, describes compound
variables and their reduction method; Sect. 3 shows bench-
mark functions; Sect. 4 shows the single-unit realization;
Sect. 5 shows the 45-unit realization; Sect. 6 shows the 45-
unit ×r realization; Sect. 7 compares different architectures;
Sect. 8 shows methods to implement counters and the max
selector; and Sect. 10 concludes the paper.

A preliminary version of this paper was presented as
[16]. In [16], threshold elements are used in the output parts,
while in this paper, counters and max selectors are used.
With this modification, the accuracy has been improved sig-
nificantly.

2. Classification Functions and Their Realization

Definition 2.1: Consider the set of k distinct vectors of n
bits. These vectors are registered vectors. In the frame-
work of machine learning, the set of registered vectors cor-
responds to the training set. To each registered vector, as-
sign an integer between 1 and m, where 2 ≤ m ≤ k. The
registered vector table shows the corresponding function
values for the registered vectors. A partially defined classi-
fication function produces the corresponding function val-
ues for the input vectors that match the registered vectors.
When the input vector does not match the registered vectors,
the function value is undefined. A partially defined classifi-
cation function represents a mapping f : D→ {1, 2, . . . ,m},
where D ⊂ Bn is the set of registered vectors, and B = {0, 1}.
k is the weight of the function.

Example 2.1: Table 1 is a registered vector table of the
classification function with weight k = 10 and m = 2.

Partially defined functions often can be represented

Table 1 Registered vector table

x1 x2 x3 x4 x5 x6 x7 f
1 1 1 0 1 1 1 1
1 0 1 0 1 0 0 1
1 0 0 0 0 1 0 1
0 1 1 0 0 1 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 2
0 1 0 1 1 1 1 2
0 1 0 0 0 1 1 2
0 0 0 1 0 1 0 2
0 0 0 0 1 0 1 2

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

SASAO et al.: CLASSIFICATION FUNCTIONS FOR HANDWRITTEN DIGIT RECOGNITION
1077

with fewer variables by using linear decompositions [13].
In the linear decomposition shown in Fig. 1, L denotes a lin-
ear function, while G denotes a general function (in most
cases, non-linear function). We assume that the cost of the
linear part is O(np), while the cost of the general part is
O(q2p).

Definition 2.2: Compound variables have the form y =
c1x1⊕c2x2⊕· · ·⊕cnxn, where ci ∈ {0, 1}. The compound de-
gree of the variable y is

∑n
i=1 ci, where

∑
denotes an integer

addition. Primitive variables are variables with compound
degree 1.

Definition 2.3: Given a partially defined function f , the
linear transformation that minimizes the number of the com-
pound variables is an optimal transformation.

When the number of compound variables can be re-
duced to q = �log2 m	 by a linear transformation, then the
transformation is optimum.

Example 2.2: The function shown in Table 1, can be rep-
resented as follows:

When primitive variables are used, the function can be
represented with four variables:

f = (x1x2x3 x̄4 ∨ x1 x̄2x3 x̄4 ∨ x1 x̄2 x̄3 x̄4 ∨ x̄1x2x3 x̄4 ∨
x̄1 x̄2x3x4) ∨ 2(x̄1x2x3x4 ∨ x̄1x2 x̄3x4 ∨
x̄1x2 x̄3 x̄4 ∨ x̄1 x̄2 x̄3x4 ∨ x̄1 x̄2 x̄3 x̄4)

= (x2x3 x̄4 ∨ x1 x̄2 x̄4 ∨ x̄1 x̄2x3x4) ∨ 2x̄1(x̄3 ∨ x2x4),

where ∨ denotes the max operation, and the concatenation
denotes the min operation.

When the compound variables y1 = x1 and y2 = x3,
and y3 = x2 ⊕ x4 are used, the function can be represented
with only three variables:

f = (y1ȳ3 ∨ y2y3) ∨ 2ȳ1(ȳ2 ∨ ȳ3).

The reduction methods for primitive variables are well
known [7], [11]. However, nobody has ever minimized
problems with n = 784 variables successfully. We devel-
oped a special algorithm for this purpose using the notion
of impurity measure [14]. The reduction problem for com-
pound variables is to find a linear decomposition that min-
imizes the intermediate variables p shown in Fig. 1. Re-
cently, we developed an efficient algorithm to find a good

Fig. 1 Linear decomposition

linear decomposition. With this, we can design a compact
circuit within a reasonable computation time. This algo-
rithm is shown in [15].

3. Benchmark Function

Benchmark function were generated from the MNIST [18]
data set of handwritten digits. The data in MNIST consists
of bit maps of 28 × 28 images, the training set consist of
6 × 104 images, while the test set consists of 104 images.
They are grayscale images, but we converted them into bi-
nary ones, by setting the threshold 96. In this way, we
had an n-variable m-valued classification function, where
n = 28 × 28 = 784, and m = 10. Also in this process,
we removed duplicated data. Table 2 shows the size of the
training set and the test set, after removing duplicated data.

To evaluate the performance of a classifier, we use:

Definition 3.4:

Accuracy =
Number of correctly recognized images

Total number of images.

The training accuracy is calculated by using images in the
training set, while the test accuracy is calculated by using
images in the test set.

4. Single-Unit Realization

A single-unit realization is implemented by a cascade of
a linear circuit and a memory, as shown in Fig. 2. When
primitive variables are used, the linear part can be omitted.
In such a case, the function can be implemented by a single
memory.

The number of primitive variables was reduced to p =
37 by a heuristic algorithm in [14]. Then, the number of
compound variables was reduced to p = 25 by a algorithm
for linear decomposition in [15].

The reduced classification function g correctly recog-
nized all the images in the training set. Next, we applied the
images in the test set shown in Table 2 to the reduced classi-
fication function g, and checked if g recognized the images

Table 2 Sizes of training and test sets.

Data # of samples
Training Set 59981
Test Set 9993

Fig. 2 Single-unit realization

1078
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Table 3 Recognition result for single-unit realization.

Result Primitive Compound
variables variables
p = 37 p = 25

Correctly recognized 1462 1561
Incorrectly recognized 9 17
Unrecognized 8522 8415
Total 9993 9993
Test Accuracy 0.146 0.156

in the test set correctly or not. Table 3 shows the results.
When the images were unrecognized, the circuit for g pro-
duced unrecognized output, represented by the (0, 0, . . . , 0)
vector. Table 3 shows that the test accuracy of the reduced
classification function g is 0.146. If we do not reduce the
variables, but use a memory with 784 inputs, then the test
accuracy would be 0.0. However, the memory with reduced
variables correctly predicted the values for considerable part
of unknown test data. For example, when variables are re-
duced to 37 primitive variables, the memory with reduced
variables recognizes 2784−37 = 2747 � 1.826 × 10224 times
more images than the images in the training data set.

In the case of MNIST data set, the probability of “if
the values of 37 variables are the same for a test image and a
training image, then two images represent the same digit,” is
higher than 0.1, the probability obtained by a random guess.

Although this test accuracy is much lower than that of
the neural networks [18], it is an important property.

Theorem 4.1: The single-unit realization always produces
correct results for the training data.

(Proof) The circuit is designed so that it correctly rec-
ognizes all the images in the training set. �

Thus, the accuracy for the training data is 1.00.

5. 45-Unit Realization

Although the single-unit realization is simple, its test accu-
racy is very low. In this section, to improve the test accuracy,
we introduce the 45-unit realization shown in Fig. 3. In this
method, for each pair of digits, we use a unit. In the circuit,
each unit decides if the input image represents the digit i, or
the digit j, or another digit. With

(
10
2

)
= 45 such units, we

can make a final decision using a majority vote.
In Fig. 3, a square symbol denotes a unit. The unit i/ j

has two outputs: The output (1, 0) denotes that the input
image represents the digit i; the output (0, 1) denotes that
the input image represents the digit j; and the output (0, 0)
denotes that the input image represents another digit or un-
known. Thus, each unit produces a ternary output. Since
there are 45 units, the total number of outputs is 90. Fig-
ure 3 shows the circuits for only digits 0, 1 and 2. Circuits
for other digits are omitted. In addition, we use 10 counters,
shown by

∑
symbols in Fig. 3. The i-th counter has 9 inputs

with label i, and counts the number of 1’s in the inputs, and
represents it by a 4-bit binary number.

Example 5.3: Assume that a training image representing

Fig. 3 45-unit realization.

Table 4 Recognition result for 45-unit realization.

Result Primitive Compound
variables variables

Correctly recognized 8773.5 8695.6
Incorrectly recognized 1219.5 1297.4
Total 9993.0 9993.0
Test Accuracy 0.878 0.870

‘0’ is applied to the circuit in Fig. 3. Then, all the units in
the leftmost column recognize the digit 0, and all the blue
lines represent 1. Thus, all the inputs to the counter for the
digit 0 become 1. So, it receives 9 votes. In this case, in the
top unit in the leftmost column labelled 0/1, the red output
line becomes 0. So, the first input of the counter for the digit
1 becomes 0. So, it received votes less than 9. Similarly, for
other counters, at least one input is 0, and the number of
votes is less than 9.

We also use a max selector that selects the digit with
the largest count, which is not shown in Fig. 3. Details of
the counters and the max selector are shown in Sect. 8.

Table 4 shows recognition results of the 45-unit real-
ization. To design the unit i/ j, only the training images of
the digits i and j are used. This drastically reduced the size
of memory necessary to implement each unit.

The 45-unit realization produces much higher test ac-
curacy than the single-unit realization. The next theorem
shows that the training accuracy for the 45-unit realization
is 1.00.

Theorem 5.2: The 45-unit realization always produces
correct results for the images in the training set.

(Proof) The number of inputs to each counter is 9. For
a training image representing the digit ‘0’, the value of the
counter for the digit ‘0’ is 9. On the other hand, the values of
the other counters are less than 9. Thus, any training image
for the digit 0 produces correct result. This is true for other
digits. �

When an unknown test data is applied, the majority

SASAO et al.: CLASSIFICATION FUNCTIONS FOR HANDWRITTEN DIGIT RECOGNITION
1079

Fig. 4 45-unit ×2 realization.

Table 5 Recognition result for 45-unit ×2 realization.

Result Primitive Compound
variables variables

Correctly recognized 8955.0 8901.1
Incorrectly recognized 1038.0 1091.9
Total 9993.0 9993.0
Test Accuracy 0.896 0.891

Table 6 Recognition result for 45-unit ×4 realization.

Result Primitive Compound
variables variables

Correctly recognized 9062.8 9044.4
Incorrectly recognized 930.2 948.6
Total 9993.0 9993.0
Test Accuracy 0.907 0.905

vote may fail. When there are s counters with the maxi-
mum values, the correct answers is counted as 1/s, while
the incorrect answers is counted as 1− (1/s). Since there al-
ways exists a counter with the maximum value, images are
always recognized either correctly or incorrectly.

6. 45-Unit ×r Realization

In the previous section, the 45-unit realization was used to
improve the test accuracy. To further improve the test accu-
racy, the training data is partitioned into r groups of similar
sizes, and for each group, digits are recognized by a 45-unit,
independently. And, finally, the max selector is used to find
the largest vote. Figure 4 illustrates the 45-unit ×r real-
ization, where r = 2. In this case, each module produces
45 × 2 = 90 outputs. Thus, the total number of outputs is
45 × 2 × 2 = 180. The i-th counter has 9 × 2 = 18 inputs
with label i.

This is a simple ensemble method: r weak classifiers
are combined to make a stronger classifier. The 45-unit ×r
realizations improve the test accuracy, as well as reduce the
total amount of memory. Unfortunately, the training accu-
racy can be decreased. For example, when r = 2, the train-
ing accuracy was 0.997 when primitive variables were used,
and was 0.995 when compound variables were used. This
occurs when at least one unit in Fig. 4 incorrectly reconize
the image.

Tables 5 to 8 show the numbers of correctly recognized

Table 7 Recognition result for 45-unit ×8 realization.

Result Primitive Compound
variables variables

Correctly recognized 9024.8 9027.2
Incorrectly recognized 968.2 965.8
Total 9993.0 9993.0
Test Accuracy 0.903 0.903

Table 8 Recognition result for 45-unit ×16 realization.

Result Primitive Compound
variables variables

Correctly recognized 8997.5 8981.3
Incorrectly recognized 995.5 1011.7
Total 9993.0 9993.0
Test Accuracy 0.900 0.899

Table 9 Test Accuracy for different values of r.

Architecture Primitive Compound
variables variables

45-unit×1 0.878 0.870
45-unit×2 0.896 0.891
45-unit×4 0.907 0.905
45-unit×8 0.903 0.903
45-unit×16 0.900 0.899

images for 45-unit ×r realizations. Note that the test accu-
racy takes its maximum, when r = 4.

7. Comparisons of Architectures

In this section, we compare 45-unit ×r architectures for dif-
ferent values of r.

7.1 Test Accuracy

Table 9 compares test accuracy for different r.
The test accuracy of 45-unit ×r realizations increases

with the value of r, until r = 4. Note that the 45-unit ×4
realization produced the maximal test accuracy.

This can be interpreted as follows: The total number
of training vectors is 59981. Since there are 10 digits, each
digits has 5998.1 vectors, on the average. So, each of the
45-unit ×r realizations is trained by 5998.1 × 2/r vectors,
on the average. When r = 4, this value is about 3000. This
may be the minimum number of training vectors to produce
good test accuracy for the given benchmark function.

7.2 Number of Variables and Memory Requirement

Table 10 compares the average number of input variables for
each unit.

Let k be the number of sample images in the training
set. Then, the number of variables to represent the classifi-
cation function is at most �2 log2 k	−2 [13]. When the input
data is partitioned into two groups of similar sizes, we can
expect that the number of input variables is reduced. Ex-
perimental results shown in Table 10 confirm that there is a
reduction by 2.0.

1080
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

Table 10 Average number of variables for each unit.

Primitive Compound
variables variables

45-unit×1 19.42 16.86
45-unit×2 17.04 15.03
45-unit×4 15.08 12.77
45-unit×8 12.34 11.43
45-unit×16 10.18 9.60

Table 11 Memory sizes for different architecturs (Kilo bits).

Architecture Primitive Compound
variables variables

45-unit 197, 935 15, 901
45-unit×2 68, 108 9, 167
45-unit×4 18, 830 5, 321
45-unit×8 7, 093 3, 068
45-unit×16 2, 814 1, 665

Also, CPU time for compound variable reduction for
larger r is much shorter, since the CPU time for variable
minimization is proportional to k2

i, j, where ki, j is the number

of vectors to train the unit i/ j, and ki, j is, on the average, k
5r .

The 45-unit realization requires LUTs with

8∑

i=0

9∑

j=i+1

�log2(2 + 1)	2pi j

bits, where pi j denotes the number of the variables for the
unit i/ j.

Table 11 compares the memory sizes for different r.
It shows that the memory sizes† of 45-unit ×r realizations
decrease with the value of r.

In addition, the 45-unit ×r realization requires 10
counters with 90 × r inputs, as well as the max selector
that selects the digit with the largest count. The costs for
counters and the max selector are not included in Table 11.

8. Counter and Max selector

In this part, we consider implementations of counters and a
max selector.

8.1 Counter

A counter, also called as a pop-counter (population
counter) [21], or a compressor [10], counts the number of
1’s in the inputs, and represents it by a natural binary num-
ber. It can be implemented as a tree of full adders. Since
the counter is a basic element in arithmetic circuits, exten-
sive research has been done. For example, [8] considers

†For 45-unit ×4 realization, when compound variables are
used, the average number of variable is 12.77. This means that
most units in Fig. 3 can be realized by block RAMs. For example,
Xilinx FPGA [22] contains block RAMs, each can be configured
as a pair of 18Kb RAMs or a 36Kb RAM. So, each can be used
as either a pair of 14-input LUTs or a 15-input LUT. ZU6CG con-
tains 714 BRAMs, and ZU9CG contains 912 BRAMs. Note that
the 45-unit ×4 realization requires 180 units.

Fig. 5 Max selector

ASIC realizations, while [10] and [21] consider FPGA re-
alizations. When the performance is not critical, the counter
can be implemented by a sequential circuit.

8.2 Max Selector

The work for max selectors is rare, so we show the detail of
the design.

Consider the 45-unit × 2 realization shown in Fig. 4. It
has 45 × 2 units, and 45 × 2 × 2 = 180 outputs. Also, it uses
10 counters with 18 inputs and 5 outputs.

Figure 5 shows the max selector for the 45-unit × 2
realization. It consists of 10 decoders, one priority encoder,
and 10 coincidence circuits.

Each decoder has 5 inputs and 18 outputs. The in-
put of a decoder denotes the number of 1’s produced by a
counter. The output of a decoder denotes the number of 1’s
represented by the 1-out-of-18 code.

The matrix has 180 rows and 18 columns. A × mark
denotes an OR connection. So, if one of the row con-
nected with × is 1 (high), the corresponding column will
be 1 (high). Thus, the matrix works as an OR array. In the
OR array, 18 OR gates with 10 inputs are realized.

The priority encoder detects the right-most column
that is high, and produces the binary representation of the
largest number. Thus, the priority encoder finds the largest
value produced by the counters.

Finally, the coincidence circuits find the digit that pro-
duced the largest count.

When the performance is not critical, the max selector

SASAO et al.: CLASSIFICATION FUNCTIONS FOR HANDWRITTEN DIGIT RECOGNITION
1081

can be implemented by a sequential circuit.

9. Comparison with Neural Networks

9.1 FPGA Implmentation

Most neural networks assume signals with real numbers. So,
processor-based implementations are common. Thus, they
are several orders of magnitude slower than LUT based-one.

For faster applications, binarized neural networks are
used. They require conversion from original neural net-
works into binary. Their test accuracies can be comparable
to original neural networks. For example, FINN-R MLP-4
on AWS F1 [2], is a fully binarized multilayered perceptron.
It uses 1,652 BRAM18s and 337,753 LUTs, and achieves
test accuracy 0.977. On the other hand, the 45-unit ×4 real-
ization uses 45 × 4 = 180 units. When compound variables
are used, 4 units require 16 inputs, 35 units require 15 in-
puts, and the remaining 141 units require at most 14 inputs.
Since a unit with 15 (16) inputs can be synthesized with
two (four) 14-input LUTs, the network can be mapped into
227 × 2 = 454 BRAM18s. Note that each unit has two out-
puts. This shows that our realization require fewer BRAMs
than FINN-R.

Since, each unit requires only one BRAM access, it is
faster than FINN-R. Also, it requires lower power, since our
network requires fewer BRAMs than FINN-R. Note that this
comparison excludes the softmax part [20].

9.2 Advantage vs. Disadvantage

Advantages The design flow of the proposed method is
straightforward. It directly produces the circuit that recog-
nizes the training set. No need to train neural networks. No
need to convert them to binary ones. The proposed method
assume LUTs as basic elements, and try to reduce the num-
ber of inputs for LUTs. Thus, the method is suitable for
memory-based implementations, including FPGA.
Disadvantage The accuracy is not so good as neural net-
works. This is due to the simplicity of the topology. Also,
recognition of complex images seems to be difficult, since
no convolution layers are used.

10. Concluding Remarks

In this paper, we introduced classification functions for ma-
chine learning. The reduced classification function correctly
recognizes not only most of the training images, but also
much of the test images. Our method is to consider the
training set as a partially defined function, and to design the
simplest circuit that satisfies the given specification. Our
measure of the simplicity is the number of variables. Thus,
the method is useful for LUT-based implementations.

An ensemble method can be used to improve the test
accuracy. That is, to partition the input data into groups, and
to derive the classifier for each group, and finally, to com-
bine the results by the max selector. The ensemble method

reduces the amount of memory necessary to implement the
circuit.

The contributions of this paper are:

1. A new design method for classifiers: Find a classifica-
tion function with the fewest variables that satisfies the
training data, and implement it by LUTs.

2. A method to improve test accuracy: Partition the train-
ing data into groups, and implement each by a LUT,
and combine them by counters and the max selector.

Using these methods, we can design a compact network with
a required accuracy.

Our method is suitable for simple image recognition
such as binary character or symbol recognition. The merit
is its simplicity. We have similar results for fashion-
MNIST [6].

Acknowledgments

This research is partly supported by the grant of the Japan
Society for the Promotion of Science (JSPS), Grant in Aid
for Scientific Research. Dr. Alan Mishchenko of University
California, Berkeley, and Dr. Satrajit Chatterjee of Google
AI gave us useful comments. Prof. Jon T. Butler improved
presentation of the paper.

References

[1] J.T. Astola, P. Astola, R.S. Stankovic, and I. Tabus, “Algebraic
and combinatorial methods for reducing the number of variables
of partially defined discrete functions,” International Symposium on
Multiple-Valued Logic (ISMVL 2017), Sapporo, pp.167–172, May
2017.

[2] M. Blott, T.B. Preuser, N.J. Fraser, G. Gambardella, K.O. Brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “FINN-R: An end-to-end
deep-learning framework for fast exploration of quantized neural
networks,” ACM Trans. Reconfigurable Technol. Syst., vol.11, no.3,
pp.1–23, Dec. 2018.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth,
“Occam’s Razor,” Inform. Process. Lett., vol.24, no.6, pp.377–380,
1987.

[4] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classifica-
tion and Regression Trees, CRC Press, New York, 1984.

[5] S. Chatterjee, “Learning and memorization,” International Con-
ference on Machine Learning (ICML 2018), Stockholm, Sweden,
pp.754–762, July 10-15, 2018.

[6] https://www.kaggle.com/zalando-research/fashionmnist
[7] T. Ibaraki, “Partially defined Boolean functions,” Chapter 8 in: Y.

Crama and P.L. Hammer, Boolean Functions - Theory, Algorithms
and Applications, Cambridge University Press, New York, 2011.

[8] R.F. Jones and E.E. Swartzlander, “Parallel counter implementa-
tion,” Journal of VLSI Signal Processing, vol.7, no.3, pp.223–232,
1994.

[9] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” Master’s thesis, University of Toronto, 2009.

[10] M. Kumm and J. Kappauf, “Advanced compressor tree synthesis for
FPGAs,” IEEE Trans. Comput., vol.67, no.8, pp.1078–1091, Aug.
2018.

[11] J. Kuntzmann, Algèbre de Boole, Dunod, Paris, 1965. English trans-
lation: Fundamental Boolean Algebra, Blackie and Son Limited,
London and Glasgow, 1967.

[12] A.L. Oliveira and A. Sangiovanni-Vincentelli, “Learning complex

http://dx.doi.org/10.1109/ismvl.2017.23
http://dx.doi.org/10.1145/3242897
http://dx.doi.org/10.1016/0020-0190(87)90114-1
http://dx.doi.org/10.1007/bf02409399
http://dx.doi.org/10.1109/tc.2018.2795611

1082
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.8 AUGUST 2021

boolean functions:Algorithms and applications,” Advances in Neu-
ral Information Processing Systems, no.6, pp.911–918. Morgan-
Kaufmann, 1994.

[13] T. Sasao, Index Generation Functions, Morgan & Claypool, Oct.
2019.

[14] T. Sasao, “Reduction methods of variables for large-scale classifica-
tion functions,” in International Workshop on Logic and Synthesis
(IWLS-2020), pp.82–87, July 27-30, 2020.

[15] T. Sasao, “On the minimization of variables to represent partially
defined classification functions,” International Symposium on Mul-
tiple-Valued Logic, (ISMVL-2020), pp.117–123, Nov. 9-11, Japan.

[16] T. Sasao, Y. Horikawa, and Y. Iguchi, “Handwritten digit recognition
based on classification functions,” International Symposium on Mul-
tiple-Valued Logic, (ISMVL-2020), pp.124–129, Nov. 9-11, Japan.

[17] D.A. Simovici, M. Zimand, and D. Pletea, “Several remarks on in-
dex generation functions,” International Symposium on Multiple-
Valued Logic (ISMVL-2012), Victoria, Canada, pp.179–184, May
2012.

[18] http://yann.lecun.com/exdb/mnist/
[19] A. Tapp, “A new approach in machine learning,” (Preliminary re-

port), Sept. 16, 2014. https://arxiv.org/abs/1409.4044
[20] Y. Umuroglu, Y. Akhauri, N.J. Fraser, and M. Blott. “LogicNets:

Co-designed neural networks and circuits for extreme-through-
put applications,” 30th International Conference on Field-
Programmable Logic and Applications, pp.291–297, May 2020.

[21] E. Wang, J.J. Davis, P.Y.K. Cheung, and G.A. Constantinides,
“LUTNet: Rethinking inference in FPGA soft logic,” FCCM 2019,
pp.26–34.

[22] https://www.xilinx.com/products/silicon-devices/soc/zynq-
ultrascale-mpsoc.html

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in Electronics Engineering
from Osaka University, Osaka Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan; IBM T. J. Watson Research Center,
Yorktown Height, NY; the Naval Postgraduate
School, Monterey, CA; and Kyushu Institute of
Technology, Iizuka, Japan; and Meiji Univer-
sity, Kawasaki, Japan. Now, he is a visiting re-
searcher at Meiji University, Kawasaki, Japan.

His research areas include logic design and switching theory, representa-
tions of logic functions, and multiple-valued logic. He has published more
than 9 books on logic design including, Logic Synthesis and Optimization,
Representation of Discrete Functions, Switching Theory for Logic Syn-
thesis, Logic Synthesis and Verification, Memory-Based Logic Synthesis,
and Index Generation Functions, in 1993, 1996, 1999, 2001, 2011, and
2019, respectively. He has served Program Chairman for the IEEE In-
ternational Symposium on Multiple-Valued Logic (ISMVL) many times.
Also, he was the Symposium Chairman of the 28th ISMVL held in Fuku-
oka, Japan in 1998. He received the NIWA Memorial Award in 1979,
Takeda Techno-Entrepreneurship Award in 2001, and Distinctive Contribu-
tion Awards from IEEE Computer Society MVL-TC for papers presented
at ISMVLs in 1986, 1996, 2003, 2004, 2012 and 2019. He has served
an associate editor of the IEEE Transactions on Computers. He is a Life
Fellow of the IEEE.

Yuto Horikawa received the B.E. degree
in computer science from Meiji University in
2020. He is now a Mater Student of the same
university.

Yukihiro Iguchi received the B.E, M.E., and
Ph.D. degrees in electronic engineering from
Meiji University, Kanagawa, Japan, in 1982,
1984, and 1987, respectively. He is now a pro-
fessor of Meiji University. His research interest
includes logic design, switching theory, recon-
figurable systems, and electric vehicles. In 1996
and 2006, he spent each year at Kyushu Insti-
tute of Technology. He received Takeda Techno-
Entrepreneurship Award in 2001.

http://dx.doi.org/10.1109/ismvl49045.2020.00-19
http://dx.doi.org/10.1109/ismvl49045.2020.00-18
http://dx.doi.org/10.1109/ismvl.2012.17
http://dx.doi.org/10.1109/fpl50879.2020.00055
http://dx.doi.org/10.1109/fccm.2019.00014

