
1574
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

A Fast Updatable Implementation of Index Generation Functions
Using Multiple IGUs∗

Tsutomu SASAO†a), Member

SUMMARY This paper presents a method to realize index generation
functions using multiple Index Generation Units (IGUs). The architecture
implements index generation functions more efficiently than a single IGU
when the number of registered vectors is very large. This paper proves
that independent linear transformations are necessary in IGUs for efficient
realization. Experimental results confirm this statement. Finally, it shows a
fast update method to IGUs.
key words: random function, CAM, content-addressable memory, linear
decomposition, linear transformation, statistical analysis, update method

1. Introduction

One of the important tasks in information processing is to
find desired data from a large data set. For example, con-
sider a network router, where IP addresses are represented
by 32 bits. Assume that a network router stores 40,000 of
the 232 possible combinations of the inputs, and checks if
an input pattern matches a stored pattern. A content ad-
dressable memory (CAM) [4] is a device that performs this
operation directly. CAMs are also used for virus scanning
and spam-mail filters.

An index generation function [10] describes the oper-
ation of a CAM. For example, an index generation func-
tion can be represented by a registered vector table such
as shown in Table 1. It can also be implemented by an
FPGA [7], or a combination of memories and logic. Index
generation functions are used in address tables in the In-
ternet, terminal access controllers for local area networks,
databases, memory patch circuits, dictionaries, password
lists, etc. [10].

An efficient method to implement an index generation
function is presented in [10]. It uses a module called IGU
(Index Generation Unit). Since an IGU uses ordinary mem-
ory and a small amount of logic, the cost and the power
dissipation are much lower than typical CAM-based imple-
mentations.

In this paper, we show an efficient method to store
many patterns using multiple IGUs. Statistical analysis is
used to estimate the size of of the IGUs. The rest of the
paper is organized as follows: Section 2 defines the index
generation function; Section 3 shows a method to reduce

Manuscript received September 20, 2016.
Manuscript publicized May 19, 2017.
†The author is with the Department of Computer Science,

Meiji University, Kawasaki-shi, 214–8571 Japan.
∗A preliminary version of this paper was presented at ISMVL-

2016 [14].
a) E-mail: sasao@cs.meiji.ac.jp

DOI: 10.1587/transinf.2016LOP0001

Table 1 Registered vector table.

Vector Index
x1 x2 x3 x4

1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
1 1 0 1 4

the number of variables of the incompletely specified index
generation functions; Section 4 introduces an IGU, the hard-
ware to implement index generation functions; Section 5
shows a method to estimate the number of vectors realized
by an IGU; Section 6 shows a method to implement an in-
dex generation function using four IGUs, which is more ef-
ficient than a single IGU realization; Section 7 shows that
independent linear transformations are essential for an effi-
cient implementation of the functions; Section 8 shows the
experimental results; Section 9 shows a fast update method
for IGUs; and Sect. 10 concludes the paper.

2. Index Generation Function

In this part, we introduce index generation functions [10],
[11], [13].

Definition 2.1: Consider a set of k different binary vec-
tors of n bits. These vectors are registered vectors. For
each registered vector, assign a unique integer from 1 to k.
A registered vector table shows the index of each regis-
tered vector. An incompletely specified index generation
function is a one-to-one mapping D → {1, 2, . . . , k}, where
D ⊆ {0, 1}n, and |D| = k. Since the indices are often greater
than two an index generation function is multiple-valued.
It produces the corresponding index if the input matches a
registered vector. k, the weight of the index generation func-
tion, is usually much smaller than 2n, the total number of
possible input combinations.

Example 2.1: Table 1 shows a registered vector table for a
4-variable index generation function with weight k = 4.

3. Number of Variables to Represent an Incompletely
Specified Index Generation Function

An incompletely specified index generation function F can
often be represented with fewer variables than the original
function, when don’t care values are properly replaced by 0
or some index [1], [2], [6], [8].

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

SASAO: A FAST UPDATABLE IMPLEMENTATION OF INDEX GENERATION FUNCTIONS USING MULTIPLE IGUS
1575

Fig. 1 4-variable index generation function.

Theorem 3.1: Assume that an incompletely specified
function F is represented by a decomposition chart [5]. If
each column of the decomposition chart has at most one care
element, then the function can be represented by only col-
umn variables.

Example 3.2: Consider the decomposition chart in Fig. 1.
x1 and x2 specify columns, while x3 and x4 specify rows.
Also, blank cells denote don’t cares. In Fig. 1, each column
has at most one care element. Thus, this function can be
represented with only the column variables x1 and x2: F =
1 · x1 x̄2 ∨ 2 · x̄1x2 ∨ 3 · x̄1 x̄2 ∨ 4 · x1x2.

As for an upper bound on the number of variables, we
have the following:

Conjecture 3.1: [10], [11], [13] When the number of the
variables n is sufficiently large, most incompletely specified
index generation functions with weight k (≥ 7) can be rep-
resented by p = 2�log2(k + 1)	 − 3 variables.

For an incompletely specified function F, we need
to realize a circuit such that F(x1, x2, . . . , xn) = 0 if
(x1, x2, . . . , xn) is a non-registered vector.

4. Index Generation Unit (IGU)

In this section, we show an efficient method to implement
an index generation function. With this method, the number
of variables to the memory can be reduced. Figure 2 shows
the Index Generation Unit (IGU). The linear circuit has
n inputs and p outputs, where p < n. It is used to reduce
the number of inputs to the main memory. The set of inputs
to the linear circuit is partitioned into X = (X1, X2), and the
output is Y1 = (y1, y2, . . . , yp).

We consider two types of linear circuits. The first type
is the single-input linear circuit shown in Fig. 3. It pro-
duces a function y j = xπ(j), where π denotes a permutation
on n elements. It consists of p multiplexers and p registers,
and selects p variables from n input variables. The mul-
tiplexers’ data inputs are x1, x2, . . . , xn. Registers specify
which variables are selected by the multiplexer.

The second type of the circuits is the double-input lin-
ear circuit shown in Fig. 4. It performs a linear transfor-
mation yi = xi ⊕ x j or yi = xπ(i), where xi ∈ X1 and x j ∈ X2.
It uses a pair of multiplexers for each variable yi. The up-
per multiplexers have the inputs x1, x2, . . . , xn. The register
with �log2 n	 bits specifies the variable to select by the multi-
plexer. The lower multiplexers have the inputs x1, x2, . . . , xn,

Fig. 2 Index generation unit (IGU).

Fig. 3 Single-input linear circuit.

Fig. 4 Double-input linear circuit.

except for xi. For the i-th input, the constant input 0 is con-
nected instead of xi. By setting yi = xi ⊕ 0, we can imple-
ment yi = xi. Note that both types of linear circuits produce
a special class of linear functions. The main memory has
p inputs and q = �log2(k + 1)	 outputs. The main memory
produces correct indices for registered vectors. However,
it may produce incorrect indices for non-registered vectors,
because the number of input variables is reduced to p. In an
IGU, if the input vector is non-registered, then it produces 0
outputs. To check whether the main memory produces the
correct index or not, we use the AUX memory. The AUX
memory has q inputs and (n − p) outputs: It stores the X2

part of the registered vectors for each index. The compara-
tor checks if the inputs are the same as the registered vector

1576
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

or not. If they are the same, the main memory produces
the correct index. Otherwise, the main memory produces a
wrong index, and the input vector is non-registered. Thus,
the output AND gates produce 00 . . . 0, showing that the
input vector is non-registered. Note that the main memory
produces the correct indices only for the registered vectors.

Theorem 4.2: Consider the IGU in Fig. 2. Assume that
it realizes the index generation function F(X1, X2), where
X1 = (x1, x2, . . . , xp) and X2 = (xp+1, xp+2, . . . , xn). Also,
assume that Y1 = (y1, y2, . . . , yp), where yi = xi ⊕ x j for
j ∈ {p + 1, p + 2, . . . , n}, or yi = xi, are applied to the input
to the main memory. Then, F can be realized by the circuit
where the AUX memory stores only the values for X2.

5. Number of Vectors Realized by an IGU

In this section, we review the expected number of registered
vectors realized by an IGU [10].

Lemma 5.1: When 0 < α � 1, 1−α can be approximated
by e−α.

Lemma 5.2: Let F(X) be a uniformly distributed random
index generation function of n variables with weight k,
where k � 2n. Consider a decomposition chart [5], where
p is the number of variables labelling the columns. Then,
the probability that a column of the decomposition chart has
all-zero elements is approximately e−ξ, where ξ = k

2p .

Theorem 5.3: Consider a set of uniformly distributed in-
dex generation functions F(x1, x2, . . . , xn) with weight k.
Consider an IGU whose inputs to the main memory are
x1, x2, . . ., and xp. Then, the expected number of registered
vectors of F that can be realized by the IGU is 2p(1 − e−ξ),
where ξ = k

2p .

6. Realization Using Four IGUs

In an IGU, the main memory has p inputs and q = �log2(k+
1)	 outputs, while the AUX memory has q inputs and (n− p)
outputs. Thus, the total amount of memory for an IGU is
q2p + (n − p)2q.

Conjecture 3.1 shows that to implement an index gen-
eration function with weight k by an IGU, the number of
inputs to the main memory is p 2 log2 k − 3. Also, note
that q log2 k and n � k. Thus, the size of the memory is
O(k2 log k).

This shows that, when k is large, a single IGU realiza-
tion of an index generation function is inefficient.

Example 6.3: Let k = 220 − 1. Then, by Conjecture 3.1,
we have p = 2�log2(k + 1)	 − 3 = 37. Thus, the size of the
main memory in a single IGU realization is q2p = 20×237 =

2.75 × 1012 bits. Thus, we need a more efficient method.

To reduce the total amount of memory, we partition the
registered vectors into m groups, and realize each group in-
dependently [3], [9]. Figure 5 shows a network using four

Fig. 5 Realization of an index generation function by 4IGU.

IGUs. This architecture is called a 4IGU [9]. In this case,
we should use independent linear transformations for differ-
ent IGUs. The importance of the linear transformations will
be discussed in Sect. 7.

Next, we show that index generation functions can be
realized with a 4IGU. This is more efficient than a single
IGU realization when k is large.

Theorem 6.4: Consider an index generation function with
weight k. Then, more than 99.9% of the registered vec-
tors can be realized by a 4IGU, where the number of in-
put variables to the main memory for each IGU is p =
�log2(k + 1)	.

(Proof) Let k1 = k. We assume that, for each IGU, the
distribution of the vectors is uniform.

1. IGU1: Let ξ1 =
k1
2p .

The number of realized vectors is 2p(1 − e−ξ1).
The number of remaining vectors is

k2 = k1 − 2p(1 − e−ξ1) = k1 + 2p(e−ξ1 − 1).

2. IGU2: Let ξ2 =
k2
2p =

k1
2p + (e−ξ1 − 1).

The number of realized vectors is 2p(1 − e−ξ2).
The number of remaining vectors is

k3 = k1 − 2p(1 − e−ξ1) − 2p(1 − e−ξ2)

= k1 + 2p(e−ξ1 + e−ξ2 − 2).

3. IGU3: Let ξ3 =
k3
2p =

k1
2p + (e−ξ1 + e−ξ2 − 2).

The number of realized vectors is 2p(1 − e−ξ3).
The number of remaining vectors is

k4 = k1 + 2p(e−ξ1 + e−ξ2 − 2) − 2p(1 − e−ξ3)

= k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 − 3).

4. IGU4: Let ξ4 =
k1
2p + (e−ξ1 + e−ξ2 + e−ξ3 − 3).

The number of realized vectors is 2p(1 − e−ξ4).
The number of remaining vectors is

k5 = k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 − 3) − 2p(1 − e−ξ4)

= k1 + 2p(e−ξ1 + e−ξ2 + e−ξ3 + e−ξ4 − 4).

When k1 = 2p, the fraction of the original vectors that
remain is about 1.6 × 10−6. �

Note that, in the proof, we assumed that IGUs have
independent linear transformations, so that the distribution

SASAO: A FAST UPDATABLE IMPLEMENTATION OF INDEX GENERATION FUNCTIONS USING MULTIPLE IGUS
1577

of the vectors are uniform.

Example 6.4: Consider an index generation function with
weight k = 220 − 1 = 1048575. Let us realize the function
by the 4IGU shown in Fig. 5. Suppose that the number of
inputs to the main memory in each IGU is p = 20. We
assume that for each IGU, the distribution of the vectors is
uniform.

1. IGU1: Let ξ1 =
k1
2p =

1,048,575
220 = 0.9999990. It real-

izes 2p(1 − e−ξ1) = 1048576 × 0.6321203 662826
registered vectors. The number of remaining vectors is
k2 = 385749.

2. IGU2: Let ξ2 =
k2
2p =

385749
220 = 0.3678789. It real-

izes 2p(1 − e−ξ2) = 1048576 × 0.3077990 322750
registered vectors. The number of remaining vectors is
k3 = 62999.

3. IGU3: Let ξ3 =
k3
2p =

62999
220 = 0.0600805. It realizes

2p(1 − e−ξ3) = 1048576 × 0.0583113 61143 reg-
istered vectors. The number of remaining vectors is
k4 = 1856.

4. IGU4: Let ξ4 =
k4
2p =

1856
220 = 0.0017700. It realizes

2p(1− e−ξ4) = 1048576× 0.0017685 1854 registered
vectors. The number of remaining vectors is only k5 =

2.

Note that, in a 4IGU, the main memory of each IGU
has p inputs and p outputs, while the AUX memory has p
inputs and (n−p) outputs. Thus, the total amount of memory
for each IGU is

p2p + (n − p)2p = n2p.

Then, the total memory for the 4IGU is 4n2p. Thus, when
n = 40 and p = 20, the 4IGU requires 4n2p = 4×40×220 =

167.7 × 106 bits. This is more efficient than the single IGU
realization in Example 6.3, which requires 2.75× 1012 bits.

Definition 6.2: Let the linear circuit realize the p com-
pound variables:

y1 = a1,1x1 ⊕ a1,2x2 ⊕ · · · ⊕ a1,nxn,

y2 = a2,1x1 ⊕ a2,2x2 ⊕ · · · ⊕ a2,nxn,

.

yp = ap,1x1 ⊕ ap,2x2 ⊕ · · · ⊕ ap,nxn.

Then, the transformation matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
ap,1 ap,2 . . . ap,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Definition 6.3: Let A and B be two transformation matri-
ces of p×n. The rank of a matrix A is the number of linearly
independent row vectors, and denoted by rank(A). Matrix B
depends on A if

rank(A) = rank

[
A
B

]
.

Otherwise, B is independent of A.

Example 6.5: Consider three matrices:

A =

[
1 0 0 0
0 1 0 0

]
, B =

[
1 0 0 0
1 1 0 0

]
,

C =

[
1 0 0 0
0 1 1 0

]
.

Since, rank(A) = rank

[
A
B

]
= 2 < rank

[
A
C

]
= 3, B depends

on A, while C is independent of A.

Theorem 6.5: Consider two decomposition charts for an
index generation function. Assume that in the first chart, the
column variables are Y = (y1, y2, . . . , yp), while in the sec-
ond chart, the column variables are Z = (z1, z2, . . . , zp). Also
assume that the row variables are the same. If two transfor-
mation matrices for Y and Z are dependent each other, then
one decomposition chart is obtained from the other by per-
muting the columns of the other chart. Thus, the numbers
of variables to represent two functions that corresponds to
these two decomposition charts are the same.

Example 6.6: Consider the function f1(x1, x2, x3, x4) in
Fig. 1, where X1 = (x1, x2) are the column variables and
X2 = (x3, x4) are the row variables. Let Y1 = (y1, y2), where
y1 = x1 and y2 = x1 ⊕ x2. Consider the decomposition
chart, where Y1 = (y1, y2) are column variables. Figure 6
(left) is the corresponding chart, and let f2(y1, y2, x3, x4) be
the function. Note that columns for y1 = 1 are permuted.
Thus, the numbers of variables to represent two functions
f1(x1, x2, x3, x4) and f2(y1, y2, x3, x4) are the same, and both
are two.

Next, consider the decomposition chart, where Z1 =

(z1, z2), z1 = x1 and z2 = x2 ⊕ x3, are column vari-
ables. Figure 6 (right) is the corresponding chart, and let
f3(z1, z2, x3, x4) be the function. Compared with Fig. 1, the
element 3 is moved to the right in Fig. 6 (right). The num-
ber of variables to represent f3(z1, z2, x3, x4) is different from
that of f1(x1, x2, x3, x4). Note that f1(x1, x2, x3, x4) corre-
sponds to the matrix A, f2(y1, y2, x3, x4) corresponds to the
matrix B, and f3(z1, z2, x3, x4) corresponds to the matrix C,
in Example 6.5.

Fig. 6 f2(y1, y2, x3, x4) and f3(z1, z2, x3, x4)

1578
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Fig. 7 Decomposition chart for F(X1, X2).

7. Selection of Linear Transformations

In the previous sections, we assume that IGUs have inde-
pendent linear transformations. However, when the linear
transformations are the same for all the IGUs, the number
of registered vectors realized by IGUs will be decreased. In
this part, we will prove this using statistical analysis. First,
we illustrate the design method for a 4IGU.

Example 7.7: Consider a realization of an index genera-
tion function shown in Fig. 7 by a 4IGU. It is a random func-
tion of 6 variables. Blank entries denote 0’s. Note that the
column variables are X1 = (x1, x2, x3), while the row vari-
ables are X2 = (x4, x5, x6). Assume that the column vari-
ables are used for the main memories. The number of reg-
istered vectors is k = 20. The registered vectors are divided
into four subsets, and realized separately as follows:

1. IGU1 realizes the mapping of vectors to index values 1,
18, 2, 20, 7, 10, 1, and 17 (topmost registered vectors
in boldface numbers).

2. IGU2 realizes the mapping of vectors to index values
16, 11, 15, 14, 13, 6, and 3 (vectors in italic numbers).

3. IGU3 realizes the mapping of vectors to index values
4, 12, 19, and 9 (vectors in underlined numbers).

4. IGU4 realizes the mapping of vectors to index values 5
and 8.

When X1 = (x1, x2, x3) are used for the main memories, four
IGUs are necessary to implement the function.

Theorem 7.6: Let k be the number of registered vectors,
and p be the number of inputs to the main memory. Then,
the expected number of vectors realized by a 4IGU using the
same linear transformations is

2p[4 − e−β(4 + 3β + β2 +
1
6
β3)],

where β = k
2p .

(Proof) Consider the decomposition chart of a random index
generation function. Let p be the number of inputs to the
main memory. Note that the number of non-zero elements
in the decomposition chart correspond to that of the distinct
balls in distinct 2p bins. Assume that k balls are randomly

thrown into N1 = 2p bins. Also assume that k and N1 are
large. Let α = 1

N1
. Then, αk = β.

No Ball: The probability that a certain bin has no ball after
one throw is

N1 − 1
N1

= 1 − α.

The probability that a certain bin has no ball after k throws:

P0 = (1 − α)k e−αk = e−β,

because each throw is an independent event.
One Ball: The probability that a certain bin has one ball
after one throw is α. The probability that a certain bin has
exactly one ball after k throws:

P1 =

(
k
1

)
α(1 − α)k−1

= kα(1 − α)k−1

 βe−α(k−1) βe−β.
Two Balls: The probability that a certain bin has two balls
after two throws is α2. The probability that a certain bin has
exactly two balls after k throws:

P2 =

(
k
2

)
α2(1 − α)k−2

 1
2
β2e−α(k−2) 1

2
β2e−β.

Three Balls: The probability that a certain bin has three
balls after three throws is α3. The probability that a certain
bin has just three balls after k throws:

P3 =

(
k
3

)
α3(1 − α)k−3

=
k(k − 1)(k − 2)

3!
α3(1 − α)k−3

 1
3!
β3(1 − α)k−3 1

3!
β3e−β.

In this case, most of the vectors can be realized by a 4IGU
as follows:

1. IGU1 stores one element from each of the columns that
have at least one element. It stores 2p(1 − P0) vectors,
on the average.

2. IGU2 stores one element from each of the columns that
have two or more elements. It stores 2p[1 − (P0 + P1)]
vectors, on the average.

3. IGU3 stores one element from each of the columns that
have three or more elements. It stores 2p[1− (P0+P1+

P2)] vectors, on the average.
4. IGU4 stores one element from each of the columns that

have four or more elements. It stores 2p[1− (P0 + P1 +

P2 + P3)] vectors, on the average.

Thus, in total, the 4IGU stores 2p[4−(4P0+3P1+2P2+P3)]
vectors, on the average. �

SASAO: A FAST UPDATABLE IMPLEMENTATION OF INDEX GENERATION FUNCTIONS USING MULTIPLE IGUS
1579

Example 7.8: Let k = 220 − 1 and p = 20. In this case,
we have β 1.0. When the same linear transformations are
used, on the average, IGU1 stores 220(1 − P0) = 662826
vectors; IGU2 stores 220[1 − (P0 + P1)] = 277076 vectors;
IGU3 stores 220[1 − (P0 + P1 + P2)] = 84201 vectors; and
IGU4 stores 220[1 − (P0 + P1 + P2 + P3)] = 19910 vectors.
The number of remaining vectors is 4562, on the average.

Example 7.9: When independent linear transformations
are used, the function in Fig. 7 can be realized with only
three IGUs. In this case, IGU1 and IGU3 use X1 =

(x1, x2, x3) as inputs to the main memory, while IGU2 uses
X2 = (x4, x5, x6) as inputs to the main memory. The regis-
tered vectors are divided into three parts, and realized sepa-
rately as follows:

1. IGU1 stores one element for each non-empty column.
It realizes the mapping of vectors to index values 4, 11,
2, 15, 5, 13, 19, and 9.

2. IGU2 stores one element for each row. It realizes the
mapping of vectors to index values 7, 14, 1, 18, 16, 3,
12, and 8.

3. IGU3 stores the remaining elements for four columns.
It realizes the mapping of vectors to index values 20,
10, 6, and 17.

In this case, all the vectors can be realized by three IGUs.

8. Experimental Results

8.1 Realization with 4IGUs

To show the validity of the analysis, we generated 100 ran-
dom index generation functions with n = 40 and k = 220−1,
and realized them by 4IGUs, where p = 20.

In the experiment, we used the following linear trans-
formations: Let (x1, x2, . . . , xn) be the input variables. For
the i-th IGU, (y1, y2, . . . , yp) were used as the inputs to the
main memory, where y j = x j ⊕ xp−i+ j, (1 ≤ j ≤ p). Ta-
ble 2 compares the estimated values and experimental re-
sults. The column labeled Estimated denotes the results that
were obtained in Example 6.4. The column labeled Experi-
mental shows the average of 100 sample functions.

In the estimation, the remaining vectors not realized by
the 4IGU is only two, that is k5 = 2. On the other hand, in
the experiment, the number of the remaining vectors is 1.82,
on the average.

The reasons for the disparity may be

• The approximations in the estimation made an error.
• The registered vectors in the experiment were not truly

random.
• The number of sample functions were not sufficient.

In practice, we can easily find a good linear transforma-
tion using a minimization tool [12] for the last IGU. Thus,
each function can be realized by a 4IGU. The total amount
of memory is mn2p = 4×40×220 = 160×220 167.8×106.

Table 2 Numbers of Vectors Realized by 4IGU (k = 220 − 1)

Estimated Experiment
IGU ki Realized ki Realized

Vectors Vectors
1 1048575 662826 1048575.00 656230.28
2 385749 322750 381858.97 319474.10
3 62999 61143 62384.87 60550.56
4 1856 1854 1834.31 1832.49

Remain 2 1.82

Table 3 Average Numbers of Vectors Realized by 4IGU (k = 220 − 1)

Same Independent
Transformations Transformations

IGU ki Realized ki Realized
Vectors Vectors

1 1048575.00 656209.60 1048575.00 656230.28
2 381879.65 274321.17 381858.97 319474.10
3 107558.48 83343.99 62384.87 60550.56
4 24214.49 19709.61 1834.31 1832.49

Remain 4504.88 1.82

8.2 Effect of Independent Linear Transformations

In Sect. 7, we showed that independent linear transforma-
tions should be used for IGUs. To demonstrate this, we used
the previous 100 random index generation functions with
n = 40 and k = 220 − 1, and realized them by 4IGUs, where
p = 20. Table 3 compares the two 4IGU realizations. In the
column labeled Same, the same linear transformations are
used for four IGUs. In the column labeled Independent, in-
dependent linear transformations were used for the different
IGUs. The sample functions are the same as that of Table 2.

The effect is very clear. When the same linear trans-
formations are used for the 4IGU, on the average, 4504.88
vectors remain, which is not far from the estimated value
4562 in Example 7.8. On the other hand, when the indepen-
dent linear transformations are used for the 4IGU, on the
average, only 1.82 vectors remained which is near to the es-
timated value 2.0 in Example 6.4.

9. Fast Update of IGUs

Index generation functions often require quick update. For
example, in the routers for the internet, registered vectors are
often updated in every milli second. In this part, we show a
fast method to update registered vectors.

To update the registered vectors quickly, we have to
modify IGUs. Figure 8 shows a fast updatable IGU. Two
additional outputs are appended to the original IGU shown
in Fig. 2. The first one is the collision detection signal (CD).
It shows that the main memory produces non-zero output.
CD can be generated by the OR of the outputs of the main
memory. The second one is the match signal (MT). MT
shows that the input vector matches to a registered vector in
the IGU. With these two signals, an update of the registered
vectors becomes quite easy. An update of a registered vector
can be done by two steps:

1580
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Fig. 8 A fast updatable IGU.

Fig. 9 Circuit for update.

1. Delete the registered vector.
2. Append a new registered vector.

Figure 9 illustrates an update circuit using three IGUs.
When the UPDATE signal is 1, this circuit performs

update. During the update, the Busy signal is 1, and the
search operation is forbidden. When the update is success-
ful (i.e., the new vector can be stored in one of the IGUs in
Fig. 9) the fail signal is 0, while when the update is unsuc-
cessful the fail signal is 1.

Let X = (X1, X2) be the vector to be updated, and let
INDEX(X) be its index. According to the values of the col-
lision detection signal (CD) and the match signal (MT), the
following operations are done.

1. When (CD,MT) = (1, 1). Since the registered vector
exists in this IGU, rewrite the index.

2. When (CD,MT) = (0, 0). Since the registered vec-
tor does not exit, append the vector, and add the corre-
sponding index.

3. When (CD,MT) = (1, 0). Since other registered vector
exist in this IGU, try to update other IGU.

4. When (CD,MT) = (0, 1). This state never happens.

The controller works as follows: Then the UPDATE
signal is 1, the state is the update mode. When the UPDATE
is 1 and INDEX is non-zero, it appends a new registered vec-

Table 4 Registered vector table.

Vector Index
x1 x2 x3 x4 x5 x6

0 1 1 0 0 0 1
0 1 0 1 1 1 2
1 1 1 1 0 1 3
0 0 0 1 1 1 4
0 0 1 1 1 1 5
0 1 1 1 0 0 6
0 0 1 0 0 0 7
1 1 1 1 1 1 8
1 1 1 0 1 1 9
1 0 1 0 0 0 10
1 0 0 1 1 1 11
0 0 1 0 1 1 12
1 0 1 0 1 0 13
0 0 1 1 0 0 14
1 1 0 0 1 0 15

Table 5 Registered vectors stored in IGU1.

Vector Index
x1 x2 x3 x4 x5 x6

0 0 0 1 1 1 4
0 0 1 1 1 1 5
0 1 0 1 1 1 2
0 1 1 0 0 0 1
1 0 0 1 1 1 11
1 0 1 0 0 0 10
1 1 0 0 1 0 15
1 1 1 1 0 1 3

Table 6 Registered vectors stored in IGU2.

Vector Index
x4 x5 x6 x1 x2 x3

0 0 0 0 0 1 7
0 0 1 − − − 0
0 1 0 1 0 1 13
0 1 1 0 0 1 12
1 0 0 0 1 1 6
1 0 1 − − − 0
1 1 0 − − − 0
1 1 1 1 1 1 8

tor. When the UPDATE is 1 and INDEX is zero, it deletes
the corresponding registered vector.

With CD and MT signals, the controller can quickly
locate the IGU that stores the registered vectors to delete, or
the IGU to append the new registered vector.

Example 9.10: Implementation of the original function
Consider the registered vector table shown in Table 4. It has
n = 6 variables, and its weight is k = 15. Lets us imple-
ment this function by three IGUs each of which has a main
memory with three inputs. IGU1 implements the function
shown in Table 5. The inputs are (x1, x2, x3), and its weight
is 8. Note that the main memory and the AUX are combined
together.

IGU2 implements the function shown in Table 6. The
inputs are (x4, x5, x6), and its weight is 5. The index 0 de-
notes that no vector is stored in the memory.

IGU3 implements the function shown in Table 7. The
inputs are (y1, y2, y3), where

y1 = x1 ⊕ x4,

y2 = x2 ⊕ x5,

y3 = x3 ⊕ x6,

SASAO: A FAST UPDATABLE IMPLEMENTATION OF INDEX GENERATION FUNCTIONS USING MULTIPLE IGUS
1581

Table 7 Registered vectors stored in IGU3.

Vector Index
y1 y2 y3 x4 x5 x6

0 0 0 − − − 0
0 0 1 − − − 0
0 1 0 − − − 0
0 1 1 − − − 0
1 0 0 0 1 1 9
1 0 1 1 0 0 14
1 1 0 − − − 0
1 1 1 − − − 0

and its weight is 2. Note that these three IGUs implement
all the registered vectors shown in Table 4.
Deletion of a vector
To delete a vector, the UPDATE signal to the controller in
Fig. 9 is set to 1. Then, the vector to be deleted is set to the
inputs of three IGUs. Each IGU checks if the vector is stored
or not. If the vector is stored, the match signal (MT) will be
one. Next, the controller identifies the IGU that stores the in-
put vector using (MT1,MT2,MT3) and (CD1,CD2,CD3).
If an IGU store the input vector, both the match signal (MT)
and collision signal (CD) will be one.

If there is an IGU that store the input vector, the con-
troller send the WE signal to the corresponding IGU, and
rewrite the index to zero.

For example, to delete the first vector in Table 4, the
controller rewrite the the index of the vector (x1, x2, x3) =
(0, 1, 1) in IGU1, to zero.
Addition of a vector
To add a new vector, UPDATE signal is set to 1. Also the
index to be add is set to the INDEX of the controller. Then,
the vector to be add is set to the inputs of three IGUs. Each
IGU checks if a collision exists or not. If the collision exists,
the collision signal (CD) will be one.

The controller find the IGU that has no collision with
the input vector using the values of (CD1,CD2,CD3). If a
vacant location is available in an IGU, the controller write
the index to the IGU by setting WE to 1.

Assume that a new vector (x1, x2, x3, x4, x5, x6) =
(1, 1, 0, 0, 0, 0) and index = 1 is appended. IGU1 and IGU2
have collisions, but IGU3 has no collision. Thus, the con-
troller writes the index = 1 to the address (y1, y2, y3) =
(1, 1, 0).

10. Conclusion and Comments

In this paper, we presented a method to implement index
generation functions using multiple IGUs. Important results
are

• An index generation function with many registered
vectors should be realized by an mIGU rather than a
single IGU.
• Most index generation function with weight k can be

realized by a 4IGU, where p = �log2(k + 1)	.
• In an mIGU, the liner transformations should be inde-

pendent.

With the result of this paper, we can estimate the size

of of the IGUs necessary to implement a given number of
vectors.

In the application to the internet, the registered vectors
must be updated frequently, but only a short time is available
for reconfiguration. With updatable IGUs, we can quickly
update the vectors.

In this paper, to insert a new vector, we used the IGU
with the smallest index. Although this strategy works well
in most cases, it can fail to store a few vectors in the given
IGUs. In such a case, we can use one of the following meth-
ods:

• Increase the number of IGUs.
• Use an additional small CAM to store the remaining

vectors.
• Optimize the linear transformation [12] of the last IGU

to store all the remaining vector into the last IGU. Since
the number of registered vectors to store in the last IGU
is much smaller than its capacity, all the remaining vec-
tors can be stored in the last IGU. Conjecture 3.1 shows
a sufficient number of variables to represent a given in-
dex generation function.

Acknowledgments

This research is partly supported by the Japan Society for
the Promotion of Science (JSPS) Grant in Aid for Scientific
Research. Discussions with Drs. Hiroki Nakahara, Hisashi
Iwamoto, Kazunari Inoue, and Jon T. Butler were quite use-
ful. The author thanks the reviewers who found some mis-
prints.

References

[1] C. Halatsis and N. Gaitanis, “Irredundant normal forms and mini-
mal dependence sets of a Boolean functions,” IEEE Trans. Comput.,
vol.C-27, no.11, pp.1064–1068, Nov. 1978.

[2] Y. Kambayashi, “Logic design of programmable logic arrays,” IEEE
Trans. Comput., vol.C-28, no.9, pp.609–617, Sept. l979.

[3] Y. Matsunaga, “Synthesis algorithm for parallel index generator,”
IEICE Trans. Fund. Electronics, Communications and Computer
Sciences, vol.E97-A, no.12, pp.2451–2458, Dec. 2014.

[4] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey,” IEEE
J. Solid-State Circuits, vol.41, no.3, pp.712–727, March 2006.

[5] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[6] T. Sasao, “On the number of dependent variables for incompletely
specified multiple-valued functions,” International Symposium on
Multiple-Valued Logic (ISMVL-2000), pp.91–97, May 2000.

[7] T. Sasao and H. Nakahara, “Implementations of reconfigurable
logic arrays on FPGAs,” International Conference on Field-Pro-
grammable Technology 2007 (ICFPT’07), Kitakyushu, Japan,
pp.217–223, Dec. 12–14, 2007.

[8] T. Sasao, “On the numbers of variables to represent sparse logic
functions,” International Conference on Computer Aided Design
(ICCAD-2008), pp.45–51, Nov. 2008.

[9] T. Sasao, M. Matsuura, and H. Nakahara, “A realization of index
generation functions using modules of uniform sizes,” 19th Interna-
tional Workshop on Logic and Synthesis (IWLS-2010), pp.201–208,
June 18–20, 2010.

http://dx.doi.org/10.1109/tc.1978.1674997
http://dx.doi.org/10.1109/tc.1979.1675428
http://dx.doi.org/10.1587/transfun.e97.a.2451
http://dx.doi.org/10.1109/jssc.2005.864128
http://dx.doi.org/10.1109/ismvl.2000.848605
http://dx.doi.org/10.1109/fpt.2007.4439252
http://dx.doi.org/10.1109/iccad.2008.4681550

1582
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

[10] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[11] T. Sasao, “Index generation functions: Recent developments,” (in-

vited paper) International Symposium on Multiple-Valued Logic
(ISMVL-2011), Tuusula, Finland, May 23–25, 2011.

[12] T. Sasao, “Linear decomposition of index generation functions,”
17th Asia and South Pacific Design Automation Conference
(ASPDAC-2012), Sydney, Australia, pp.781–788, Jan. 30–Feb. 2,
2012.

[13] T. Sasao, “Index generation functions: Tutorial,” Journal of
Multiple-Valued Logic and Soft Computing, vol.23, no.3-4, pp.235–
263, 2014.

[14] T. Sasao, “A realization of index generation functions using mul-
tiple IGUs,” International Symposium on Multiple-Valued Logic,
(ISMVL-2016), Sapporo, Japan, pp.113–118, May 17–19, 2016.

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in Electronics Engineering
from Osaka University, Osaka Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan; IBM T. J. Watson Research Center,
Yorktown Height, NY; the Naval Postgraduate
School, Monterey, CA; and Kyushu Institute of
Technology, Iizuka, Japan. Now, he is a Profes-
sor of Department of Computer Science, Meiji
University, Kawasaki, Japan. His research areas

include logic design and switching theory, representations of logic func-
tions, and multiple-valued logic. He has published more than 9 books
on logic design including, Logic Synthesis and Optimization, Represen-
tation of Discrete Functions, Switching Theory for Logic Synthesis, Logic
Synthesis and Verification, and Memory-Based Logic Synthesis, in 1993,
1996, 1999, 2001, and 2011, respectively. He has served Program Chair-
man for the IEEE International Symposium on Multiple-Valued Logic (IS-
MVL) many times. Also, he was the Symposium Chairman of the 28th
ISMVL held in Fukuoka, Japan in 1998. He received the NIWA Memorial
Award in 1979, Takeda Techno-Entrepreneurship Award in 2001, and Dis-
tinctive Contribution Awards from IEEE Computer Society MVL-TC for
papers presented at ISMVLs in 1986, 1996, 2003, 2004 and 2012. He has
served an associate editor of the IEEE Transactions on Computers. He is a
Life Fellow of the IEEE.

http://dx.doi.org/10.1109/ismvl.2011.17
http://dx.doi.org/10.1109/aspdac.2012.6165060
http://dx.doi.org/10.1109/ismvl.2016.17

