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A Balanced Decision Tree Based Heuristic for
Linear Decomposition of Index Generation Functions∗

Shinobu NAGAYAMA†a), Tsutomu SASAO††b), Members, and Jon T. BUTLER†††c), Nonmember

SUMMARY Index generation functions model content-addressable
memory, and are useful in virus detectors and routers. Linear decompo-
sitions yield simpler circuits that realize index generation functions. This
paper proposes a balanced decision tree based heuristic to efficiently de-
sign linear decompositions for index generation functions. The proposed
heuristic finds a good linear decomposition of an index generation function
by using appropriate cost functions and a constraint to construct a balanced
tree. Since the proposed heuristic is fast and requires a small amount of
memory, it is applicable even to large index generation functions that can-
not be solved in a reasonable time by existing heuristics. This paper shows
time and space complexities of the proposed heuristic, and experimental
results using some large examples to show its efficiency.
key words: index generation functions, linear decomposition, incompletely
specified functions, balanced decision tree, content-addressable memory,
logic design, heuristic

1. Introduction

Index generation functions [6], [7] are logical models of pat-
tern matching and text search that are used in many appli-
cations, such as detection of computer viruses and packet
classification. These network applications require not only
fast computation of index generation functions but also their
frequent update, since rules (patterns) for computer viruses
and packet classification are frequently updated. Thus, a
memory-based design of index generation functions is de-
sired to satisfy the need for both fast computation and quick
update.

To design index generation functions using mem-
ory efficiently, a method using linear decomposition [2],
[5] of index generation functions has been proposed [9].
This method realizes an index generation function
f (x1, x2, . . . , xn) using two blocks L and G, as shown in
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Fig. 1 Linear decomposition of an index generation function.

Fig. 1. The first block L realizes linear functions yi (i =
1, 2, . . . , p) with EXOR gates, registers, and multiplexers,
and the second one G realizes a general function using a
(2p × q)-bit memory [9], where p is the number of linear
functions yi, and q is the number of bits needed to represent
function values. Because of the need to reduce the memory
size of G, we want p to be as small as possible. So, p < n.

In this design method, minimization of p is important
to reduce size of the memory for G. Thus, an exact mini-
mization algorithm [13] and various heuristics for minimiza-
tion have been proposed [8], [9], [11], [12]. However, for
larger index generation functions, more efficient minimiza-
tion heuristics are still required. Hence, in this paper, we
propose a heuristic with smaller time and space complexi-
ties than for existing heuristics. The proposed heuristic is
useful not only to find good linear decompositions of large
index generation functions, but also to investigate a trade-
off between complexity of L and memory size of G for large
index generation functions.

The rest of this paper is organized as follows: Section 2
defines index generation functions and linear decomposi-
tion. Section 3 formulates the minimization problem of the
number of linear functions, and shows our heuristic to solve
it. Section 4 shows experimental results from practical ex-
amples, and Sect. 5 concludes the paper.

2. Preliminaries

We briefly define index generation functions [6], [7] and
their linear decompositions [2], [5], [9].

Definition 1: An incompletely specified index gener-
ation function, or simply index generation function,
f (x1, x2, . . . , xn) is a multi-valued function, where k assign-
ments of values to binary variables x1, x2, . . ., and xn map
to K = {1, 2, . . . , k}. That is, the variables of f are binary-
valued, while f is k-valued. Further, there is a one-to-one re-
lationship between the k assignments of values to x1, x2, . . .,
and xn and K. Other assignments are left unspecified. An
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Table 1 Example of index generation function.

Registered vectors indices
x1 x2 x3 x4 f
0 0 0 1 1
0 0 1 0 2
1 0 0 0 3
1 1 1 0 4

Table 2 General functions g1 and g2 in linear decomposition of f .

y1 y2 g1 g2

0 0 2 1
0 1 1 2
1 0 3 3
1 1 4 4

assignment of values to x1, x2, . . ., and xn is called a regis-
tered vector. K is called a set of indices. k = |K| is called
weight of the index generation function f .

Definition 2: Let K be a set of indices. If K = {K1}∪{K2}∪
. . . ∪ {Ku} and {Ki} ∩ {Kj} = ∅ for ∀i, j (i � j), then P =
{K1,K2, . . . ,Ku} is a partition of indices, and |P| denotes
the number of the subsets Ki (i.e., |P| = u).

Example 1: Table 1 shows a 4-variable index generation
function with weight four. Note that, in this function, in-
put values other than 0001, 0010, 1000, and 1110 are NOT
assigned to any function values.

An arbitrary n-variable index generation function with
weight k can be realized by a (2n×q)-bit memory, where q =⌈
log2(k + 1)

⌉
. Linear decomposition can be used to reduce

memory size [9].

Definition 3: Linear decomposition of an index genera-
tion function f (x1, x2, . . . , xn) is a representation of f using
a general function g(y1, y2, . . . , yp) and linear functions yi:

yi(x1, x2, . . . , xn) = ci1x1 ⊕ ci2x2 ⊕ . . . ⊕ cinxn

(i = 1, 2, . . . , p),

where ci j ∈ {0, 1} ( j = 1, 2, . . . , n), and for all registered vec-
tors of the index generation function, the following holds:

f (x1, x2, . . . , xn) = g(y1, y2, . . . , yp).

Each yi is called a compound variable. For each yi,
∑n

j=1 ci j

is called a compound degree of yi, denoted by deg(yi),
where ci j is viewed as an integer, and

∑
is an integer sum.

Example 2: The index generation function f in Example 1
can be represented by y1 = x1, y2 = x2 ⊕ x4, and g1(y1, y2)
shown in Table 2. (i.e. all four values of f are distinguished
by just y1 and y2.) In this case, deg(y1) = 1 and deg(y2) = 2,
respectively. f can be also represented by y1 = x1, y2 = x3,
and g2(y1, y2) in the same table. In this case, both deg(y1)
and deg(y2) are 1. In either case, f can be realized by the
architecture in Fig. 1 with a (22 × 3)-bit memory.

In this way, by using a linear decomposition, memory

size needed to realize an index generation function can be
reduced significantly. But, to realize a compound variable
with compound degree d, (d − 1) 2-input EXOR gates are
required. Thus, a lower compound degree is desirable when
memory size is equal.

3. Minimization of Number of Linear Functions

In this section, a formulation of the minimization problem is
presented (reducing the number of linear functions), as well
as a heuristic to solve the problem.

3.1 Formulation of Minimization Problem

Since the architecture in Fig. 1 realizes an index generation
function with EXOR gates and a (2p × q)-bit memory, we
can state the minimization problem as follows:

Problem 1: Given an index generation function f and an
integer t, find a linear decomposition of f such that the num-
ber of linear functions p is the minimum, and the compound
degrees are at most t. Among the linear decompositions with
the same value of p, those with the lowest compound degree
are optimum.

As will be shown later, increasing the compound de-
gree t tends to reduce the value of p. But, a point of di-
minishing returns, t = t′, is reached where a small increase
in t beyond t′ greatly increases the delay and/or area of the
circuit L.

Example 3: For linear decompositions of f in Example 2,
the decomposition with y = x1, y2 = x3, and g2(y1, y2) is
optimum.

3.2 Heuristic for Minimization Problem

Since the solution space of Problem 1 is too large to
solve the problem exactly, various heuristics have been pro-
posed [8], [9], [11], [12]. However, for larger index genera-
tion functions, a heuristic that finds a good linear decom-
position with smaller time and space complexities is still
required. To reduce both time and space complexities, we
propose a heuristic that searches only promising linear de-
compositions efficiently.

To solve Problem 1, we have to find the smallest set
of compound variables such that k distinct combinations of
values of the compound variables have a one-to-one corre-
spondence to a set of indices for f . In other words, we have
to find the fewest compound variables that divide a set of in-
dices into singletons (sets consisting of exactly one index).
The key idea is to construct an ordered binary decision tree
with the smallest height.

Example 4: As shown in Fig. 2, finding the optimum lin-
ear decomposition in Example 3 can be considered as con-
structing an ordered binary decision tree with the smallest
height that divides a set of indices into singletons by com-
pound variables y1 and y2.
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Fig. 2 Point of view as a binary decision tree.

Although there exist heuristics to construct optimum
decision trees and diagrams based on linear functions [1],
[3], their objective function for optimization is essentially
different from that of Problem 1. Even if the existing heuris-
tics could be applied to Problem 1, they are not always effi-
cient. Therefore, we propose a dedicated heuristic to solve
Problem 1.

Since a binary decision tree with the smallest height
is a balanced decision tree, we propose a heuristic to con-
struct a balanced decision tree using compound variables.
We observed that balanced decision trees are constructed by
compound variables that recursively divide a set of indices
into two subsets with balanced size. That is, compound vari-
ables that recursively bisects a set of indices are a solution
of Problem 1. To find such compound variables efficiently,
we introduce cost functions to our heuristic.

3.2.1 Cost Functions to Find Compound Variables

Before describing cost functions to find compound vari-
ables, we define additional terms and show a requirement
for ideal compound variables.

Definition 4: An inverse function of a general function z =
g(y1, y2, . . . , yp) in a linear decomposition is a mapping from
K = {1, 2, . . . , k} to a set of p-bit vectors Bp, denoted by
g−1(z). In this inverse function g−1(z), a mapping obtained
by focusing only on the i-th bit of the p-bit vectors: K →
{0, 1} is called an inverse function to a compound variable
yi, denoted by (g−1)i(z).

Definition 5: Let ON(yi) = {z | z ∈ K, (g−1)i(z) = 1},
where K = {1, 2, . . . , k} and (g−1)i(z) is an inverse function
of g(y1, y2, . . . , yn) to yi. |ON(yi)| is called the cardinality of
yi or informally the number of 1s included in yi.

Example 5: For g2(y1, y2) in Table 2, its inverse functions
to y1 and y2 are (g−1

2 )1(z) and (g−1
2 )2(z), respectively. We

have (g−1
2 )1(1) = 0, (g−1

2 )1(2) = 0, (g−1
2 )1(3) = 1, and

(g−1
2 )1(4) = 1. Similarly, (g−1

2 )2(1) = 0, (g−1
2 )2(2) = 1,

(g−1
2 )2(3) = 0, and (g−1

2 )2(4) = 1. The cardinalities of both
y1 and y2 are 2.

On compound variables that construct a balanced de-
cision tree of an index generation function, the following
theorem holds.

Theorem 1: An index generation function with weight k =
2m, where m is a positive integer, can be represented by a
completely balanced binary decision tree with m compound
variables, if and only if there exist m compound variables
satisfying the following requirement: For any subset Y of
the set of the m compound variables,∣∣∣∣∣∣∣∣

⋂
yi∈Y

ON(yi)

∣∣∣∣∣∣∣∣ = 2m−h

holds, where h = |Y |.
(Proof) See Appendix A.

Although compound variables satisfying the above re-
quirements are ideal to construct a balanced decision tree,
weights of index generation functions are not always 2m, and
only limited functions have such compound variables. In
addition, finding such m compound variables is hard. Thus,
we heuristically find compound variables closer to the ideal
ones satisfying the above requirements by using the follow-
ing cost function:

cost(P, yi) =

√√∑
S∈P

( |S |
2
− |S ∩ ON(yi)|

)2

, (1)

where P is a partition of a set of indices with already se-
lected compound variables. Initially, when there are no se-
lected compound variables, P is the trivial partition con-
sisting of a single block containing all indices. Then, our
heuristic sequentially selects compound variables that min-
imize this cost function from among the unselected com-
pound variables.

The cost function (1) is defined with the view of a Eu-
clidean distance (2-norm) between yi and an optimum com-
pound variable that divides all subsets into halves. Thus,
a compound variable with a small value of (1) tends to be a
member of the optimum set of variables. When values of the
cost function are equal among compound variables, select-
ing a compound variable that divides subsets into smaller
subsets is desired to divide a set of indices into singletons
as quickly as possible. To select such a variable, we use the
following as the second cost function:

cost2(P, yi) = max
S∈P

(max(|S ∩ ON(yi)|, |S \ ON(yi)|)).
(2)

Since this cost function computes the size of the largest sub-
set among subsets divided by the value (0 and 1) assigned to
yi, a compound variable with a smaller value of (2) is better.

3.2.2 Constraint to Construct Balanced Tree

When the number of 1s included in any compound variable
is much smaller than k

2 , the set of indices is inescapably di-
vided into a large subset and a small subset. Then, only the
large subset is recursively divided into imbalanced subsets,
as suggested by the example in Fig. 3 (a). This is because
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Fig. 3 Binary decision trees for 1-out-of-10 code.

the cost functions (1) and (2) tend to assign the highest pri-
ority to divide the largest subset. Since only one subset is
divided by a compound variable (i.e., a subset monopolizes
a compound variable), other subsets are left undivided. As a
result, many compound variables are needed to divide many
small subsets into singletons.

In this way, when the number of subsets becomes larger
than the number of 1s in a compound variable, the number of
needed compound variables is also likely to be larger. Thus,
we introduce a constraint that does not allow a subset to mo-
nopolize a compound variable when the number of subsets
becomes larger than the number of 1s in a compound vari-
able. The number of 1s in a compound variable is estimated
as follows:

t × (average number of 1s in an original variable xi),

where t is a compound degree given as an input of Prob-
lem 1.

Example 6: Consider linear decompositions of an index
generation function shown in Table 3 with a compound de-

Table 3 Benchmark index generation function (1-out-of-10 code).

Registered vectors indices
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 f
1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 0 5
0 0 0 0 0 1 0 0 0 0 6
0 0 0 0 0 0 1 0 0 0 7
0 0 0 0 0 0 0 1 0 0 8
0 0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 0 1 10

Heuristic 1: Heuristic to find a good compound variable

Input: a partition of indices P, an index generation function, and a
compound degree t
Output: a compound variable yopt

1. Let y be 0 (the constant zero function).
2. Let P1 be a set consisting of singletons included in P.
3. Let X = {x1, x2, . . . , xn}.
4. If the estimated number of 1s in a compound variable is smaller

than or equal to |P \ P1 |, then xi is removed from X such that
there exists an S ∈ Pmonopolizing a compound variable y⊕ xi

for i = 1, 2, . . . , n (constraint).
5. Find xi with the minimum cost(P, y⊕xi) among X. cost2(P, y⊕

xi) is used to break a tie.
6. Replace y with y ⊕ xi and deg(y) with deg(y) + 1.
7. If cost(P, y) is smaller than the previous smallest one, then

yopt = y. cost2(P, y) is used to break a tie.
8. If cost(P, y) = 0, then terminate the heuristic.
9. Else, iterate Steps 3 to 8 until deg(y) = t.

gree t = 2. For this function, the number of 1s in a com-
pound variable is, at most two, since t = 2 and each original
variable xi has only one 1. Thus, only up to two indices can
be extracted from subsets when we divide subsets of indices
with a compound variable. When we use only the cost func-
tions (1) and (2), a binary decision tree shown in Fig. 3 (a)
is produced, and the number of compound variables needed
to divide a set of indices into singletons is 7. On the other
hand, when we add the above constraint, monopolization of
a compound variable by a subset is constrained, and a tree
shown in Fig. 3 (b) is produced. Then, the number of com-
pound variables needed is 6.

3.2.3 Balanced Decision Tree Based Heuristic

Heuristic 1 shows a heuristic to find a good compound vari-
able using the cost functions and the constraint. In the
heuristic, P is a partition of a set of indices with already
selected compound variables, and t is the maximum com-
pound degree. Since Heuristic 1 selects promising variables
xi using the cost functions, and compounds only those vari-
ables, it can find a good compound variable with small time
and space complexities. Since the heuristic begins with
the smallest compound degree, a compound variable with
smaller compound degree is prioritized when values of the
cost functions are equal among compound variables.

By using Heuristic 1 iteratively until a binary decision
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Heuristic 2: Heuristic to find a good linear decomposition

Input: an index generation function and a compound degree t
Output: a set of compound variables
1. Let P = {K} and i = 1.
2. Find a compound variable yi by Heuristic 1.
3. Divide each S ∈ P with yi.
4. Replace P with the divided subsets derived in Step 3.
5. i = i + 1.
6. Iterate Steps 2 to 5 until |P| = k.

Fig. 4 Imbalanced decision tree with height k − 1 [4].

tree is constructed, we can find a good linear decomposition.
Heuristic 2 shows a heuristic to find a good linear decompo-
sition using Heuristic 1. Heuristic 2 divides a set of indices
recursively using compound variables selected by Heuris-
tic 1, and it terminates when a set of indices is divided into
singletons.

3.3 Time and Space Complexities of the Heuristic

Since the cost functions cost(P, yi) and cost2(P, yi) are com-
puted by checking which subset S ∈ P each index belongs
to and whether it belongs to ON(yi), their time complexities
are O(k). The constraint is computed similarly, and thus, its
time complexity is also O(k). In Heuristic 1, the cost func-
tions and the constraint are invoked at most n times to find
the best xi among x1 to xn. Since this computation is iterated
t times, the time complexity of Heuristic 1 is

O(k) × n × t = O(knt).

Similarly to the cost functions, the time complexity
for dividing subsets of P in Step 3 of Heuristic 2 is O(k).
Heuristic 2 invokes this computation and Heuristic 1 iter-
atively until |P| = k. Since the number of iterations in
Heuristic 2 is k − 1 in the worst case, its time complexity is
(O(knt)+O(k))×(k−1) = O(k2nt). In this case, an extremely
imbalanced decision tree is constructed, as shown in Fig. 4.
However, it rarely happens because the heuristic intends to
construct a balanced decision tree. Since the number of it-
erations is O(log(k)) on the average, the time complexity of
Heuristic 2 is

O(ntk log(k)).

As for the space complexity, Heuristic 2 needs to store
a partition of indices P, selected compound variables, and

Table 4 Time and space complexities of heuristics.

Heuristics Time Space
Ours O(ntk log(k)) O(nk)

RM2011 [8] O(n5k) O(nk)
ASP-DAC2012 [9] O(ntk log(k)) O(ntk)

IEICE2014 [11] N/A O(nk2)
ISMVL2015 [12] O(nsk log(k)) O(nk)

n = the number of variables.
k = the number of indices.
t = the maximum compound degree.

given registered vectors. Note that storing a tree structure
is unnecessary because we can divide subsets of indices if
only a partition of indices P is stored. Memory size (the
number of words) to store P is O(k). Memory size needed
for selected compound variables is O(nt) because the up-
per bound on the number of compound variables is n, each
compound variable consists of at most t original variables,
and Heuristic 2 outputs original variables for each com-
pound variable. Memory size to store given registered vec-
tors is O(kn). Thus, total memory size for the above is
O(kn) + O(nt) + O(k). Since t is much smaller than k, and
other working spaces require much less memory size, the
space complexity of Heuristic 2 is

O(kn).

Table 4 compares our heuristic with four existing
heuristics, in terms of time and space complexities. Since
those four existing heuristics are based on quite different ap-
proaches than our balanced tree based approach, we briefly
introduce the four heuristics, as follows: The first one, de-
noted by RM2011 [8], is an iterative improvement method.
It produces an initial solution using compound variables
with small compound degrees, and then improves the solu-
tion using heuristic transformations iteratively until the solu-
tion cannot be improved anymore. Thus, a long computation
time is required until convergence of solutions.

The second one, denoted by ASP-DAC2012 [9], begins
with generating all the possible compound variables whose
compound degrees are up to t, and selects compound vari-
ables with a greedy method. Since there are O(nt) com-
pound variables, computation time to generate them and
memory size to store them are large when n is large.

The third one, denoted by IEICE2014 [11], is based on
an approach using a matrix, called the difference matrix. It
finds compound variables needed to distinguish two indices
using the difference matrix, and then heuristically selects
good variables out of them. Since the size of the difference
matrix is O(nk2), this method suffers from memory overflow
when k is large.

The last one, denoted by ISMVL2015 [12], is another
iterative improvement method. It selects s variables out of
n variables, produces compound variables using the s vari-
ables, and then replaces the s variables with the produced
compound variables. By iterating these processes, a solu-
tion continues to be improved. The number of combinations
to select s variables out of n variables is

(
n
s

)
, that is O(ns).
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Even if s = 2 or 3, the number of combinations is still large
when n is large.

As just described, in the existing heuristics, time or
space complexity is still large for large index generation
functions. Table 4 shows that our heuristic has smaller time
and space complexities. Thus, it can solve even large in-
stances of Problem 1 (e.g., n = 40 and k = 1,000,000) with a
computation time that is several orders of magnitude smaller
and with smaller memory size than the existing heuristics.

4. Experimental Results

The proposed heuristic is implemented in the C language,
and run on the following computer environment: CPU: Intel
Core2 Quad Q6600 2.4GHz, memory: 4GB, OS: CentOS
5.7, and C-compiler: gcc -O2 (version 4.1.2).

4.1 On Quality of Solutions

Among the existing heuristics in Table 4, the heuristic pre-
sented in ASP-DAC2012 [9] produces the best solutions
(i.e., the smallest number of compound variables) known so
far in most cases. Thus, we compare our heuristic with it in
terms of quality of solutions. Table 5 compares the numbers
of compound variables selected by both heuristics for some
benchmarks shown in [9]. For all of these benchmarks, ex-
cept for the m-out-of-20 code, the optimum solutions are not
yet known because there is no exact optimization algorithm
that can solve such large instances of Problem 1.

Even though the search space of our heuristic is much
smaller than that of the existing heuristic, the number of

Table 5 Comparison in terms of the number of compound variables.

Benchmarks k Heur. Compound degree t
1 2 3 4 5 6

1-out-of-20 code 20 [9] 19 14 10 8 7 6
Ours 19 13 10 8 7 6

3-out-of-20 code 1,140 [9] 19 17 14 12 12 11
Ours 19 17 14 13 13 13

IP address table 4,591 [9] 24 20 19 18 18 18
Ours 23 21 20 20 20 20

IP address table 7,903 [9] 23 21 20 20 20 20
Ours 23 22 22 22 21 21

English words 3,366 [9] 31 21 19 17 17 -
(ListB) Ours 31 21 20 19 19 19

English words 4,705 [9] 37 24 20 19 18 -
(ListC) Ours 37 24 21 20 20 20

“-” indicates that data was not available.

Table 6 Computation time in seconds and number of compound variables.

Computation time (sec.) Compound degree t
Benchmarks n k t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
SST numbers 48 1,000,000 81.31 167.19 252.92 334.85 416.14 499.50 572.41 648.32 720.80 790.85

Bible 560 20,827 3.96 6.72 9.55 12.42 15.11 17.93 20.73 23.44 26.25 29.01
US constitution 1,512 253 0.06 0.08 0.11 0.14 0.15 0.18 0.20 0.22 0.25 0.28

Number of compound variables t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
SST numbers 42 37 36 35 35 35 35 35 35 35

Bible 44 31 28 27 25 25 25 24 24 24
US constitution 15 12 11 11 10 10 10 10 11 11

compound variables selected by our heuristic is not much
larger than that selected by the existing heuristic, as shown
in Table 5. Particularly, for the benchmark of 1-out-of-20
code, our heuristic found the exact minimum number of
compound variables [13] for t = 1 to 8. This shows that
our heuristic finds good solutions efficiently by pruning un-
promising solutions heuristically.

4.2 Results for Large Problems

To show that our heuristic can be applied to larger problems,
we used the following three examples: 1) random social se-
curity and tax numbers (SST numbers) in Japan [14]; 2) the
bible [18]; and 3) the US constitution [19] including amend-
ments [20], [21]. 1) is used as a numeric example with large
k, and 2) and 3) are examples of text search with large n. For
information on how to generate index generation functions
from these examples, see Appendix B. Table 6 shows com-
putation time of our heuristic and the number of compound
variables for these examples.

For each example function, we can predict the number
of compound variables using Property 1 shown in [10].

Property 1: [10] When n is sufficiently large and k � 2n,
most index generation functions with weight k can be rep-
resented by L − 1, L, or L + 1 compound variables, where
L = 2log2(k + 1)� − 4.

For the function corresponding to the SST numbers, the
predicted number of compound variables is L − 1 = 2 ×
log2(1,000,001)� − 5 = 35; for the function corresponding
to the bible, it is L − 1 = 2 × log2(20,828)� − 5 = 25; and
for the function corresponding to the US constitution, it is
L − 1 = 2 × log2(254)� − 5 = 11. As shown in Table 6, our
heuristic achieves those numbers or even smaller numbers
when t ≥ 4 for the SST numbers, t ≥ 5 for the bible, and
t ≥ 3 for the US constitution.

These results show that even if n and k are large, our
heuristic finds a good solution within a reasonable time.

4.3 Verification of Time Complexity

To verify that the time complexity of Heuristic 2 is
O(ntk log(k)), we observed the number of iterations (i.e.,
loop count) in Heuristic 2 using randomly generated index
generation functions for SST numbers with different weight
k. We apply our heuristic to the functions with compound
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Fig. 5 The number of iterations in Heuristic 2 for different k.

Fig. 6 Histograms for the number of variables xi and |ON(xi)| [4].

degree t = 2. Figure 5 shows the number of iterations for
k = 100,000 to 1,000,000. From this graph, we can see that
as the weight k increases, the number of iterations grows ap-
proximately as 1.8625 × log2(k). Since in each iteration of
Heuristic 2, Heuristic 1 whose time complexity is O(ntk) is
invoked, the time complexity of Heuristic 2 is O(ntk log(k)).

We can also verify the time complexity by Property 1.
Since Heuristic 2 iterates the computation until a binary de-
cision tree is constructed, the number of iterations corre-
sponds to height of the tree (i.e., the number of compound
variables). From Property 1, the number of compound vari-
ables is about 2log2(k + 1)� − 4 for most index generation
functions. Therefore, we can say that the number of itera-
tions of Heuristic 2 is also O(log(k)) on the average.

4.4 Number of Compound Variables vs. Compound De-
gree

Figure 6 shows distributions of |ON(xi)| for the example in-
dex generation functions. In the figure, the horizontal axis
shows ratios of the number of 1s included in original vari-
ables xi, and the vertical axis shows ratios of the number of
xi having the same ratio of |ON(xi)|.

As shown in Fig. 6, the example functions have few
variables xi with |ON(xi)|/k � 0.5 that can divide a set of
indices into halves. Thus, many variables are required when
t = 1, as shown in Table 6. However, for such functions, we
can produce variables with |ON(xi)|/k � 0.5 by increasing
the compound degree, and thus, the number of variables can
be reduced. As shown in Table 6, however, it is not reduced
so much for t > 5. This shows that most effective value
for the compound degree does not exceed 5 for the example
index generation functions.

5. Conclusion and Comments

This paper proposes a balanced decision tree based heuris-
tic to minimize the number of compound variables for lin-
ear decomposition of index generation functions. Since time
and space complexities of the proposed heuristic are smaller
than those of existing heuristics, it can be applied to larger
index generation functions. Experimental results show that
the proposed heuristic finds a good solution that is close to
the best solution ever found, even though its search space is
much smaller. And, this paper also shows a relation between
the number of compound variables and compound degrees
t, and shows that the number of compound variables is re-
duced by increasing t until t = 5.

The proposed heuristic would be helpful for exact min-
imization algorithm based on a branch-and-bound method
because unpromising solutions can be pruned using the
heuristic. We will study an exact minimization algorithm
based on a branch-and-bound method.
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Appendix A: Proof for Theorem 1

(if) Assume that there exist m compound variables satisfy-
ing the requirement. Then, since for any compound vari-
able yi, |ON(yi)| = 2m/2 holds, each yi can divide a set of
indices into halves by values yi = 0 and yi = 1. And,
each subset of 2m−l indices obtained by a partition with l
variables can be further divided into halves by yl+1 because
|⋂l+1

i=1 ON(yi)| = 2m−l/2 holds for l+1 variables. The m com-
pound variables can divide a set of 2m indices into two equal-
sized subsets recursively, resulting in 2m singletons. By
considering partitions with each variable as a non-terminal
node, and each singleton as a terminal node, we have a com-
pletely balanced binary decision tree with height m.

(only if) Assume that a completely balanced binary de-
cision tree can be constructed. Then, in the tree, a set of

indices is divided into halves recursively by yi = 0 and
yi = 1, as shown in Fig. 2. Thus, for any compound vari-
able yi, |ON(yi)| = 2m/2 holds. And, since a set of indices is
divided into equal-sized subsets recursively, for any h vari-
ables, |⋂h

i=1 ON(yi)| = 2m/2h holds.

Appendix B: How to Generate Index Generation
Functions

In 2015, Japan introduced the new “social security and
tax number” (SST number) to replace the old “resident’s
identification number” (RIN) [14]. The new SST number
is a 12-digit decimal number (d11 d10 . . . d1 d0)10, and it
consists of a single check digit d0 and an 11-digit number
(d11 d10 . . . d1)10 that is generated from the resident’s 11-
digit RIN [15]. The RIN, in turn, consists of a single check
digit and a 10-digit number that is randomly generated to
prevent the identification of an individual from the num-
ber [17]. Thus, we randomly generated an 11-digit number,
and attached a check digit to its least significant digit to gen-
erate an SST number. The check digit d0 is obtained by the
following computation [16]:

d0 =

{
0 (r ≤ 1)
11 − r (otherwise)

r =

⎛⎜⎜⎜⎜⎜⎜⎝
11∑
i=7

di × (i − 5) +
6∑

i=1

di × (i + 1)

⎞⎟⎟⎟⎟⎟⎟⎠ (mod11).

We randomly generated 1,000,000 distinct SST num-
bers, and assigned an index from 1 to 1,000,000 to each
number. By converting each digit into a 4-bit number, we
generated 1,000,000 registered vectors, each with 4 × 12 =
48 bits.

The bible [18] consists of 31,102 verses, and we took
the first 80 characters from each verse excluding its refer-
ence number and verses consisting of 80 characters. Then,
we obtained 20,827 distinct strings of the characters by re-
moving the duplicated strings. By assigning an index from 1
to 20,827 to each string, and converting each character into
a 7-bit binary number using the ASCII code, we generated
the second index generation function.

The US constitution [19] consists of 256 sentences,
including amendments [20], [21] but excluding headings.
Similarly to the bible, we took the first 216 characters from
each sentence, and then, we obtained 253 strings by remov-
ing the duplicated strings. For sentences shorter than 216
characters, blanks are padded to make their length 216. By
assigning an index from 1 to 253 to each string, and con-
verting each character into a 7-bit binary number using the
ASCII code, we generated the third index generation func-
tion.
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