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SUMMARY This paper shows a method to find a linear transforma-
tion that reduces the number of variables to represent a given incompletely
specified index generation function. It first generates the difference matrix,
and then finds a minimal set of variables using a covering table. Linear
transformations are used to modify the covering table to produce a smaller
solution. Reduction of the difference matrix is also considered.
key words: minimal cover, linear transformation, functional decomposi-
tion, incompletely specified function, logic minimization

1. Introduction

Index generation functions [12] are useful in network appli-
cations [5] and pattern matching including computer virus
scanning engines [4].

In many cases, functions must be updated frequently.
Thus, a memory-based architecture is desirable. To reduce
the size of the memory to implement index generation func-
tions, a linear decomposition shown in Fig. 1 is quite effec-
tive [14]. When a given function is defined for only k input
combinations and k � 2n, the number of variables for the
general function can be often reduced. To find a good de-
composition, we use a linear transformation to reduce the
number of variables p for the general function. In many
cases, by this, the size of the LUT for the general function
is drastically reduced.

In this paper, we show a new method to find a linear
transformation that reduces the number of variables to rep-
resent a given incompletely specified index generation func-
tion. The rest of the paper is organized as follows: Sect. 2
defines index generation functions; Sect. 3 shows a method
to reduce the number of variables; Sect. 4 introduces a dif-
ference matrix to reduce the number of variables; Sect. 5
shows a method to reduce variables using a linear transfor-
mations; Sect. 6 shows a heuristic method to find a good
linear transformation; Sect. 7 shows a method to reduce the
difference matrix; Sect. 8 shows experimental results; and
Sect. 9 summarizes the paper.

2. Index Generation Function

Definition 2.1: Consider a set of k different vectors of n
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Fig. 1 Linear decomposition.

Table 1 Registered vector table.

Vector
x1 x2 x3 x4 x5 Index
1 0 0 0 0 1
0 1 0 0 0 2
0 0 1 0 0 3
0 0 0 1 0 4
0 0 0 0 1 5

bits. These vectors are registered vectors. For each reg-
istered vector, assign a unique integer (index) from 1 to k.
A registered vector table shows an index for each regis-
tered vector. An incompletely specified index generation
function produces a corresponding index when the input
vector matches a registered vector. Otherwise, the value of
the function is undefined (d, don’t care). The incompletely
specified index generation function represents a mapping
M → {1, 2, . . . , k}, where M ⊂ Bn denotes the set of reg-
istered vectors. k is the weight of the function.

Example 2.1: Consider the registered vectors shown in Ta-
ble 1. These vectors show an index generation function with
weight k = 5.

3. Number of Variables to Represent Incompletely
Specified Functions

In an incompletely specified index generation function f ,
don’t care values can be chosen as any value to minimize the
number of variables to represent f . This property is useful
to realize a function using a smaller memory (look-up table:
LUT) [12].

Definition 3.1: Let f (X) be an index generation function,
and (X1, X2) be a partition of the input variables, where
X1 = (x1, x2, . . . , xq) and X2 = (xq+1, xq+2, . . . , xn). The de-
composition chart for f is a two-dimensional matrix with
2q columns and 2n−q rows, where each column and row is
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Fig. 2 Index generation function of 4 variables.

labeled by a unique binary code, and each element corre-
sponds to the value of f .

Theorem 3.1: Suppose that an incompletely specified
function f is represented by a decomposition chart. If each
column has at most one care element, then the function can
be represented by using only the column variables.

(Proof) In each column, let the values of don’t cares el-
ements be set to the value of the care element in the column,
then the function depends only the column variables. �

Example 3.1: Consider the decomposition chart shown in
Fig. 2, where x1 and x2 specify the columns, and x3 and x4

specify the rows, and blank elements denote don’t cares.
Note that in Fig. 2, each column has at most one care el-
ement. Thus, this function can be represented by only the
column variables x1 and x2:

F = 1 · x1 x̄2 ∨ 2 · x̄1x2 ∨ 3 · x̄1 x̄2 ∨ 4 · x1x2.

Algorithms to minimize the number of variables in in-
completely specified functions have been developed [2], [3],
[8], [10]. As for the lower bound on the number of variables,
we have the following:

Theorem 3.2: [14] To represent any incompletely speci-
fied index generation function f with weight k, at least
q = �log2 k	 variables are necessary.

This lower bound is useful for the minimum covering step
in Algorithm 4.1†.

Thus, when the weight k of an n-variable index gen-
eration function is greater than 2n−1, we cannot reduce the
number of variables.

4. Minimization of the Number of Variables Using Dif-
ference Matrix

In this section, we introduce the difference matrix to min-
imize the number of variables to represent a given incom-
pletely specified index generation function.

Definition 4.1: [15], [17] Let M be the set of binary vec-
tors corresponding to the minterms of f . Let Df be the ma-
trix where each row is a vector �a⊕�b, �a, �b ∈ M, and �a � �b. Df

†We use a branch-and-bound method to solve minimum cover-
ing problems. This bound is often better than other lower bounds
for two-level logic minimizations [7].

Fig. 3 Index generation function of 4 variables.

Table 2 Registered vectors before linear transformation.

x1 x2 x3 x4 Index
1 0 0 0 1
0 1 0 0 2
0 1 1 0 3
1 1 0 1 4

Table 3 Difference matrix before linear transformation.

x1 x2 x3 x4 Tag
1 1 0 0 (1, 2)
1 1 1 0 (1, 3)
0 1 0 1 (1, 4)
0 0 1 0 (2, 3)
1 0 0 1 (2, 4)
1 0 1 1 (3, 4)

is called a difference matrix of M. Note that Df consists of(
k
2

)
=

k(k−1)
2 vectors, where k = |M|.

Example 4.1: Consider the function shown in Fig. 3. Ta-
ble 2 shows M, the set of vectors corresponding to the
minterms for f . It is also called the registered vector ta-
ble. Table 3 shows the corresponding difference matrix Df .
The last column of Table 3 shows tags specifying the pair of
vectors in M. For example, the first vector in Df has the tag
(1, 2), which shows that the first and the second elements in
M were used to generate the vector:

(1, 0, 0, 0) ⊕ (0, 1, 0, 0) = (1, 1, 0, 0).

It shows that to distinguish the first and the second vectors
in M, either x1 or x2 is necessary.

From the difference matrix, we can determine the con-
ditions to distinguish all the pairs of vectors in M [8], and
is essentially the same as the covering table [7]. Thus, we
can find the minimal set of variables to represent an incom-
pletely specified index generation function as follows:

Algorithm 4.1: (Minimal Sets of Variables to Represent
an Incompletely Specified Index Generation Function)

1. Let M be the set of vectors showing an incompletely
specified index generation function.

2. Generate Df , the difference matrix, from M.
3. Assume that in Df , each column corresponds to a vari-

able x j, and each row corresponds to a vector in Df .
4. The element (i, j) of the covering table is 1 iff the j-th

element of the i-th vector in Df is 1.
5. Derive the minimal set of variables that covers all the

rows of Df .
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Example 4.2: Consider the index generation function
shown in Fig. 3. Table 2 shows the registered vector table.
Note that the number of the columns is n = 4, while the
number of the rows is

(
k
2

)
=

k(k−1)
2 = 4×3

2 = 6. The first row
with the tag (1,2) corresponds to the first element in Df ,
which show that to distinguish the 1st and 2nd vectors in M,
either x1 or x2 is necessary. Also, note that the row with the
tag (2,3) has only single one. This row is covered only by
the column of x3. Such a variable is essential and, is neces-
sary in all solutions. Minimal sets of variables that cover all
the rows are {x1, x2, x3}, {x1, x3, x4}, and {x2, x3, x4}.

To find a minimal set of variables, we can use a stan-
dard method [7]. Although the method is straightforward, it
takes much computation time when n and k are large.

5. Reduction of Variables by Linear Transformations

In the previous section, we showed a method to reduce the
number of variables for incompletely specified functions.
Unfortunately, the effect of such method is limited. In this
section, we show that more variables can be reduced by us-
ing linear transformations†.

Example 5.1: The number of 1’s in each row of Table 1,
is one. Note that, the number of variables to represent the
function can be reduced to four: Any one variable can be
removed. For example, if we remove x5, then we have:

F = 1 · x1 x̄2 x̄3 x̄4 ∨ 2 · x̄1x2 x̄3 x̄4 ∨ 3 · x̄1 x̄2x3 x̄4

∨ 4 · x̄1 x̄2 x̄3x4 ∨ 5 · x̄1 x̄2 x̄3 x̄4.

However, we cannot remove two or more variables simulta-
neously. Thus, at least four variables are necessary to repre-
sent this function.

Definition 5.1: A linear transformation is defined as

y1 = c11x1 ⊕ c12x2 ⊕ c13x3 ⊕ . . . ⊕ c1nxn,

y2 = c21x1 ⊕ c22x2 ⊕ c23x3 ⊕ . . . ⊕ c2nxn,

y3 = c31x1 ⊕ c32x2 ⊕ c33x3 ⊕ . . . ⊕ c3nxn,

...

yp = cp1x1 ⊕ cp2x2 ⊕ cp3x3 ⊕ . . . ⊕ cpnxn,

where ci j ∈ {0, 1}. ti =
∑n

j=1 ci j is the compound degree of
yi.

Definition 5.2: Given an incompletely specified index
generation function, an optimum linear transformation is
one that minimizes the number of variables p in Fig. 1.

By Theorem 3.2, if the linear transformation reduces
the number of variables to q = �log2 k	 variables, then it is
optimum.

†Here, we only consider linear transformations because 1)They
are easy to implement by hardware, and 2) They are easy to ana-
lyze. However, it is also possible to use non-liner transformations.
Currently, we have no design method using non-linear transforma-
tions.

Table 4 Registered vectors after linear transformation.

Vector Index
y1 y2 y3
1 1 0 1
1 0 0 2
0 1 0 3
0 0 1 4
0 0 0 5

Fig. 4 Index generation function of 4 variables.

Example 5.2: For the function in Table 1, consider the lin-
ear transformation:

y1 = x1 ⊕ x2,
y2 = x1 ⊕ x3,
y3 = x4.

The transformed registered vectors are shown in Table 4.
In this case, all the vectors are distinct, and three variables
(y1, y2, y3) distinguish five vectors. Note that this is an opti-
mum transformation.

6. A Heuristic Method to Find Linear Transformations

6.1 Strategies to Find a Good Linear Transformation Us-
ing Difference Matrix

Since the number of linear transformations to be consid-
ered is very large [1], in this section, we present a heuris-
tic method to find a linear transformation that reduces the
number of variables.

Assume that xi is transformed to yi ⇐ xi ⊕ x j in M.
Consider the effect of this linear transformation in Df . Let �a
and �b be different row vectors in M. Note that only the i-th
part of the vectors is modified. Modified vectors in M are
written as:

�a′ = (a1, a2, . . . , ai ⊕ aj, ai+1, . . . , an).

�b′ = (b1, b2, . . . , bi ⊕ bj, bi+1, . . . , bn).

Thus, we have
�a′ ⊕ �b′ = (a1 ⊕ b1, a2 ⊕ b2, . . . , (ai ⊕ bi) ⊕ (aj ⊕ bj), ai+1 ⊕
bi+1, . . . , an ⊕ bn) = �a ⊕ �b ⊕ (0, 0, . . . , 0, aj ⊕ bj, 0, 0, . . . , 0).
Note that also in Df , only the i-th part of the vectors is mod-
ified. This means that the linear transformation can be also
done in Df .

Example 6.1: Consider the index generation function
shown in Fig. 3, and apply the linear transformation: y2 ⇐
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Table 5 Registered vectors after transformation.

x1 y2 x3 x4 Index
1 0 0 0 1
0 1 0 0 2
0 0 1 0 3
1 1 0 1 4

Table 6 Difference matrix after transformation.

x1 y2 x3 x4 Tag
1 1 0 0 (1, 2)
1 0 1 0 (1, 3)
0 1 0 1 (1, 4)
0 1 1 0 (2, 3)
1 0 0 1 (2, 4)
1 1 1 1 (3, 4)

Table 7 Original difference matrix.

x1 x2 x3 x4 x5 Tag
1 1 0 0 0 (1, 2)
1 0 1 0 0 (1, 3)
1 0 0 1 0 (1, 4)
1 0 0 0 1 (1, 5)
0 1 1 0 0 (2, 3)
0 1 0 1 0 (2, 4)
0 1 0 0 1 (2, 5)
0 0 1 1 0 (3, 4)
0 0 1 0 1 (3, 5)
0 0 0 1 1 (4, 5)

Table 8 Difference matrix after 1st reduction.

x1 x2 x3 x4 x5 Tag
1 1 0 0 0 (1, 2)
0 0 1 1 0 (3, 4)
0 0 1 0 1 (3, 5)
0 0 0 1 1 (4, 5)

x2 ⊕ x3. Table 5 shows M after the transformation, while
Table 6 shows Df after the transformation. Note that, in
the transformed Df , each row has at least two non-zero ele-
ments. Also, the total number of 1’s in the transformed Df is
increased. In the transformed Df , variable x3 is not essential
any more. Minimal sets of variables that cover all the rows
are {x1, y2}, {x1, x3, x4}, and {y2, x3, x4}. Note that the linear
transformation reduced the number of variables to two.

The previous example suggests that Df with more 1’s
tends to produce smaller solutions. Let the merit of a vari-
able be the number of rows covered by the variable. Our
strategy is to find a linear transformed variable with max-
imal merit. Then, we eliminate the rows of Df covered by
this variable. Repeat this process until all the rows of Df are
eliminated.

Example 6.2: Consider the function in Table 1. The dif-
ference matrix is shown in Table 7. First, we obtain a lin-
ear transformed variable with the maximal merit. Since
y1 = x1 ⊕ x2 is such a variable, we select this transforma-
tion. Then, we remove the rows of Df that are covered by
y1. Since the rows for (1,3),(1,4),(1,5),(2,3),(2,4) and (2,5)
are covered by y1, we remove them from Df , and have the
reduced difference matrix shown in Table 8.

Then, we find the second linear function that maxi-
mally covers the remaining rows shown in Table 8. In this

case, y2 = x1⊕x3 covers maximal number of rows, we select
this transformation. In this case, rows for (1,2), (3,4), and
(3,5) are removed, and only the row (4,5) remains. Since,
the row (4,5) can be covered by y3 = x4, we select this as
the third transformed variable. In this way, we can cover all
the rows of Df . The resulting linear transformed variables
are exactly the same as ones introduced in Example 5.2.

6.2 An Algorithm to Find Good Linear Transformations

From the previous observation, we have the following:

Algorithm 6.1: (A greedy algorithm to find a set of linear
transformations)

1. Let M be the set of vectors showing an incompletely
specified index generation function.

2. Generate Df , the difference matrix, from M. Eliminate
duplicated rows using Theorem 7.1.

3. Find a linear transformed variable yi that covers the
maximal number of rows in Df using Algorithm 6.2.

4. Eliminate the rows in Df that are covered by the linear
transformed variable yi.

5. Repeat this process until all the rows of Df are elimi-
nated.

In Step 3, we used the following:

Algorithm 6.2: (A greedy algorithm to find a linear trans-
formed variable)

1. Find a variable xi that has the maximal merit. Let yi ⇐
xi.

2. Find another variable x j such that yi ⊕ x j covers the
maximum number of rows in Df . If the number of cov-
ered rows is increased, then yi ⇐ yi ⊕ x j.

3. Repeat above operation while the number of covered
rows is increased.

Algorithm 6.1 can be considered as an improvement
of [17]. Our method to find linear transformed variables
y1, y2, . . . , yp is more efficient and effective, since we used
iterative improvement method recently introduced in [15].

7. Reduction of Difference Matrix

In the previous section, we showed that a good linear trans-
formation can be found using a difference matrix. Note that
the difference matrix has k(k−1)

2 rows and n columns. Thus,
when k is large, the matrix would be too large. In this sec-
tion, we show a method to reduce the number of rows of the
difference matrix. In the difference matrix, row vectors with
the same patterns can appear.

Example 7.1: Consider the registered vectors shown in Ta-
ble 9. The corresponding difference matrix is shown in Ta-
ble 10. Note that in the difference matrix, the first vector
and the last vectors are the same. Also, the second vector
and fifth one are the same. Also, the third and fourth vectors
are the same. In this case, if the first three rows are covered,
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Table 9 Registered vectors.

x1 x2 x3 x4 Index
1 1 0 0 1
0 0 1 0 2
1 0 0 1 3
0 1 1 1 4

Table 10 Difference matrix with duplicated rows.

x1 x2 x3 x4 Tag
1 1 1 0 (1, 2)
0 1 0 1 (1, 3)
1 0 1 1 (1, 4)
1 0 1 1 (2, 3)
0 1 0 1 (2, 4)
1 1 1 0 (3, 4)

then the last three rows are also covered. In other words, the
linear transformation can be obtained by using only the first
three vectors.

Theorem 7.1: Consider the difference matrix of an index
generation function. An optimal linear transformation can
be found by using the reduced difference matrix.

The linear transformation can be performed in the re-
duced difference matrix. In some cases, the number of rows
can be reduced drastically.

For random functions, the reduction of duplicated rows
is effective when k is large:

Theorem 7.2: Consider a random index generation func-
tion with weight k. Let R(n, k) be the ratio of the numbers
of vectors after the reduction of duplicated rows to that of
vectors before reduction. Then, we have

R(n, k) � 2n+1(1 − e−
k2

2n+1 )
k2

.

(Proof) To obtain the number of rows in the difference ma-
trix after reduction, consider Table 11, which shows the dis-
tribution of patterns. In this table, 1) Vi denotes a vector
in the difference matrix; 2) Pj denotes a pattern of the row
vector; 3) L denotes the number of rows of the original dif-
ference matrix; and 4) N = 2n denotes the number of all
possible bit patterns of n bits. For example,

√
in the sec-

ond row of Table 11 shows that the pattern of V1 is P0. The
number of rows in the difference matrix after reduction is
equal to the total number of columns with

√
in Table 11. In

other words, the expected number of columns that have
√

in Table 11 is equal to the number of rows in the difference
matrix after reduction.

Assume that the distribution of 0 and 1 in the difference
matrix is random. Each row has exactly one

√
. Thus, the

probability that a column has a
√

in a row is 1
N . Thus, the

probability that a certain column does not have
√

is Pr =

(1− 1
N )L. Since the value of 1

N is sufficiently small, it can be
approximated by Pr � e−L/N .

Thus, the probability that a certain column has a
√

is
1 − Pr = 1 − e−L/N . Since, the number of columns is N, the
expected number of columns with

√
is N(1 − e−L/N). Note

Table 11 Distribution of patterns in the difference matrix.

P0 P1 . . . . . . PN−1

V1
√

V2
√

.

.

.

.

.

.

VL
√

Table 12 Number of variables to represent m-out-of-20 code to index
converter.

# of Variables and CPU time [ms]
m k [14] CPU HEUR CPU
1 20 6 2611 5 6
2 190 9 5919 10 273
3 1140 11 76939 13 9835
4 4845 16 1110684 16 182448

that L = k(k−1)
2 . Thus, we have the theorem. �

8. Experimental Results

8.1 Comparison with Existing Methods

We developed a program for Algorithm 6.1. For simplicity,
reduction of the difference matrix is not incorporated into
the program.

As for the benchmark functions, we used m-out-of-n
code to index converters [14]. They are index generation
functions with weight k =

(
n
m

)
. Table 1 shows the case of n =

5 and m = 1. In this case, the i-th variable has 1 and other
variables have 0 in the input if and only if the value of the
function is i. The minimum number of variables to represent
a 1-out-of-n code to index converter is �log2 n	. For up to
n = 256, our program obtained exact minimum solutions.
The CPU time for n = 256 was 67.7 sec. These results are
much better than previous results [15], [17]. For example, in
[17], linear transformed variables were generated randomly,
so experimental results for only up to n = 12 were reported.

Table 12 shows the results for m-out-of-20 code to in-
dex converters. The column headed by [14] shows the re-
sults in ASPDAC-2012 [14]. In this case, all the trans-
formed variables with the compound degrees of up to six
were considered. Note that this method requires memory
proportional to

k ×
t=6∑
i=1

(
n
i

)
,

where t denotes the compound degree.
The presented program is faster and requires much less

memory than one in [14], although the qualities of solutions
are lower. In the experiment, we used a PC using an INTEL
Core i5-2450M CPU @2.5 GHz; Windows 7 64-bit oper-
ating system; and 8.00 GB RAM. In Table 12, the figures
shown in bold face denote optimum solutions.

Table 13 compares the present algorithm with existing
ones, where t denotes the compound degree used for linear
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Table 13 Comparison with existing methods.

Exhaustive Heuristic Heuristic
Method Method Method
ISMVL ASPDAC SASIMI

2011 2012 2013
Memoroy size O(k2n) O(knt) O(nk2)

CPU time Too Large Medium Small
Quality of Exact Good Good
Solutions Minimum

Table 14 Numbers of vectors in the difference matrix for m-out-of-n
code to index converters.

m k Total Distinct Ratio
1 20 190 190 1.000000
2 190 17955 5035 0.280423
3 1140 649230 43795 0.067457
4 4845 11734590 169765 0.014467

transformations.

8.2 Reduction of Difference Matrix and Their Effects

m-out-of-n code to index converters
Table 14 shows the numbers of rows in the difference ma-
trix for m-out-of-n code to index converters. The number of
registered vectors is k =

(
20
m

)
. On the other hand, the number

of rows in the difference matrix is
(

k
2

)
=

k(k−1)
2 .

For these functions, when the duplicated rows are re-
moved, the number of rows is drastically reduced. The col-
umn headed Total shows k(k−1)

2 , the number rows in the orig-
inal difference matrix. The column headed Distinct show
the number of distinct rows in the difference matrix, or the
number of rows after reduction. The last column shows
Ratio = Distinct

Total .

1. When m = 1, all the rows are distinct.
2. When m = 2, the difference matrix consists of rows

with weights two and four. Thus, there are
(

20
2

)
+

(
20
4

)
=

5035 patterns.
3. When m = 3, the difference matrix consists of rows

with weights two, four and six. Thus, there are
(

20
2

)
+(

20
4

)
+

(
20
6

)
= 43795 patterns.

4. When m = 4, the difference matrix consists of rows
with weights two, four, six and eight. Thus, there are(

20
2

)
+

(
20
4

)
+

(
20
6

)
+

(
20
8

)
= 169765 patterns.

For this class of functions, the reduction of the difference
matrix is quite effective when k is large.

Random Functions
Table 15 shows the numbers of rows in the difference ma-
trices for random index generation functions with weight k,
where k = 20, 190 and 1140. The numbers of distinct vec-
tors are average of 100 randomly generated functions. When
k = 4845, the number of rows in the difference matrix is
greater than 2n = 1048576. Thus, the values are omitted.
These values are quite near to the estimated values obtained
by Theorem 7.2.

Table 15 Numbers of vectors in the difference matrix for random func-
tions.

n k Total Distinct Ratio
20 20 190 190.0 1.00000
20 190 17955 17802.1 0.99149
20 1140 649230 484443.7 0.74619
20 4845 11734590 − − −− − − −−

Table 16 Reduction of duplicated rows: Estimation and experiment.

Statistical Experimental
n k R(n, k) Average S D

10 30 0.8092 0.8320 0.0268
10 50 0.5775 0.5981 0.0140
10 100 0.2032 0.2058 0.0004
15 100 0.9274 0.9306 0.0059
15 200 0.7485 0.7530 0.0038
15 300 0.5438 0.5473 0.0021
15 400 0.3739 0.3757 0.0008
15 500 0.2564 0.2572 0.0002
15 600 0.1813 0.1817 0.0000
15 700 0.1337 0.1339 0.0000
20 200 0.9905 0.9908 0.0012
20 300 0.9788 0.9791 0.0015
20 400 0.9628 0.9632 0.0008
20 500 0.9427 0.9431 0.0009

8.3 An Experiment Supporting Theorem 7.2

To confirm the validity of Theorem 7.2, we produced 100
random index generation functions, derived their difference
matrices, and counted the numbers of duplicated rows. Ta-
ble 16 compares R(n, k) with experimental values (Average
and Standard Deviation: S D) for different values of n and
k. Table 16 shows that estimated values R(n, k) predict the
experimental results fairly well.

9. Conclusion

Major contributions of this paper are:

• Showed an algorithm to derive minimal sets of vari-
ables to represent f using a difference matrix.
• Showed a heuristic algorithm to find a good linear

transformed variable to cover a difference matrix.
• Developed an efficient computer program which is

much faster and requires smaller memory than previ-
ous methods.
• Showed that the difference matrix can be reduced when

k is large.

Finding a good linear transformation requires a modifica-
tion of the covering table so that the solution is reduced. We
perform this by selecting a transformed variable that covers
the maximal number of uncovered rows, step by step.

In our applications [4], [5], values of n are around 20–
256, while values of k are up to 106. Thus, the proposed
method is still too time consuming for large problems. Thus,
in large problems, we have to partition the vectors into
smaller groups and implement each group separately.
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