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PAPER

Head-Tail Expressions for Interval Functions

Infall SYAFALNI†a) and Tsutomu SASAO††b), Members

SUMMARY This paper shows a method to represent interval functions
by using head-tail expressions. The head-tail expressions represent greater-
than GT (X : A) functions, less-than LT (X : B) functions, and interval func-
tions IN0(X : A, B) more efficiently than sum-of-products expressions. Let
n be the number of bits to represent the largest value in the interval (A, B).
This paper proves that a head-tail expression (HT) represents an interval
function with at most n words in a ternary content addressable memory
(TCAM) realization. It also shows the average numbers of factors to rep-
resent interval functions by HTs for up to n = 16, which were obtained
by a computer simulation. It also conjectures that, for sufficiently large n,
the average number of factors to represent n-variable interval functions by
HTs is at most 2

3 n − 5
9 . Experimental results also show that, for n ≥ 10,

to represent interval functions, HTs require at least 20% fewer factors than
MSOPs, on the average.
key words: prefix sum-of-products, head-tail expressions, TCAM

1. Introduction

Recent developments of network technology demand a
high-speed processing of packets. Packet classification [1],
[5] is a fundamental network primitive. The key device
that supports this technology is a ternary content address-
able memory (TCAM) [7], [11]. Since TCAMs check rules
in parallel, they are de facto standard for high speed packet
classification. However, inspite of its high-speed classifica-
tion ability, the TCAMs dissipate high power and are ex-
pensive. These problems tend to be worse with the growth
of the internet [17].

Thus, to overcome these drawbacks, reduction of
TCAM size is essential. Since the problems of TCAM mini-
mization is related to logic minimization, a logic minimizer,
such as ESPRESSO can be utilized [2]. However, an exact
minimization of a TCAM is extremely time consuming [6].

Table 1 shows an example of a classification function.
This function has two fields that correspond to the source
and the destination ports represented by intervals. In Ta-
ble 1, values are tested in a sequential manner from the top
to the bottom. In a TCAM, the operation is equivalent to
testing rows in a sequential order [6]. When each port is
specified by either * (don’t care) or a single value, each rule
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Table 1 Example of classification function.

Rule Source Port Destination Port Action

1 (0, 65536) 6790 Accept
2 (999, 2001) (0, 5590) Accept
3 ∗ ∗ Deny

corresponds to one word in a TCAM. However, when a port
is specified by an interval such as (0, 65536), the interval
must be represented by multiple words in a TCAM [3]. For
example, the interval (0, 65536) requires 16 words. Suppose
that the header of incoming packets with source port 1080
wants to access a destination with destination port 2080. As
in Table 1, the header does not match to the first rule, but
matches to the second rule, thus the action is Accept and the
packet is sent to the destination.

Table 2 compares our work with previous works, where
n denotes the number of bits to represent the largest value
in the interval. The first method [12] uses a special cir-
cuit to represent an interval directly. Thus, any interval can
be represented by a single word. However, this method is
the most expensive because it uses non-standard TCAMs∗.
The second method [10] uses an exact minimum sum-of-
products expression (MSOP) to represent an interval. This
method uses standard TCAM, and any interval function can
be represented with at most 2(n − 2) products. Since we
have to minimize TCAM words, this method is quite time
consuming. The third method [8] uses output encoding.
This method also uses a special circuit in addition to the
TCAM, while it requires at most n words to represent an in-
terval. The method proposed in this paper uses a head-tail
expression (HT) [4] to represent an interval. This method
requires a RAM in addition to the TCAM. Since HTs can
be generated from the binary representations of endpoints
of the intervals, time to generate HTs is quite short. The
third method and our methods require the same number of
TCAM words to represent a field. However, our method
uses only standard components such as TCAM and RAM.
On the other hand the method of [8] requires special hard-
ware, which would be very expensive.

In this paper, we show a method to represent an interval
function using a head-tail expression (HT). The head-tail ex-
pressions efficiently represent greater-than GT (X : A) func-
tions, less-than LT (X : B) functions, and interval functions

∗Using non-standard LSIs is very expensive, since the devel-
opment cost of such LSIs is very high, but the size of the market is
not large enough to amortize the development cost.
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Table 2 Comparison with previous works.

Parameter Ref. [12] Ref. [10] Ref. [8] This paper

Method Comparator MSOP Output encoding Head-tail expr.
Hardware Special circuit TCAM TCAM + Special circuit TCAM + RAM

Representation Direct interval n-bit non-prefix n + 1-bit prefix n-bit prefix
Max. # of words to represent a field 1 2(n − 2) n n

Cost High Low High Low

IN0(X : A, B). We prove that any interval function can be
represented by an HT with at most n factors. We also show
the average numbers of factors to represent interval func-
tions by HTs for up to n = 16, which were obtained by our
heuristic minimization algorithm. And, we conjecture that,
for sufficiently large n, the average number of factors in HTs
to represent n-variable interval functions is 2

3 n − 5
9 . By this

experiment, we also show that, for n ≥ 10, to represent in-
terval functions, HTs require at least 20% fewer factors than
MSOPs, on the average.

This paper is organized as follows: In Sect. 2, impor-
tant words are defined and the basic properties of inter-
val function are explained. In Sect. 3, a head-tail expres-
sion (HT) is introduced to represent GT , LT and IN0 func-
tions. In Sect. 4, experimental results are shown. Finally,
in Sect. 5, the paper is concluded. A preliminary version of
this paper was presented in [13].

2. Definition and Basic Properties

In this section, we present definitions and basic properties
before we step into the main contribution of this paper i.e.,
head-tail expression. First, we define a prefix sum-of-
products expression (PreSOP), and we give some examples
to make it more understandable. Second, we define open in-
terval and open interval functions; a greater-than function
(GT ), a less-than function (LT ), and an interval function
(IN0). We also show examples for GT , LT and IN0 func-
tions.

2.1 Prefix Sum-of-Products Expression

Definition 2.1: xi
ai denotes xi when ai = 1, and x̄i when

ai = 0. xi and x̄i are literals of a variable xi. The AND
of literals is a product. The OR of products is a sum-of-
products expression (SOP).

Definition 2.2: A prefix SOP (PreSOP) is an SOP consist-
ing of products having the form x∗n−1x∗n−2 . . . x

∗
m+1x∗m, where

x∗i is xi or x̄i and m ≤ n − 1.

Example 2.1: f (x2, x1, x0) = x2 ∨ x̄2x1 ∨ x̄2 x̄1x0 is a Pre-
SOP. f (x2, x1, x0) = x2 ∨ x1 ∨ x0 is an SOP, but it is not a
PreSOP.

Definition 2.3: An SOP representing a given function f
with the fewest products is a minimum sum-of-product ex-
pression (MSOP). A PreSOP representing a given function f
with the fewest products is a minimum PreSOP (MPreSOP).
An MSOP and an MPreSOP for f are denoted by MSOP( f )

and MPreSOP( f ), respectively.

Definition 2.4: Let F be an SOP. τ(F ) denotes the number
of products in F . τp( f ) denotes the number of products in
MPreSOP( f ).

In general, an SOP require fewer products than a Pre-
SOP to represent the same function [10]. However, in the
internet communication area, PreSOPs are used instead of
SOPs, since PreSOPs can be quickly generated from the bi-
nary decision trees of the functions [16].

2.2 Interval Functions

Definition 2.5: Let A and B be integers such that A < B.
An open interval (A, B) does not include its endpoints.

Definition 2.6: Let X, A and B be integers. An n-input
open interval function is

IN0(X : A, B) =

⎧⎪⎪⎨⎪⎪⎩
1, if A < X < B

0, otherwise.

An n-input greater-than function (GT ) function is

GT (X : A) =

⎧⎪⎪⎨⎪⎪⎩
1, if X > A

0, otherwise.

An n-input less-than function (LT ) function is

LT (X : B) =

⎧⎪⎪⎨⎪⎪⎩
1, if X < B

0, otherwise,

where X =
∑n−1

i=0 xi · 2i.

Lemma 2.1: The number of distinct n-variable interval
functions in (A, B), where −1 ≤ A < B ≤ 2n, is N(n) =
2n−1(2n + 1).

Proof: Let the size of an interval (A, B) be C = B− A−
1. For C = 1,C = 2, . . . ,C = 2n, the number of distinct
interval functions are 2n, 2n − 1, 2n − 2, . . . , 1, respectively.
Thus, we have N(n) = 2n + (2n − 1) + (2n − 2) + . . . + 1 =
2n−1(2n + 1). �

Lemma 2.2 ([15]): The minimum PreSOPs (MPreSOPs)
of GT and LT functions can be represented as follows:

GT (X : A) = (xn−1ān−1) ∨
0∨

i=n−2

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ xiāi,

LT (X : B) = (x̄n−1bn−1) ∨
0∨

i=n−2

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∧

j=n−1

x
bj

j

⎞⎟⎟⎟⎟⎟⎟⎠ x̄ibi,



SYAFALNI and SASAO: HEAD-TAIL EXPRESSIONS FOR INTERVAL FUNCTIONS
2045

where �a = (an−1, · · · , a0) and �b = (bn−1, · · · , b0) are the bi-
nary representations of A and B, repectively. GT and LT
have

∑n−1
i=0 āi and

∑n−1
i=0 bi disjoint products, respectively.

Example 2.2: When n = 4 and A = 0, we have �a =
(0, 0, 0, 0). Thus, GT (4 : 0) = x3∨ x2 x̄3∨ x1 x̄2 x̄3∨ x0 x̄1 x̄2 x̄3.

Example 2.3: When n = 4 and B = 15, we have �b =
(1, 1, 1, 1). Thus, LT (X : 15) = x̄3∨ x̄2x3∨ x̄1x2x3∨ x̄0x1x2x3.

Theorem 2.1 ([15]): Let �a = (an−1, an−2, · · · , a1, a0) and
�b = (bn−1, bn−2, · · · , b1, b0) be the binary representations of
A and B, respectively, and A < B. Let s be the largest index
such that as � bs. Then, IN0(X : A, B) can be represented
by

0∨
i=s−1

[( i+1∧
j=n−1

x
aj

j

)
xiāi ∨

( i+1∧
j=n−1

x
bj

j

)
x̄ibi

]
.

The number of products is

τp(IN0(X : A, B)) =
s−1∑
i=0

(āi + bi).

When A = B − 1 or A + 1 = B, the interval (A, B) has
empty set, thus IN0(X : A, B) has no product (including the
case when s = 0). When A = −1 and/or B = 2n, these
endpoints are called by extremal endpoints.

Lemma 2.3 ([15]): In the extremal endpoints, we have
GT (X : −1) = LT (X : 2n) = IN0(X : −1, 2n) = 1, IN0(X :
−1, B) = LT (X : B), and IN0(X : A, 2n) = GT (X : A).

The optimality of GT (X : A), LT (X : B), and IN0(X :
A, B) functions represented by PreSOPs has been discussed
in the reference [15].

Example 2.4: Let A = 0, B = 31 and n = 5. In this case,
�a = (0, 0, 0, 0, 0) and �b = (1, 1, 1, 1, 1). By Theorem 2.1, the
PreSOP for IN0(X : 0, 31) is

x̄4 x̄3 x̄2 x̄1x0 ∨ x4x3x2x1 x̄0 ∨ x̄4 x̄3 x̄2x1 ∨ x4x3x2 x̄1

∨ x̄4 x̄3x2 ∨ x4x3 x̄2 ∨ x̄4x3 ∨ x4 x̄3.

Figure 1(a) shows its map. The integers in the map denote
decimal representations of minterms, where X =

∑n−1
i=0 xi ·

2i. The PreSOP requires τp(IN0(X : 0, 31)) = 4 + 4 = 8
products.

Fig. 1 Maps for IN0(X : 0, 31).

Note that an MSOP for IN0(X : 0, 31) is x̄4x3 ∨ x̄3x2 ∨
x̄2x1 ∨ x̄1x0 ∨ x̄0x4. Figure 1(b) shows its map.

3. Head-Tail Expressions for Interval Functions

In this section, we use head-tail expressions (HTs) to repre-
sent interval functions. HTs [4] were originally introduced
to design NAND three-level networks. Lemma 2.2 shows
that when the binary representation of A has t 0’s, a Pre-
SOP for GT (X : A) requires t products. Especially when
an−1 = an−2 = · · · = a0 = 0, the PreSOP requires n products.
Similarly, it also shows that when the binary representation
of B has t 1’s, a PreSOP for LT (X : B) requires t products,
and n products when bn−1 = bn−2 = · · · = b0 = 1. Theo-
rem 2.1 shows that when an−1 = an−2 = · · · = a0 = 0 and
bn−1 = bn−2 = · · · = b0 = 1, the PreSOP for IN0(X : A, B)
requires 2(n − 1) products. Thus, if the PreSOP is used in a
TCAM, we need up to 2(n − 1) words.

However, the number of TCAM words can be reduced
if we use the properties of a TCAM. We will show such a
method in this section.

3.1 Derivation of Head-Tail Expressions for Interval Func-
tions

Definition 3.1: A head-tail expression (HT) has a form

f =
0∨

i=t

[ 0∧
j=si

(h̄i j)

][ 0∧
k=vi

(gik)

]
, (1)

where for (i = 0, 1, · · · , t), (h̄i j) is the head factor and (gik)
is the tail factor, and hi j and gik are represented by prod-
ucts. In this paper, (product) and (product) are called fac-
tors. Products are used for PreSOPs and MSOPs, while fac-
tors are used for HTs. Both products and factors are realized
in the form of words in TCAMs. Note that an SOP is con-
sidered as a special case of an HT.

Example 3.1:
(
x̄6 x̄5 x̄4

) · (x̄6 x̄5x4
) · (x3x2) ∨ (x̄6 x̄5 x̄4

) ·(
x̄6 x̄5x4

) · (x̄3 x̄2) is an HT.

Lemma 3.1: The circuit in Fig. 2 consisting of a TCAM
and a RAM implements an HT.

In Fig. 2, the circuit realizes the function f = (h̄0)g0 ∨

Fig. 2 Circuit for a head-tail expressions.
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(h̄1)g1 ∨ · · · ∨ (h̄t)gt. Note that TCAM has a priority en-
coder in the output part [7], [11]. A factor corresponds to a
word in a TCAM. Since the upper words have higher prior-
ity than the lower words, the TCAM will produce the action
for the upmost matched word. Thus, in Fig. 2, if the input
pattern mismatches h0 and matches g0, then the output is 1.
However, if the input pattern matches both h0 and g0, then
the output is 0. Thus, unlike Programmable Logic Arrays
(PLAs) [9], the order of words stored in the TCAM is very
important.

Any logic function can be represented by a canonical
sum-of-products expression (i.e., minterm expansion). It is
a special case of a PreSOP, and a PreSOP is a special case
of an SOP, and an SOP is a special case of an HT. Thus,
any logic function can be represented by an HT. In particu-
lar, any interval function can be represented by an HT. Un-
fortunately, the HT derived by Theorem 2.1 requires many
factors.

In this part, we show a more efficient way to represent
an interval function by an HT. The general idea is to de-
compose a given function into sub-functions, so that each
sub-function require a small number of factors.

Consider the case of GT (X : A). As shown in Lemma
2.2, the more 0’s in the binary representation of A, the more
product terms are necessary in the expression. First, we will
show that when the binary representation of A has a consec-
utive 0’s, we have an efficient representation.

Definition 3.2: The integer representation of a binary
number �a = (an−1, an−2, . . . , a0) is A =

∑n−1
i=0 ai2i, and de-

noted by A = INT (�a). The complement of an integer A is
defined as 2n − 1 − A, and denoted by COMP(A).

Example 3.2: When �a = (1, 0, 1, 1). We have INT (�a) =
8 + 2 + 1 = 11 and COMP(11) = 4.

To extract the least significant consecutive 0’s in a bi-
nary vector, we use the 0-extraction vector.

Definition 3.3: Let �a and �a′ be binary vectors of n bits such
that INT (�a) ≤ INT (�a′). Further assume that

ai = a′i = 1 for i = 0, 1, . . . ,m − d − 1,

ai = a′i = 0 for i = m − d,m − d + 1, . . . ,m − 1, and,

a′i = 1 for i = m,m + 1, . . . , n − 1.

Then, �e = �a∨�a′ denotes the 0-extraction vector for consec-
utive 0’s in the least significant bits, where �a′ is the comple-
ment of �a′, and ∨ denotes the bitwise OR operation. Note
that �a uniquely determines �a′.

Example 3.3: Let �a = (1, 0, 1, 0, 0, 1, 1) and �a′ =
(1, 1, 1, 0, 0, 1, 1). These vectors satisfy the properties of
Definition 3.3, where n = 7, m = 4, and d = 2. Then,
the 0-extraction vector is �e = �a ∨ �a′ = (1, 0, 1, 1, 1, 1, 1).

Definition 3.4: Let �b and �b′ be binary vectors of n bits such
that INT (�b′) ≤ INT (�b). Further assume that

bi = b′i = 0 for i = 0, 1, . . . ,m − d − 1,

bi = b′i = 1 for i = m − d,m − d + 1, . . . ,m − 1, and ,

b′i = 0 for i = m,m + 1, . . . , n − 1.

Then, �e = �b∧�b′ denotes the 1-extraction vector for consec-

utive 1’s in the least significant bits, where �b′ is the comple-
ment of �b′, and ∧ denotes the bitwise AND operation. Note
that �b uniquely determines �b′.

Example 3.4: Let �b = (0, 1, 0, 1, 1, 0, 0) and �b′ =
(0, 0, 0, 1, 1, 0, 0). These vectors satisfy the properties of
Definition 3.4, where n = 7, m = 4, and d = 2. Then,

the 1-extraction vector is �e = �b ∧ �b′ = (0, 1, 0, 0, 0, 0, 0).

Lemma 3.2: Let �a = (an−1, an−2, · · · , a1, a0) and �a′ =
(a′n−1, a

′
n−2, · · · , a′1, a′0) be binary vectors satisfying the prop-

erty of Definition 3.3. Let d (d ≥ 1) be the number of 0’s in
the consecutive 0’s in �a′. Let �e = �a ∨ �a′ be the 0-extraction
vector. Then, GT (X : INT (�e)) ·GT (X : INT (�a)) can be rep-
resented by the HT with two factors:

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

m−d∧
i=m−1

x̄i

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

m∧
j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ .

When n − 1 < m, the product
∧m

j=n−1 x
aj

j is represented
by the constant function 1. Note that, when �a′ = �a,
GT (X : INT (�e)) ·GT (X : INT (�a)) = GT (X : INT (�a)).

Proof: In this case, we only consider the group of con-
secutive 0’s specified by the vector �a′.

GT (X : INT (�e)) ·GT (X : INT (�a))

=

m−d∨
i=m−1

⎛⎜⎜⎜⎜⎜⎜⎝
i+1∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ xi

=

m−d∨
i=m−1

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

i+1∧
k=m−1

xak

k

⎞⎟⎟⎟⎟⎟⎟⎠ xi

=

m−d∨
i=m−1

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ xi

=

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

m−d∨
i=m−1

xi

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

m−d∧
i=m−1

x̄i

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝

m∧
j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ ∨
⎛⎜⎜⎜⎜⎜⎜⎝

m−d∧
i=m−1

x̄i

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

m−d∧
i=m−1

x̄i

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

m∧
j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠ .

Thus, we have the lemma. In this case: (h̄1) =(∧m
j=n−1 x

aj

j

∧m−d
i=m−1 x̄i

)
is the head factor, and (g1) =
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(∧m
j=n−1 x

aj

j

)
is the tail factor. Note that, when n− 1 < m, the

product
∧m

j=n−1 x
aj

j is represented by the constant function 1.

Note that, when �a′ = �a, GT (X : INT (�e)) ·GT (X : INT (�a)) =
GT (X : 2n − 1) ·GT (X : INT (�a)) = GT (X : INT (�a)). �

Example 3.5: Let �a = (1, 0, 1, 1, 0, 0, 0) and �a′ =
(1, 1, 1, 1, 0, 0, 0). �a and �a′ satisfy the properties of Defi-
nition 3.3, where n = 7, m = 3 and d = 3. In this case, the
0-extraction vector is �e = �a ∨ �a′ = (1, 0, 1, 1, 1, 1, 1). In �a,
there is a group of consecutive 0’s. By Lemma 3.2, the HT
for GT (X : INT (�e)) ·GT (X : INT (�a)) is represented as

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
aj

j

m−d∧
i=m−1

x̄i

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

m∧
j=n−1

x
aj

j

⎞⎟⎟⎟⎟⎟⎟⎠
= (x6 x̄5x4x3 x̄2 x̄1 x̄0) · (x6 x̄5x4x3).

It requires two factors.

Lemma 3.3: Let �b = (bn−1, bn−2, · · · , b1, b0) and �b′ =
(b′n−1, b

′
n−2, · · · , b′1, b′0) be binary vectors satisfying the prop-

erty of Definition 3.4. Let d (d ≥ 1) be the number of 1’s in

the consecutive 1’s in �b′. Let �e = �b ∧ �b′ be the 1-extraction
vector. Then, LT (X : INT (�e)) · LT (X : INT (�b)) can be rep-
resented by the HT with two factors:

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
bj

j

m−d∧
i=m−1

xi

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

m∧
j=n−1

x
bj

j

⎞⎟⎟⎟⎟⎟⎟⎠ .

When n − 1 < m, the product
∧m

j=n−1 x
bj

j is represented

by the constant function 1. Note that, when �b′ = �b,
LT (X : INT (�e)) · LT (X : INT (�b)) = LT (X : INT (�b)).

Proof: The proof is similar to that of Lemma 3.2. �
Lemmas 3.2 and 3.3 are applicable to interval functions

with a special property.
As explained before, a PreSOP is a special case of HTs,

thus an interval function can be represented by an HT. Note
that an interval function can be segmented into smaller in-
terval functions which are represented by HTs.

Lemma 3.4: Let −1 ≤ A < B ≤ 2n. An interval function
IN0(X : A, B) can be represented by

IN0(X : A, B) = GT (X : A) ·GT (X : B − 1)

= LT (X : A + 1) · LT (X : B).

Proof: An interval function IN0 can be represented by
a AND of GT and LT functions

IN0(X : A, B) = GT (X : A) · LT (X : B).

Since GT (X : A) = LT (X : A + 1) and LT (X : B) =
GT (X : B − 1), we have the lemma. �

Example 3.6: Represent IN0(X : −1, 4) and IN0(X : 3, 8)
by GT and/or LT functions.

Fig. 3 Example of Lemma 3.4.

IN0(X : −1, 4) = GT (X : −1) ·GT (X : 3)

= LT (X : 0) · LT (X : 4)

IN0(X : 3, 8) = GT (X : 3) ·GT (X : 7)

= LT (X : 4) · LT (X : 8)

Figure 3 illustrates Lemma 3.4. The white part corresponds
to an expression for IN0(X : −1, 4), while the grey part cor-
responds to an expression for IN0(X : 3, 8).

Theorem 3.1: A GT function can be represented as:

GT (X : A)=
0∨

i=r−1

GT (X : INT (�ei))·GT (X : INT (�ai)),

where INT (�a0) = A, and �ai+1 = �ei = �ai ∨ �a′i (i =
0, 1, 2, . . . , r − 1) are 0-extraction vectors, and �er−1 =

(1, 1, 1, . . . , 1).

Proof: Let �a0 = �a. If there are groups of consecutive
0’s in �a0, then we extract the vectors by finding a group of
consecutive 0’s at the least significant bit and masking it by
�a′i . Then, we represent every 0’s from the least significant
bits of �a0 by decomposing the GT function into two parts,
where �e0 = �a0 ∨ �a′0:

GT (X : A) = GT (X : INT (�e0)) ·GT (X : INT (�a0))

∨GT (X : INT (�e0)).

Next, if there are groups of consecutive 0’s in �a1 = �e0, we
further decompose the last part into two, where �e1 = �a1∨�a′1:

GT (X : A) = GT (X : INT (�e0)) ·GT (X : INT (�a0))

∨GT (X : INT (�e1)) ·GT (X : INT (�a1))

∨GT (X : INT (�e1)).

We decompose the function until INT (�er−1) = 2n −1, where
r is the number of groups of consecutive 0’s in �a. Note
that GT (X : INT (�ei)) · GT (X : INT (�ai)) can be obtained
by Lemma 3.2 or Lemma 2.2. �

Example 3.7: Let �a = (0, 1, 1, 0, 0), where n = 5. Rep-
resent GT (X : INT (�a)) by HT. Let �a′0 = (1, 1, 1, 0, 0) and
use Theorem 3.1 to decompose GT (X : INT (�a)). Note that
�a0 = �a and �e0 = �a1 = �a0 ∨ �a′0 = (0, 1, 1, 1, 1). We have:

GT (X : INT (�a)) = GT (X : INT (�e0))
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·GT (X : INT (�a0)) ∨GT (X : INT (�e0)).

By Lemma 3.2, we have GT (X : INT (�e0)) · GT (X :
INT (�a0)) = (x̄4x3x2 x̄1 x̄0) · (x̄4x3x2). Next, let �a′1 =
(0, 1, 1, 1, 1). Thus, �e1 = �a1 ∨ �a′1 = (1, 1, 1, 1, 1). We have:

GT (X : INT (�a1)) = GT (X : INT (�e1))

·GT (X : INT (�a1)) ∨GT (X : INT (�e1)).

Note that GT (X : INT (�e1)) = 0. In this case, if we use
Lemma 3.2, GT (X : INT (�a1)) requires two factors, while, if
we use Lemma 2.2, it requires only one product i.e., GT (X :
INT (�a1)) = x4. Thus,

GT (X : INT (�a)) = (x̄4x3x2 x̄1 x̄0) · (x̄4x3x2) ∨ x4.

It requires 3 factors.

Theorem 3.2: An LT function can be represented as:

LT (X : B)=
0∨

i=r−1

LT (X : INT (�ei)) · LT (X : INT (�bi)),

where INT (�b0) = B, and �bi+1 = �ei = �bi ∧ �b′i (i =
0, 1, 2, . . . , r − 1) are 1-extraction vectors and �er−1 =

(0, 0, 0, . . . , 0).

Proof: The proof is similar to that of Theorem 3.1. �
From Theorems 3.1 and 3.2, we have the following:

Definition 3.5: Let h and g be logic functions. If g(x) = 1
for all x such that h(x) = 1, then g includes h, denoted by
h ⊆ g.
Lemma 3.5: If h0 ⊆ g0 ⊆ h1 ⊆ g1 ⊆ · · · ⊆ hp−2 ⊆ gp−2 ⊆
hp−1 ⊆ gp−1, then Z = h̄0g0∨ h̄1g1∨· · ·∨ h̄p−2gp−2∨ h̄p−1gp−1

is represented by:

Z = h̄0(h̄1 ∨ g0)(h̄2 ∨ g1)

· · · (h̄p−2 ∨ gp−3)(h̄p−1 ∨ gp−2)gp−1

Proof: The grey area in the map of Fig. 4 indicates the
covering of Z. Thus, we have the lemma. �

Lemma 3.6: Let �e = (en−1, en−2, . . . , e1, e0) be a binary
vector. Consider two functions:

Fig. 4 Map for Lemma 3.5.

gk−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
m∧

j=n−1

x
ej

j

⎞⎟⎟⎟⎟⎟⎟⎠ and h̄k =

⎛⎜⎜⎜⎜⎜⎜⎝
m+1∧

j=n−1

x
ej

j

⎞⎟⎟⎟⎟⎟⎟⎠.

In this case, we can combine two factors into one:

h̄k ∨ gk−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
m+1∧

j=n−1

x
ej

j · xēm
m

⎞⎟⎟⎟⎟⎟⎟⎠.

Proof: h̄k ∨ gk−1 can be combined to a factor:

h̄k ∨ gk−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
m+1∧

j=n−1

x
ej

j

⎞⎟⎟⎟⎟⎟⎟⎠ ∨
⎛⎜⎜⎜⎜⎜⎜⎝

m∧
j=n−1

x
ej

j

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
m+1∧

j=n−1

x
ej

j

⎞⎟⎟⎟⎟⎟⎟⎠ ∨
⎛⎜⎜⎜⎜⎜⎜⎝

m+1∧
j=n−1

x
ej

j

⎞⎟⎟⎟⎟⎟⎟⎠ · xem
m

=

⎛⎜⎜⎜⎜⎜⎜⎝
m+1∧

j=n−1

x
ej

j · xēm
m

⎞⎟⎟⎟⎟⎟⎟⎠.

Thus, we have the lemma. �

Procedure 3.1: A simplified HT for an arbitrary GT (X :
A) function can be derived as follows:

1. Use Theorem 3.1 to decompose the function.
2. In GT (X : INT (�ei)) ·GT (X : INT (�ai)), if there is only

a single 0 between two groups of consecutive 1’s in �ai,
and the groups of consecutive 1’s have two or more 1’s
in �ai, then represent GT (X : INT (�ei))·GT (X : INT (�ai))
by a product using Lemma 2.2.

3. In GT (X : INT (�ei)) · GT (X : INT (�ai)), if there are a
group or groups of consecutive 0’s which are separated
by a single 1 among each group of consecutive 0’s in
�ai, and there exists at least one group that has more than
one 0’s in �ai, then represent GT (X : INT (�ei)) ·GT (X :
INT (�ai)) by an HT using Lemma 3.2 and the factors
can be reduced by Lemma 3.6.

4. Otherwise, represent GT (X : INT (�ei)) · GT (X :
INT (�ai)) by a product using Lemma 2.2.

Explanation: 1) We expand GT (X : A) by Theorem
3.1. 2) If the condition satisfies, we use Lemma 2.2 to
represent each GT (X : INT (�ei)) · GT (X : INT (�ai)), be-
cause it requires only a single product: �ai has one bit dif-
ferent from �ei i.e., �ai has one zero extra, thus each prod-
uct in GT (X : INT (�ei)) · GT (X : INT (�ai)) will cancel each
other except for one product. Note that, by Lemma 3.2,
it requires two factors. 3) If this condition satisfies, every
GT (X : INT (�ei)) · GT (X : INT (�ai)) can be represented by
Lemma 3.2 and, every h̄k and gk−1 that satisfy Lemma 3.6
can be reduced into a factor. 4) If each group of consecutive
0’s has only a single 0, then using Lemma 3.2 will cost more
factors than that of by Lemma 2.2. Although, we can reduce
some factors by Lemma 3.6, it still requires one factor more
than that of by Lemma 2.2. The argument for LT (X : B)
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function is similar.
If there exists only one group of consecutive 0’s or 1’s

in �a or �b, then Lemma 3.2 or Lemma 3.3 can be used to
represent a function by an HT. Otherwise, when multiple
groups of consecutive 0’s or 1’s exist in �a or �b, Procedure
3.1 can be used to represent a function by an HT.

3.2 Examples of Head-Tail Expressions for Interval Func-
tions

Example 3.8: Represent IN0(X : 0, 15) using an HT. The
interval function can be represented by:

IN0(X : 0, 15) = GT (X : 0) · LT (X : 15).

Since the largest value is 15, we have n = 4. Binary
representations of A = A′ = 0 and B = B′ = 15 are
�a = �a′ = (0, 0, 0, 0) and �b = �b′ = (1, 1, 1, 1), respectively.
By Lemma 3.2, we have m = 4, d = 4, and �e = (1, 1, 1, 1):

GT (X : INT (�e)) ·GT (X : INT (�a)) = GT (X : INT (�a))

=

⎛⎜⎜⎜⎜⎜⎜⎝
0∧

i=3

x̄i

⎞⎟⎟⎟⎟⎟⎟⎠ · (1) = (x̄3 x̄2 x̄1 x̄0) · (1).

By Lemma 3.3, we have m = 4 and d = 4, and �e =
(0, 0, 0, 0):

LT (X : INT (�e)) · LT (X : INT (�b)) = LT (X : INT (�b))

=

⎛⎜⎜⎜⎜⎜⎜⎝
0∧

i=3

xi

⎞⎟⎟⎟⎟⎟⎟⎠ · (1) = (x3x2x1x0) · (1).

Finally, we have:

IN0(X : 0, 15) = (x̄3 x̄2 x̄1 x̄0) · (x3x2x1x0) · (1).

The maps for IN0(X : 0, 15) are shown in Fig. 5. The
top row shows the PreSOP, which requires 6 products. The
bottom row shows the HT, which requires only 3 factors.
This expression still needs a product to represent the uni-
verse, which is indicated by the constant 1 in the bottom row
of Fig. 5. Table 3 shows realizations of the function, where
the TCAM stores the words and the RAM stores the actions.
Table 3(a) corresponds to the top row of Fig. 5, while Ta-
ble 3(b) corresponds to the bottom row of Fig. 5.

Example 3.9: Represent IN0(X : 0, 27) by an HT. Binary
representations of A = 0 and B = 27 are �a = (0, 0, 0, 0, 0)
and �b = (1, 1, 0, 1, 1), respectively. To represent the func-
tion, we use Lemma 3.4:

IN0(X : 0, 27) = LT (X : 1) · LT (X : 27).

By Lemma 2.2, we know that LT (X : 1) =
(
x̄4 x̄3 x̄2 x̄1 x̄0

)
.

The next step is to derive LT (X : 27). �b has two consecu-
tive groups of 1’s and a single isolated 0 between them. By
Theorem 3.2, first group of consecutive 1’s starts from the

Fig. 5 Maps for the PreSOP and the HT representing IN0(X : 0, 15).

Table 3 Realization of IN0(X : 0, 15) by TCAM and RAM.

(a)

TCAM RAM
0001 1
001* 1
01** 1
10** 1
110* 1
1110 1
**** 0

(b)

TCAM RAM
0000 0
1111 0
**** 1

index one where �b′0 = (0, 0, 0, 1, 1) and �e0 = �b1 = �b ∧ �b′0 =
(1, 1, 0, 0, 0), while the second group starts from index four

where �b′1 = (1, 1, 0, 0, 0) and �e1 = �e0∧�b′1 = (0, 0, 0, 0, 0). By
Lemma 3.3, we can represent the first group of consecutive
1’s by an HT:

LT (X : INT (�e0)) · LT (X : INT (�b0))

=

⎛⎜⎜⎜⎜⎜⎜⎝
2∧

j=4

x
bj

j

0∧
i=1

xi

⎞⎟⎟⎟⎟⎟⎟⎠ ·
2∧

j=4

x
bj

j = (x4x3 x̄2x1x0) · (x4x3 x̄2).

And, the second group of consecutive 1’s can be represented
by an HT:

LT (X : INT (�e1)) · LT (X : INT (�b1))

=

⎛⎜⎜⎜⎜⎜⎜⎝
3∧

i=4

xi

⎞⎟⎟⎟⎟⎟⎟⎠ · (1) = (x4x3) · (1).

Note that LT (X : INT (�e1)) = 0. Moreover, by Lemmas 3.5
and 3.6, we can reduce a factor such that:

LT (X : 27) = (x4x3 x̄2x1x0) · (x4x3 x̄2) ∨ (x4x3) · (1)

= (x4x3 x̄2x1x0) · (x4x3x2) · (1).

The reduced HT for the interval function is

IN0(X : 0, 27) =
(
x̄4 x̄3 x̄2 x̄1 x̄0

) · (x4x3 x̄2x1x0
)

· (x4x3x2
) · (1).

Figure 6 shows the maps for IN0(X : 0, 27). The top
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Fig. 6 Maps for the PreSOP and the HT representing IN0(X : 0, 27).

Table 4 Realization of IN0(X : 0, 27) in TCAM and RAM.

TCAM RAM
00000 0
11011 0
111** 0
***** 1

row shows the PreSOP which requires 7 products. The bot-
tom row shows the HT which requires only four factors. Ta-
ble 4 shows the realization of the function by using a TCAM
and a RAM with four words.

Example 3.10: Let �a0 = (0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0).
Represent GT (X : INT (�a0)) by an HT. In this case, we
have n = 14, and �a0 has five separate groups of con-
secutive 0’s. To extract the consecutive 0’s in the LSB,
we select the vector �a′0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0).

The 0-extraction vector is �e0 = �a1 = �a0 ∨ �a′0 =

(0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1). Thus, by Theorem 3.1
(Procedure 3.1, Step 1), we have the following representa-
tion:

GT (X : INT (�a0)) = GT (X : INT (�a1))

·GT (X : INT (�a0)) ∨GT (X : INT (�a1)).

Since, there is only a single 0 at the least significant bit,
and two 1’s in the more significant bits, we use Lemma 2.2
(Procedure 3.1, Step 2). Thus, GT (X : INT (�a1)) · GT (X :
INT (�a0)) = (x̄13x12 x̄11x10x9 x̄8 x̄7x6 x̄5 x̄4 x̄3x2x1x0). Next,
we go to the higher group of consecutive 0’s in �a1 and
we select the vector �a′1 = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1).

Then, the 0-extraction vector is �e1 = �a2 = �a1 ∨ �a′1 =
(0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1). Thus, we have the follow-
ing representation:

GT (X : INT (�a1)) = GT (X : INT (�a2))

·GT (X : INT (�a1)) ∨GT (X : INT (�a2)).

Since, the number of 0’s is three, we can represent
it by Lemma 3.2 (Procedure 3.1, Step 3). In this
case, we have GT (X : INT (�a2)) · GT (X : INT (�a1))
= (x̄13x12 x̄11x10x9 x̄8 x̄7x6 x̄5 x̄4 x̄3) · (x̄13x12 x̄11x10x9 x̄8 x̄7x6),
where m = 6 and d = 3. Next, we select the
vector �a′2 = (1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1). Then,

the 0-extraction vector is �e2 = �a3 = �a2 ∨ �a′2 =

(0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). Thus, we have the follow-
ing representation:

GT (X : INT (�a2)) = GT (X : INT (�a3))

·GT (X : INT (�a2)) ∨GT (X : INT (�a3)).

Since, the number of 0’s is two, we can represent
it by Lemma 3.2 (Procedure 3.1, Step 3). In this
case, we have GT (X : INT (�a3)) · GT (X : INT (�a2)) =
(x̄13x12 x̄11x10x9 x̄8 x̄7) · (x̄13x12 x̄11x10x9), where m = 9 and
d = 2. According to Procedure 3.1, Step 3, we can reduce
the factors by Lemma 3.6, such that

(x̄13x12 x̄11x10x9 x̄8 x̄7x6 x̄5 x̄4 x̄3) · (x̄13x12 x̄11x10x9 x̄8 x̄7x6)

∨ (x̄13x12 x̄11x10x9 x̄8 x̄7) · (x̄13x12 x̄11x10x9)

= (x̄13x12 x̄11x10x9 x̄8 x̄7) · (x̄13x12 x̄11x10x9 x̄8 x̄7 x̄6)

· (x̄13x12 x̄11x10x9).

Next, the vector �a′3 = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) is
selected. Then, the 0-extraction vector is �e3 = �a4 = �a3 ∨
�a′3 = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). Thus, we have the
following representation:

GT (X : INT (�a3)) = GT (X : INT (�a4))

·GT (X : INT (�a3)) ∨GT (X : INT (�a4)).

And finally, the vector �a′4= (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
is selected. Then, the 0-extraction vector is �e4 = �a5 = �a4 ∨
�a′4 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). Thus, we have the
following representation:

GT (X : INT (�a4)) = GT (X : INT (�a5))

·GT (X : INT (�a4)) ∨GT (X : INT (�a5)).

In this case, we find two groups of consecutive 0’s which
are separated by a single 1 in �a3, but each group has only
a 0, thus, according to Procedure 3.1 Step 4, they can be
represented by Lemma 2.2: GT (X : INT (�a4)) · GT (X :
INT (�a3)) = (x̄13x12x11) and GT (X : INT (�a5)) · GT (X :
INT (�a4)) = (x13). Note that GT (X : INT (�a5)) = 0. Finally,
the HT for GT (X : INT (�a0)) is

(x̄13x12 x̄11x10x9 x̄8 x̄7x6 x̄5 x̄4 x̄3x2x1x0)

∨ (x̄13x12 x̄11x10x9 x̄8 x̄7) · (x̄13x12 x̄11x10x9 x̄8 x̄7 x̄6)

· (x̄13x12 x̄11x10x9) ∨ (x̄13x12x11) ∨ (x13).

In this case, the HT requires only 6 factors, while the Pre-
SOP requires 8 products.

3.3 The Number of Factors to Represent an Interval Func-
tion by a Head-Tail Expression

Definition 3.6: Let ζ( f ) be the minimum number of factors
to represent a function f by an HT.

From here, we assume that X = (xn−1, xn−2, . . . , x1, x0).
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Lemma 3.7:

ζ(GT (X : A)) ≤
⌈
n + 1

2

⌉
, and

ζ(LT (X : B)) ≤
⌈
n + 1

2

⌉
.

Proof: Consider a binary representation �a that makes
the number of factors in an HT for a GT function maximum.
If there is three or more consecutive 0’s in �a, then we can re-
duce the number of factors in the HT, by Theorem 3.1. Note
that when more than one groups of consecutive 0’s exist in
arbitrary location in �a, we can use Theorem 3.1 to segment
each group to form an HT by Procedure 3.1.

According to the third argument of Procedure 3.1, re-
gardless the number of 0’s in each group, if there are p
groups, then the number of factors is p + 1. For instance,
if we have a group with two or more consecutive 0’s, the
number of factors is p+ 1 = 2. Note that when only a group
with two consecutive 0’s exists, the number of factors is not
reduced by Procedure 3.1. So, to avoid such reduction of
the factors and to get the maximum number of factors in an
HT, one possibility is by alternating 0 and 1 in the binary
representation (the second argument of Procedure 3.1). An-
other possibility is by alternating two consecutive 0’s and
two consecutive 1’s in the binary representation†. In these
cases, we have at least 
 n

2 � zeros, and their numbers of fac-
tors in HTs are the same as the numbers of products in Pre-
SOPs which are 
 n

2 �. Thus, the maximum number of factors
in an HT for a GT function occurs when the number of 0’s
is equal to or greater than 
 n

2 �, and Procedure 3.1 cannot be
used to reduce the number of factors. The argument for LT
functions is similar.

When n is odd: Suppose that the number of the factors
to represent a GT function takes its maximum when �a =
(0, 1, 0, 1, · · · , 1, 0). The number of 0’s is n+1

2 , the number
of 1’s is n−1

2 , and no consecutive 0’s exist.
By Lemma 2.2, the number of products for GT is

bounded above by
∑

āi. So, when the number of 0’s is equal
to or less than n+1

2 , the lemma holds. When the number of
0’s is greater than n+1

2 , there exist consecutive 0’s in the se-
quence of ai. In this case, we can apply Procedure 3.1 to
reduce the number of factors to construct GT . In both cases,
the number of factors does not exceed n+1

2 . Thus, we have

ζ(GT (X : A)) ≤ n + 1
2
.

The argument for the number of the factors for an LT
function is similar. When �b = (1, 0, 1, 0, · · · , 0, 1), the num-
ber of 1’s is n+1

2 , the number of 0’s is n−1
2 , and no consecutive

1’s exist. When the number of 1’s is equal to or greater than
†The numbers of factors in HTs for GT functions become max-

imum for various cases. Other cases occur when the binary repre-
sentations are the combination of alternating 0, 1, two consecutive
0’s, and two consecutive 1’s in which the numbers of 0’s are equal
to or greater than 
 n

2 � and Procedure 3.1 cannot be used to reduce
the numbers of factors.

n+1
2 , Procedure 3.1 is used to reduce the number of factors,

we have

ζ(LT (X : B)) ≤ n + 1
2
.

When n is even: When �a = (0, 1, 0, 1, · · · , 0, 1), the
numbers of 0’s and 1’s in GT are the same which are n

2 .
However, this does not make the number of factors in an HT
maximum which is n

2 + 1. The number of factors becomes
its maximum when �a = (0, 1, 0, 1, · · · , 0, 1, 0, 0). The last
two components are a1 = a0 = 0 (d = 2) that produce two
factors as explained in Lemma 3.2. Thus, we have

ζ(GT (X : A)) ≤ n
2
+ 1.

Likewise, for LT , the number of factors becomes its
maximum when �b = (1, 0, 1, 0, · · · , 1, 0, 1, 1). Thus, we
have

ζ(LT (X : B)) ≤ n
2
+ 1.

Combining these two cases, we have the lemma. �
To derive a main theorem, we need the following:

Lemma 3.8: If α ⊆ x̄ and β ⊆ x, then

ᾱx̄ ∨ β̄x = ᾱβ̄.
Proof: Note that ᾱ ⊇ x and β̄ ⊇ x̄.

ᾱβ̄ = (ᾱ ∨ x)(β̄ ∨ x̄)

= ᾱβ̄ ∨ x̄ᾱ ∨ xβ̄

= (x ∨ x̄)ᾱβ̄ ∨ x̄ᾱ ∨ xβ̄

= xᾱβ̄ ∨ x̄ᾱβ̄ ∨ x̄ᾱ ∨ xβ̄

= xβ̄ ∨ x̄ᾱ ∨ x̄ᾱ ∨ xβ̄

= x̄ᾱ ∨ xβ̄.

Thus, we have the lemma. �
Lemma 3.7 can be extended to an interval function:

Theorem 3.3:

ζ(IN0(X : A, B)) ≤ n

Proof: Exhaustive examination shows that the theo-
rem holds for n ≤ 4. Let �a = (an−1, an−2, · · · , a1, a0) and
�b = (bn−1, bn−2, · · · , b1, b0) be binary representations of A
and B, respectively, and A < B. According to Theorem 2.1,
if the most significant bits (MSBs) are the same, then we
can ignore the MSBs and consider the function with fewer
variables. Assume that the MSB is different, i.e., an−1 = 0
and bn−1 = 1. The function can be expanded into

IN0(X : A, B) = x̄n−1GT (X̂ : A) ∨ xn−1LT (X̂ : B̂),

where B̂ = B − 2n−1 and X̂ = (xn−2, . . . , x1, x0).
When n is odd: Let an−1 = 0 and bn−1 = 1. Con-

sider the case when ζ(GT (X̂ : A)) and ζ(LT (X̂ : B̂)) take
their maximum values. Note that, according to Theorem
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2.1, we only consider bits after the s’th of the binary rep-
resentation such that as � bs. By Lemma 3.7 (the even
part), the vectors are �a = (0, 0, 1, 0, 1, · · · , 0, 1, 0, 0) and
�b = (1, 1, 0, 1, 0, · · · , 1, 0, 1, 1), where s = n − 1. In this
case, we can apply Procedure 3.1 to obtain GT and LT func-
tions. Note that when we apply Lemma 3.6 in Procedure 3.1,
there are literals of the same variable in both HTs which are
g1 = x̄n−1 and g2 = xn−1. We have (h1p∨h1p−1∨. . .∨h11 ) ⊆ g1

and (h2q ∨ h2q−1 ∨ . . . ∨ h21 ) ⊆ g2. By Lemma 3.8, we can
combine the literals of both tail factors to form one factor as
follows:

(h̄1p h̄1p−1 · · · h̄11 )x̄n−1 ∨ (h̄2q h̄2q−1 · · · h̄21 )xn−1

= (h̄1p h̄1p−1 · · · h̄11 ) · (h̄2q h̄2q−1 · · · h̄21 ) · (1). (2)

Thus, by Lemma 3.7, we have

ζ(IN0(X : A, B)) ≤ ζ(GT (X̂ : A)) + ζ(LT (X̂ : B̂))

≤
⌈n
2

⌉
+

⌈n
2

⌉
= n + 1.

Moreover, by Eq. (2), we have

ζ(IN0(X : A, B)) ≤ n + 1 − 1 = n.

When n is even: The HTs for both GT and LT func-
tions contribute and we have

ζ(IN0(X : A, B)) ≤ ζ(GT (X̂ : A)) + ζ(LT (X̂ : B̂))

≤
⌈
(n − 1) + 1

2

⌉
+

⌈
(n − 1) + 1

2

⌉
= n.

Thus, we have the theorem. �
Next, we give an example of HTs for interval functions

that require the maximum number of factors.

Example 3.11: When n = 5, there exist several interval
functions that have the maximum number of factors in HTs.
HTs for these functions can be reduced by Lemma 3.6. Ta-
ble 5 shows these functions and their endpoints represented
by binary numbers.

First, we expand the functions by:

IN0(X : A, B) = x̄n−1GT (X̂ : A) ∨ xn−1LT (X̂ : B̂),

where B̂ = B − 2n−1 and X̂ = (xn−2, . . . , x1, x0). Then, we
use Procedure 3.1 to represent the GT and the LT functions
by HTs. Thus, we have:

f1 = (x̄4 x̄3 x̄2x1x0) ∨ (x̄4 x̄3 x̄2) · (x̄4)

∨ (x4x3 x̄2x1x0) · (x4x3x2) · (x4),

f2 = (x̄4 x̄3 x̄2x1x0) ∨ (x4x3x2 x̄1 x̄0)

Table 5 Endpoints of interval functions that have the maximum number
of factors in HTs for n = 5.

Function �a �b

f1 = IN0(X : 2, 27) (0, 0, 0, 1, 0) (1, 1, 0, 1, 1)
f2 = IN0(X : 2, 29) (0, 0, 0, 1, 0) (1, 1, 1, 0, 1)
f3 = IN0(X : 4, 27) (0, 0, 1, 0, 0) (1, 1, 0, 1, 1)
f4 = IN0(X : 4, 29) (0, 0, 1, 0, 0) (1, 1, 1, 0, 1)

∨ (x̄4 x̄3 x̄2) · (x̄4) ∨ (x4x3x2) · (x4),

f3 = (x̄4 x̄3x2 x̄1 x̄0) · (x̄4 x̄3 x̄2) · (x̄4)

∨ (x4x3 x̄2x1x0) · (x4x3x2) · (x4),

f4 = (x̄4 x̄3x2 x̄1 x̄0) · (x̄4 x̄3 x̄2) · (x̄4)

∨ (x4x3x2 x̄1 x̄0) ∨ (x4x3x2) · (x4).

Since n is odd, the number of factors for each function is

 5

2 � + 
 5
2 � = 3 + 3 = 6.

In this case, from f1, we have ᾱ1 = (x̄4 x̄3 x̄2) and β̄1 =

(x4x3 x̄2x1x0) · (x4x3x2). From f2, we have ᾱ2 = (x̄4 x̄3 x̄2)
and β̄2 = (x4x3x2). From f3, we have ᾱ3 = (x̄4 x̄3x2 x̄1 x̄0) ·
(x̄4 x̄3 x̄2) and β̄3 = (x4x3 x̄2x1x0) · (x4x3x2). And from f4, we
have ᾱ4 = (x̄4 x̄3x2 x̄1 x̄0) · (x̄4 x̄3 x̄2) and β̄4 = (x4x3x2).

By Lemma 3.8, we can reduce the factors:

f1 = (x̄4 x̄3 x̄2x1x0) ∨ (x̄4 x̄3 x̄2) · (x4x3 x̄2x1x0)

· (x4x3x2) · (1),

f2 = (x̄4 x̄3 x̄2x1x0) ∨ (x4x3x2 x̄1 x̄0)

∨ (x̄4 x̄3 x̄2) · (x4x3x2) · (1),

f3 = (x̄4 x̄3x2 x̄1 x̄0) · (x̄4 x̄3 x̄2) · (x4x3 x̄2x1x0)

· (x4x3x2) · (1),

f4 = (x4x3x2 x̄1 x̄0) ∨ (x̄4 x̄3x2 x̄1 x̄0) · (x̄4 x̄3 x̄2)

· (x4x3x2) · (1).

Note that each function has five factors.

4. Experimental Results

We developed a heuristic algorithm [14] to generate HTs for
interval functions that uses the properties of Procedure 3.1.
By the computer program, we represented all the interval
functions for n = 1 to n = 16 by HTs. There are N(n) =
(2n+1)(2n−1) distinct interval functions of n variables. When
n = 16, the total number of the distinct interval functions is
approximately 231 ≈ 2.147 × 109.

Table 6 shows the distribution of GT or LT functions

Table 6 Numbers of GT (X : A) or LT (X : B) functions requiring τ
factors in HTs for n = 1 to n = 16 produced by a heuristic algorithm.

n # Factors (τ)
1 2 3 4 5 6 7 8 9

1 2
2 3 1
3 4 4
4 5 9 2
5 6 16 10
6 7 25 28 4
7 8 36 60 24
8 9 49 110 80 8
9 10 64 182 200 56

10 11 81 280 420 216 16
11 12 100 408 784 616 128
12 13 121 570 1344 1456 560 32
13 14 144 770 2160 3024 1792 288
14 15 169 1012 3300 5712 4704 1408 64
15 16 196 1300 4840 10032 10752 4992 640
16 17 225 1638 6864 16632 22176 14400 3456 128
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Table 7 Numbers of n-variable interval functions requiring τ factors in HTs for n = 1 to n = 16
produced by a heuristic algorithm.

n # Factors (τ)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3
2 7 3
3 15 16 5
4 31 51 42 12
5 63 132 181 124 28
6 127 307 574 644 364 64
7 255 672 1537 2384 2240 1024 144
8 511 1419 3714 7220 9504 7424 2784 320
9 1023 2932 8405 19212 32204 35968 23520 7360 704

10 2047 5979 18222 46844 93996 136016 129408 71744 19008 1536
11 4095 12096 38401 107504 247200 435200 544816 445504 211904 48128 3328
12 8191 24355 79426 236444 603152 1236272 1910016 2080768 1476288 608768 119808 7168
13 16383 48900 162277 504700 1393148 3217408 5866784 7980416 7620096 4731904 1707264 293888 15360
14 32767 98019 328926 1054932 3090572 7840416 16323584 26503616 31901824 26889216 14729728 4687872 711680 32768
15 65535 196288 663329 2173104 6655392 18175744 42109520 78930432 114450048 122574848 91806208 44679168 12634112 1703936 69632
16 131071 392859 1333410 4431844 14023392 40562080 102439456 216008512 364880640 474360832 454498304 304347136 132431872 33488896 4038656 147456

Table 8 Average numbers of factors to represent n-variable interval
functions by HTs (near minimum) and exact MSOPs for n = 1 to n = 16.

n Head-Tail Expression MSOP Ratio (ρ(n))

μh(n)
( 2

3 n− 5
9 )

μh(n) μs(n) μh(n)
μs(n)

1 1 0.1111 1 1
2 1.3 0.5983 1.3 1
3 1.7222 0.8387 1.7778 0.97
4 2.2574 0.9352 2.3971 0.94
5 2.8523 0.9739 3.1288 0.91
6 3.4822 0.9892 3.9433 0.88
7 4.1301 0.9954 4.8154 0.86
8 4.7873 0.9980 5.7267 0.84
9 5.4492 0.9991 6.6645 0.82

10 6.1135 0.9996 7.6203 0.80
11 6.7790 0.9998 8.5886 0.79
12 7.4450 0.9999 9.5654 0.78
13 8.1114 0.9999 10.5487 0.77
14 8.7779 0.9999 11.5362 0.76
15 9.4445 0.9999 - -
16 10.1111 0.9999 - -

that require τ factors in HTs for up to n = 16 produced by
the heuristic algorithm [14]. As shown in the table, to repre-
sent a GT or an LT function, at most n+1

2 factors are neces-
sary when n is odd, and at most n

2 + 1 factors are necessary
when n is even. For GT and LT functions, the heuristic pro-
gram generates exact minimum HTs.

Table 7 shows the distribution of interval functions that
require τ factors in HTs for up to n = 16 produced by the
heuristic algorithm. It shows that with an HT, any interval
functions can be represented with at most n factors.

Let μh(n) be the average number of factors to represent
n-variable interval functions by HTs produced by the heuris-
tic algorithm. Table 8 shows μh(n) for n = 1 to n = 16. We
represented all the interval functions by HTs generated by
the heuristic algorithm [14]. Thus, they may not be min-
imum. Since ( 2

3 n − 5
9 )/μh(n) approaches to 1.00 with the

increase of n, we have the following:

Conjecture 4.1: For sufficiently large n, the average num-
ber of factors to represent n-variable interval functions is at
most 2

3 n − 5
9 .

We also obtained μs(n), the average numbers of prod-
ucts to represent n-variable interval functions by exact
MSOPs, by using exact algorithm for n = 1 to n = 14.
The fourth column of Table 8 shows values of μs(n). The
first experiment, for n = 1 to n = 13, we used Intel
Dual2Duo 3.0 GHz microprocessor with 8 GB memory. We
generated all the interval functions and minimized them us-
ing ESPRESSO-EXACT [2] which obtains exact minimum
SOPs. For n = 13, to obtain μs(13), it took one month. The
second one, for n = 14, we used Intel Xeon 8-core 2.27 GHz
microprocessors with 24 GB memory and paralleled the pro-
gram into 8 parts, and the computation took nearly a month.
By using the same method, for n = 16, it would take a few
years to obtain μs(16). The rightmost column of Table 8
shows the ratio ρ(n) = μh(n)

μs(n) . It shows that ρ(n) decreases
with the increment of n. The experimental results also show
that, for n ≥ 10, HTs require at least 20% fewer factors than
MSOPs, on the average.

Moreover, we can observe interesting sequences in Ta-
ble 6. Let Cτ(n) be the value of the τ-th column in Table 6.
For τ = 1 to τ = 6, we have:

C1(n) = n + 1

C2(n) = (n − 1)2

C3(n) =
(n − 3)(n − 2)(2n − 5)

3

C4(n) =
(n − 4)2[(n − 4)2 − 1]

3

C5(n) =
(n − 7)(n − 6)(n − 5)(n − 4)(2n − 11)

15
, and

C6(n) =
4

90
(n − 7)2[(n − 7)2 − 1][(n − 7)2 − 4].

The derivation of these formulas are future work.

5. Conclusion

In this paper, we introduced head-tail expressions (HTs) to
represent interval functions. We showed that HTs efficiently
represent GT , LT and interval functions. We also showed
that a pair of a TCAM and a RAM directly implements an
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HT. Finally, we prove that an HT requires at most n fac-
tors to represent any interval function IN0(X : A, B). By
a heuristic algorithm, we obtained average numbers of fac-
tors to represent interval functions in HTs for up to n = 16.
And, we conjecture that, for sufficiently large n, the average
number of factors by HTs to represent n-variable interval
functions is 2

3 n− 5
9 . We also show that, for n ≥ 10, HTs gen-

erated by our heuristic program require at least 20% fewer
factors than MSOPs, on the average.
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