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A Virus Scanning Engine Using an MPU and an IGU Based on
Row-Shift Decomposition

Hiroki NAKAHARA†a), Tsutomu SASAO††b), and Munehiro MATSUURA††c), Members

SUMMARY This paper shows a virus scanning engine using two-stage
matching. In the first stage, a binary CAM emulator quickly detects a part
of the virus pattern, while in the second stage, the MPU detects the full
length of the virus pattern. The binary CAM emulator is realized by an
index generation unit (IGU) based on row-shift decomposition. The pro-
posed system uses two off-chip SRAMs and a small FPGA. Thus, the
cost and the power consumption are lower than the TCAM-based system.
The system loaded 1,290,617 ClamAV virus patterns. As for the area and
throughput, this system outperforms existing two-stage matching systems
using FPGAs.
key words: pattern matching, virus scanning, index generation function,
CAM

1. Introduction

1.1 Virus Scanning System

A computer virus∗ intends to damage computer systems.
The growth of the Internet requires a high-speed virus scan-
ning on an e-mail and a file servers. The throughput of the
software-based virus scanning is at most tens of mega bits
per second (Mbps) [1], which is too low. Thus, a hardware-
based virus scanning is necessary. We consider a low-
cost and high-performance virus scanning system shown in
Fig. 1 for low-end users such as SOHO (small office and
home office) and enterprise with the following features:

High throughput: The throughput is higher than one
Gbps and is higher than servers (hundreds Mbps).

Low power and low cost: It uses a low-end (i.e., a
small) FPGA and SRAMs instead of a high-end FPGA and
a ternary content addressable memory (TCAM). Table 1
shows that the TCAM dissipates much higher power than
the SRAM. Although we can implement the CAM func-
tion on the FPGA [2], [3], for the virus scanning, it requires
excessive amount of resources of the FPGA.

Reconfigurable: It uses a memory-based realization
rather than the random logic realization. Although the ran-
dom logic realization on the FPGA is fast and compact, the
required time for place-and-route is longer than the periods
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Fig. 1 Virus scanning system for an e-mail server and a file server.

Table 1 Comparison of TCAM with SRAM (18 Mbit chip) [5].

TCAM SRAM
Max. Freq. [MHz] 266 400
Power Dissipation [W] 12-15 ≈ 0.1
# of transistors per a bit 16 6

for the virus pattern update. Some virus scanning software,
e.g., Kaspersky [4], updates the virus data every hour.

1.2 Related Works

Our virus scanning engine uses two-stage matching [6].
The first stage scans sub pattern by the hardware, while
the second stage exactly scans full length pattern by
the software. Various two-stage matching implementa-
tions have been reported: A TCAM with a general pur-
pose processor (MPU) [7]; a bit-partitioned Aho-Corasic
DFA [8] with a special purpose MPU [9]; a method us-
ing cuckoo hashing [10]; bit-partitioned finite-input mem-
ory machines (FIMMs) with an MPU [11]; a method us-
ing index generation units (IGUs) of different sizes and an
MPU [12]; Bloom filter (PERG-Rx) [13]; and a method us-
ing four IGUs of the same sizes and an MPU [14]. Many
methods [8]–[12], [14] use memory-based approach rather
than power-hungry TCAM-based ones. Since, previous
methods [8]–[12] used many more on-chip memories, it was
a bottleneck for the virus scanning engine. This paper pro-
poses the two-stage matching engine that uses the smallest
on-chip memory.

1.3 Contributions of the Paper

Implementation of more than one million ClamAV virus
patterns: ClamAV [15] is an open source (GPL) antivirus

∗It is also called a malware (a composite word from malicious
software). In this paper, a virus means a computer virus.
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engine, which scans a mail server (Postfix) using pat-
tern matching. This paper presents an index generation
unit (IGU) based on row-shift decomposition [16], [17] to
realize a scanning engine for the ClamAV virus pattern. Pre-
vious implementation [14] used four off-chip SRAMs by a
linear transformation, while the method in this paper uses
only two SRAMs by a row-shift decomposition. Thus, the
cost is lower than the previous one.

High-level optimization of the system throughput by
the hardware and the software: We implement two-stage
matching by the hardware and the software. We maximized
the system throughput by finding the optimal size of the
hardware experimentally.

Comparison of various two-stage matching methods:
We compare our method with various two-stage matching
implementations with respect to throughput and area effi-
ciency.

The rest of the paper is organized as follows: Sect. 2
introduces the virus scanning based on two-stage matching;
Sect. 3 describes the binary CAM emulator using the IGU;
Sect. 4 shows the design method for the IGU based on row-
shift decomposition; Sect. 5 shows the implementation re-
sults of the virus scanning engine; and Sect. 6 concludes the
paper.

This paper is based on previous publications [11], [12],
[14].

2. A Virus Scanning Based on Two-Stage Matching

2.1 Definitions

A virus scanning detects the virus on a text (executable
codes or e-mails). A pattern is represented by a regular ex-
pression consisting of characters and meta-characters. A
pattern matching is to detect (variable-length) patterns in
the text. Table 2 shows the meta-characters used in ClamAV.
Note that, ClamAV represents a character by two hexadeci-
mal characters. For example, “AB” denotes “11001101” in
binary. A length is the number of characters. A subpattern
is a part of the pattern consisting characters only†. In this
paper, k denotes the number of patterns in the pattern set, r
denotes the length of a pattern, and m (m ≤ r) denotes the
length of a subpattern. Note that, r and m vary by patterns.

2.2 ClamAV Virus Pattern

As of December 1st, 2010, ClamAV (version 0.96.5) con-
tains 1,290,808 patterns [15]. Table 3 shows the pattern

Table 2 Meta-characters used in ClamAV.

Meta-Char Meaning Example
?? An arbitrary character
* Repetition of more AA*BB={AABB,AA??BB,

than zero “??” AA????BB,AA??????BB,· · ·}
(AA|BB) Alternation of “AA” and “BB” (AA|BB)={AA,BB}
{n-m} Repetition of n or more than n AA{1-2}BB={AA??BB,

“??” and m or less than m “??” AA????BB}

types, the number of patterns, and their detection methods.
An MD5 checksum pattern is a hash value (128 bits) of
the virus, which is detected by the hardware. A basic pat-
tern is a regular expression representing a part of the virus,
which is detected by the hardware. A Google safe browsing
database pattern is the MD5 hash value of the abnormal
address obtained from the Google safe browsing API [18],
which is detected by the hardware. A combination pattern
is a combination of basic patterns. It is represented by the
logical operations such as “AND”, “OR”, and “NOT” of ba-
sic patterns, and detected by an MPU. A compressed file
analysis pattern includes a file size, a file name, or header
characteristics. Since the ClamAV committee announces
that this pattern will be not supported, we do not detect this.

Figure 2 shows the virus scanning system. Since the
detection time for the Google safe browsing API and the
basic pattern combination are significantly short, they are
realized by software. The MD5 checksum generator is im-
plemented by the commercial IP core [19]. Therefore, in this
paper, k = 1, 290, 617 patterns including the MD5 checksum
pattern, the basic pattern, and the Google safe browsing
database pattern are detected by a virus scanning engine
on the hardware (a small FPGA and SRAMs).

Example 2.1: Table 4 shows examples of ClamAV pat-
terns. For “W32.Gop”,
“736D74702E79656168” and “2D20474554204F49” are
subpatterns.

Table 3 Virus patterns in ClamAV (version 0.96.5, December, 1st, 2010)
and our implementation.

Pattern type #Patterns Implementation Realized
MD5 checksum 761,527 Hardware Yes
Basic pattern 94,227 Hardware Yes
Google safe browsing database 434,863 Hardware Yes
Combination pattern 85 Software No
Compression file analysis 106 Software No

Total 1,290,808

Fig. 2 Virus scanning system.

Table 4 Examples of ClamAV patterns.

Virus Name Pattern
Trojan.DelY-3 64656C74726565{-1}2F(59|79)20633A5C2A2E2A
Trojan.MkDir.B 406D64202572616E646F6D25????676F746F2048
W32.Gop 736D74702E79656168*2D20474554204F49
Worm.Bagle-67 6840484048688D5B0090EB01EbEB0A5BA9ED46

†However, a meta-character “??” is permitted.



NAKAHARA et al.: A VIRUS SCANNING ENGINE USING AN MPU AND AN IGU BASED ON ROW-SHIFT DECOMPOSITION
1669

Fig. 3 Virus scanning engine using two-stage matching.

Fig. 4 Example of two-stage matching.

2.3 Virus Scanning Engine Using Two-Stage Matching

A regular expression for a ClamAV pattern consists of sub-
patterns and meta-characters representing the distance. To
detect patterns, we use two-stage matching shown in Fig. 3.
Since no subpattern contains meta-characters, in the first
stage, we use a binary CAM emulator to detect subpat-
terns. When a subpattern is detected, the IRQ (interrupt
request) signal and the appearance location are sent to
the MPU. For the pattern that contains meta-characters, in
the second stage, the embedded MPU performs PCRE (Perl
compatible regular expression) [20] matching for the full
length of the pattern. To detect other subpatterns during the
MPU operation, FIFOs are attached between the first stage
and the second stage to store IRQ signals and appearance
locations. Also, a text buffer memory is attached to store
inputs.

Example 2.2: Fig. 4 shows an example of two-stage
matching. First, at the appearance location “3”, the first
stage finds the subpattern “653D” (Fig. 4 (1)). After this,
the second stage finds mismatch (Fig. 4 (2)). Next, at the
appearance location “6”, the first stage finds the subpattern
“653D” (Fig. 4 (3)). Finally, the second stage detects the
pattern (Fig. 4 (4)).

2.4 Subpattern Length m

For ClamAV, since most patterns are MD5 checksums or
MD5 hash values consisting 16 characters (128 bits)†, we
assume that m ≤ 16. The binary CAM emulator stores k
subpatterns with length m from k patterns. In virus patterns,
since a character consists of eight bits, the total number of
bits to represent a pattern with length m is 28m = 256m.
Then, the subpattern detection probability P(m) is k

m28
††.

Fig. 5 Relation between the subpattern length m and the number of
IRQs.

When m is large, since P(m) is small, the IRQ signal rarely
occurs†††. However, in this case, the size of the binary
CAM emulator becomes large (Fig. 5 (1)). On the other
hand, when m is small, the binary CAM emulator becomes
small. Since P(m) is large, the IRQ signal frequently oc-
curs (Fig. 5 (2)). In this case, the binary CAM emulator is
suspended until the MPU finishes the operation, thus the
system throughput decreases. Thus, to minimize the size
of the binary CAM emulator without sacrificing the perfor-
mance, we find the minimum m that does not suspend the
MPU.

Problem 2.1: Let k be the number of subpatterns, m be the
length of the subpatterns, TMPU be the processing time for
the regular expression matching by the MPU, P(m) = k

m28 be
the subpattern detection probability, and TbCAMe be the oper-
ation time of the binary CAM emulator to shift a character.
Obtain the minimum m that satisfies the condition:

TbCAMe

P(m)
� TMPU . (1)

1
P(m) denotes the average distance of appearance lo-

cations of virus, and TbCAMe

P(m) denotes the average IRQ pe-
riod. Here, we assume that subpatterns are uniformly dis-
tributed. The optimum value of m is obtained experimen-
tally in Sect. 5.1.

3. Binary CAM Emulator Using an Index Generation
Unit

3.1 Index Generation Function [21]

Definition 3.1: A mapping F(�X) : Bn → {0, 1, . . . , k}, is an
index generation function, where F(�ai) = i (i = 1, 2, . . . , k)
for k different registered vectors††††, and F = 0 for other
(2n − k) non-registered vectors, and �ai (i = 1, 2, . . . , k) are
different vectors in Bn. In other words, an index generation

†For the basic patterns consisting of more than 16 characters,
only the first 16 characters are checked in the first stage.
††When the distribution of the characters in the subpatterns is

uniform.
†††For a subpattern shared by multiple patterns, the second stage

using the PCRE library detects the multiple patterns.
††††In this paper, k also denotes the number of patterns in Cla-

mAV.
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Table 5 Example of an index generation function.

x1 x2 x3 x4 x5 x6 f
0 0 0 0 1 0 1
0 1 0 0 1 0 2
0 0 1 0 1 0 3
0 0 1 1 1 0 4
0 0 0 0 0 1 5
1 1 1 0 1 1 6
0 1 0 1 1 1 7

Fig. 6 Finite Input Memory Machine (FIMM).

function produces unique indices ranging from 1 to k for k
different registered vectors, and produces 0 for other vectors.

Example 3.3: Table 5 shows an example of an index gen-
eration function, where n = 6 and k = 7.

In a virus scanning, a registered vector corresponds to
a subpattern of a virus pattern, while an index corresponds
to the unique number for each subpattern.

3.2 Finite Input Memory Machine to Detect Subpatterns

Figure 6 shows a finite input memory machine (FIMM)
[22] that accepts k subpatterns with length m. In Fig. 6,
Reg denotes an 8-bit parallel-in parallel-out shift register.
The m-stage shift register stores the past m inputs, and the
memory produces the match number. Let MFIMM be the
size of the memory† of the FIMM, then, we have MFIMM =

28m�log2(k+ 1)	. Thus, a straightforward implementation of
the memory is impractical for a large m.

3.3 Index Generation Unit (IGU) [17], [23]

In this paper, to realize the FIMM compactly, we use an
index generation unit (IGU) [23].

Table 6 is a decomposition chart for the index genera-
tion function f shown in Example 3.3. The columns labeled
by X1 = (x2, x3, x4, x5) denotes the bound variables, and
rows labeled by X2 = (x1, x6) denotes the free variables.
The corresponding chart entry denotes the function value.
We can represent the non-zero elements of f by the main
memory f̂ whose input is X1. Table 7 shows the function
f̂ (X1) of the main memory. The main memory realizes a
mapping from a set of 2p elements to a set of k + 1 ele-
ments, where p = |X1|. The output for the main memory
does not always represent f , since f̂ ignores X2. Thus, we
must check whether f̂ is equal to f or not by using an aux-
iliary (AUX) memory. To do this, we compare the input
X2 with the output for the AUX memory by a comparator.

Table 6 Decomposition Chart for f (X1, X2), where X1 = (x2, x3, x4, x5)
and X2 = (x1, x6).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x5
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4 X1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x2

00 0 0 0 0 0 0 0 0 1 2 3 0 0 0 4 0
01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 5 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0
11 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0

x6, x1

X2

Table 7 Decomposition Chart for f̂ (X1), where X1 = (x2, x3, x4, x5).

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x5
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x2

5 0 0 0 0 0 0 0 1 2 3 6 0 7 4 0

Fig. 7 Index Generation Unit (IGU).

The AUX memory stores the values of X2 when the output
of f̂ (X1, X2) is non-zero. Figure 7 shows the index genera-
tion unit (IGU). First, the main memory finds the possible
index corresponding to X1. Second, the AUX memory pro-
duces the corresponding inputs X′2 (n − p bits). Third, the
comparator checks whether X′2 is equal to X2 or not. Finally,
the AND gates produce the correct value f . We implement
the main memory and the AUX memory by a single memory
device with |X1| (= p bits) inputs and q + |X′2| (= q + n − p)
outputs.

Example 3.4: Figure 8 shows an example of the IGU real-
izing the index generation function shown in Table 6. When
the input vector is X(x1, x2, x3, x4, x5, x6) = (1, 1, 1, 0, 1, 1),
the corresponding index is “6”. First, the main memory pro-
duces the index. Second, the AUX memory produces the
corresponding X′2. Third, the comparator checks X2 and X′2.
Since the corresponding input X2 is correct, the AND gates
produces the index. In this case, n = 6, p = 4, and q = 3.

3.4 Row-Shift Decomposition [16]

The decomposition chart shown in Table 6 is an ideal case,
†Since the amount of memory of the state variables for the shift

register is much smaller than that for the output functions, when we
calculate the memory size, we neglect it.
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Fig. 8 IGU for Table 6.

Table 8 Decomposition chart for g.

0 0 0 0 1 1 1 1 x3

0 0 1 1 0 0 1 1 x2 X2

0 1 0 1 0 1 0 1 x1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 1 0 2 0 3 0 0 0
011 0 0 0 0 4 0 0 0
100 5 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 6
111 0 0 7 0 0 0 0 0

x6, x5, x4

X1

Table 9 Decomposition chart for g′.
0 0 0 0 1 1 1 1 x3

0 0 1 1 0 0 1 1 x2 X2

0 1 0 1 0 1 0 1 x1

000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 1 0 2 0 3 0 0 0
011 0 0 0 0 → 4 0 0
100 → 5 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 6
111 0 0 → 7 0 0 0 0

x6, x5, x4

X1

since each column has at most one non-zero element. When
a column of a decomposition chart has two or more non-
zero elements, it has a collision. Table 8 shows a decom-
position chart for the index generation function g, where
X2 = (x3, x2, x1) and X1 = (x6, x5, x4). The number of
collisions is three in Table 8. Consider the decomposi-
tion chart for g′ shown in Table 9 that is obtained from
Table 8 by shifting one bit to the right in the rows for
X1 = (x6, x5, x4) = (0, 1, 1),(1, 0, 0), and (1, 1, 1). Table 9
has at most one non-zero element in each column. Thus, the
modified function g′ can be realized by the main memory
with inputs X1. Let X1 be the row variables, and X2 be the
column variables. In Fig. 10, assume that the memory for
H stores the number of bits to shift (h(X1): shift value) for

Fig. 9 An example of row-shift decomposition.

Fig. 10 Row-shift decomposition.

each row specified by X1, while the memory for G stores the
non-zero element of the column after the shift operation:
h(X1) + X2, where “+” denotes an unsigned integer addi-
tion. We call this row-shift decomposition. This method
requires fewer memories than previous methods [11], [12],
[14].

Example 3.5: Figure 9 shows an example of row-shift
decomposition realizing non-zero elements for an index
generation function shown in Table 5. Note that, X1 =

(x6, x5, x4) and X1 = (x3, x2, x1). When the input vector
X(x1, x2, x3, x4, x5, x6) is (0, 0, 1, 1, 1, 0), the corresponding
index is “4”. First, the memory for h produces the shift
value “1” as h(X1). Then, the adder produces (1, 0, 1) as
h(X1) + X2. Finally, the memory for g′ produces the index
“4”.

In Example 3.5, the row-shift decomposition represents
g′, while the target function is g. To realize g using g′, we
use an AUX memory, a comparator, and an AND gates.

Example 3.6: Figure 11 shows the IGU based on row-
shift decomposition realizing the index generation function
shown in Table 5. To reduce the number of memories, we
realize both the memory for g′ and the AUX memory by
a single memory. From Example 9, when the input vec-
tor is X = (0, 0, 1, 1, 1, 0), the memory for g′ produces the
index and the corresponding X1 simultaneously. Next, the
comparator checks X1. Finally, the AND gates produces the
correcting index.

Example 3.7: To realize the index generation function g
shown in Table 8, a single-memory realization requires
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Fig. 11 IGU based on row-shift decomposition.

26 × 3 = 192 bits. On the other hand, in the IGU based on
row-shift decomposition shown in Fig. 11, since the max-
imum value of the shift is one, the first memory requires
only 23 × 1 = 8 bits. And, the second memory requires
23 × 6 = 48 bits. Thus, the IGU requires 56 bits in total.
In this way, we can reduce the total amount of memory by
using the row-shift decomposition.

Compared with the single-memory realization, the
row-shift decomposition requires an adder, the comparator,
and the AND gates in addition to the memory. However,
these are negligible for the modern FPGA. Thus, the IGU
based on row-shift decomposition is suitable for the low-
cost implementation. In the experimental results, we will
demonstrate this.

3.5 Capability of the IGU based on row-shift decomposi-
tion

Example 3.6 shows that the row-shift decomposition re-
duces the amount of memory. However, in an extreme
case, the row-shift decomposition cannot represent a func-
tion with n inputs for 2n different elements. We refer follow-
ing Conjecture for a limitation of the IGU based on row-shift
decomposition.

Conjecture 3.1: [23] When the number of the input vari-
ables is sufficiently large, more than 95% of incompletely
specified index generation functions with weight k (k ≤ 7),
can be represented with n = 2�log2(k + 1)	 − 3 variables.

When k << 2n, the IGU can represent most functions.
Fortunately, in the virus scanning problem, k is about 220,
and n = 40.

4. Design of IGU Using Row-Shift Decomposition [16]

In Example 3.6, we could represent the function without
increasing the columns. However, in general, we must in-
crease the columns to represent the function. Since each
column has at most one non-zero element after the row-shift
operations, at least k columns are necessary to represent a
function with weight k.

We assume that the virus scanning system updates its
virus pattern every one hours. In this case, it is impractical
to find an optimal solution by spending much computation
time. We use the first-fit method [24], which is simple and
efficient.

Algorithm 4.1: (Find row-shifts)

1. Sort the rows in decreasing order by the number of non-
zero elements.

2. Compute the row-shift value for each row at a time,
where h(X1) for row X1 denotes the smallest value such
that no non-zero element in row X1 is in the same posi-
tion as any non-zero element in the previous rows.

3. Terminate.

When the distribution of non-zero elements among the
rows is uniform, Algorithm 4.1 reduces the memory size
effectively. To reduce the total amount of memories, we use
the following:

Algorithm 4.2: (Row-shift decomposition [16])

1. Reduce the number of variables by the method [23],
which eliminates the redundant variables. If neces-
sary, use a linear transformation [17], which reduces
variables by applying EXOR operations to X1 and X2,
where X = (X1, X2) denotes the partition of the inputs.
Let n be the number of variables after reduction.

2. From t = −2 to t = 2, perform Steps 2.1 through 2.4.

2.1. p← � n
2 	 + t.

2.2. Partition the inputs X into (X1, X2)†, where X1 =

(xp, xp−1, . . . , x1) denotes the rows, and X2 =

(xn, xn−1, . . . , xp+1) denotes the columns.
2.3. Obtain the row-shift value by Algorithm 4.1.
2.4. Obtain the maximum of the shift value, and com-

pute the total amount of memories.

3. Find t that minimizes the total amount of memories.
4. Terminate.

5. Experimental Results

5.1 Optimum Subpattern Length m

We obtained the minimum m that satisfies the relation (1).
To do this, first, we implemented a cycle-accurate sim-
ulator for the IGU based on row-shift decomposition in
C-language. Then, we scanned 2,963 cygwin executable
codes. We assume that the IGU reads the data from the
SRAM running at 400 MHz. From this, we have TbCAMe =

1
400 × 106 μ sec. We obtained the average operation time
of the MPU (TMPU) and the maximum TMPU by matching

†In the row-shift decomposition, we assume that non-zero ele-
ments are uniformly distributed in the decomposition chart. In the
virus pattern, distribution of non-zero elements is uniform. Thus,
unlike ordinary functional decompositions, the influence of the
partition (X1, X2) is relatively small.
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Table 10 Comparison with other methods.

FPGA Synthesis #Pattern #LC On-chip Th #LC/ On-chip Off-chip Off-chip
(Op.Freq.) Tool (#Char) Mem [Gbps] #Char Mem/ Memories Mem/

(version) [Bytes] #Char #Char
USC RegExp XC4VFX100 ISE 1,316 41,787 768,819.2 1.40 2.4999 45.9957 SDRAM
Controller (2006) [9] (412 MHz) (7.1.2) (16,715)
Cuckoo Hashing XC4VLX25 ISE 4,748 2,982 142,848.0 2.20 0.0436 2.0925 SRAM
(2007) [10] (285 MHz) (8.1i) (68,266)
Parallel FIMMs EP3SL340H Quartus II 65,536 77,304 1,048,576.0 1.59 19.3150 2.0000 None
(2009) [11] (199 MHz) (8.0) (524,288)
Standard Parallel Sieve EP3SL340H Quartus II 497,172 5,268 3,500,880.0 1.60 0.0013 0.8801 Three SRAMs 50.6179
Method (2009) [12] (200 MHz) (8.0) (3,977,376) (8 MB×3)
PERG-Rx XC2VP100 ISE 85,625 42,809 387,072.0 1.30 0.0049 0.0447 SRAM 3.8811
(2009) [13] (180 MHz) (9.1) (8,645,488) (4 MB)
4IGU method XC5VLX50T ISE 1,290,617 13,857 39,116.8 3.20 0.0003 0.0009 Four SRAMs 12.6437
(2012) [14] (400 MHz) (11.1) (42,461,299) (16 MB×4)
IGU based on row-shift XC5VLX50T ISE 1,290,617 9,147 39,116.8 3.20 0.0002 0.0009 Two SRAMs 3.9906
decomposition (proposed) (400 MHz) (14.2) (42,461,299) (20 MB + 256 KB)

Fig. 12 Average and maximum operation times of MPU TMPU and av-
erage IRQ period for different values of m.

2,963 cygwin executable codes on the MicroBlaze [25] run-
ning at 100 MHz using the Perl Compatible Regular Expres-
sion library (PCRE) [20]. We used the hardware IRQ han-
dler and the software context switch in the MicroBlaze. Fig-
ure 12 shows the average TMPU , the maximum TMPU , and
the average IRQ period TbCAMe

P(m) for different m. From this,
we chose m = 5 (40 bits) for implementation to satisfy the
condition (1) of Problem 1.

5.2 Realization of ClamAV Virus Subpatterns

We implemented Algorithm 4.2, and applied to ClamAV
virus subpatterns. The number of subpatterns is 1,290,617.
For the design, we used a PC with Intel’s Core 2 Duo CPU
running at 2.53 GHz and 4.0 GB RAM, on Windows XP
Professional Operation System. Algorithm 4.2 produced the
circuit having the architecture shown in Fig. 11. As for the
memory H, the number of input bits was 18, and the number
of output bits was five. As for the memory G, the number
of input bits was 22, and the number of output bits was 39†.
Thus, the memory for H can be implemented by a 256 KB
SRAM (18 inputs and eight outputs), and that for G can be
implemented by a 20 MB SRAM (22 inputs and 40 outputs).
In this design, the linear decomposition [17] was not used.

5.3 Implementation Results

We implemented a proposed virus scanning engine shown in
Fig. 3 consisting of the IGU and the MicroBlaze (MPU) on
the Inrevium Corp. PCI Express Evaluation Board (FPGA:
Xilinx Inc., Virtex5 VLX50T-GB-R). We used two SRAMs
running at 400 MHz for the IGU, and used one 512 MBytes
SO-DIMM module running at 266 MHz for the MicroB-
laze. The synthesis tool is the Xilinx ISE Design Suite
ver. 14.2. In the implementation, the IGU based on row-shift
decomposition used 1,560 logic cells (LCs); the MicroBlaze
used 1,263 LCs; the DDR2-SDRAM controller used 6,324
LCs and 10 BRAMs; and the text buffer memory used 10
BRAMs. In total, the virus scanning engine used 9,147 LCs
and 20 BRAMs. The IGU operated at 508.2 MHz, while
the MicroBlaze operated at 100 MHz. Since the clock fre-
quency is set to 400 MHz and the IGU shifts 8 bits per one
clock, the system throughput is 0.4 × 8 = 3.2 Gbps.

Table 10 compares various FPGA realizations. As for
the throughput (Th), our system is 1.45-2.46 times higher
than the previous ones except for [14]. As for the LC
requirement per a character (#LC/#Char), our system is
4.3 times lower than that for the standard parallel sieve
method [12]; as for the on-chip memory requirement per a
character (On-chip Mem/#Char), our system is 49.6 times
lower than that for the PERG-Rx. As for the off-chip SRAM
requirement per a character (Off-chip Mem/#Char), our sys-
tem is 3.1 times lower than that for the 4IGU method. As for
the number of off-chip SRAMs, our system requires a half
of the 4IGU method [14].

Compared with the 4IGU method, #LC/#Char for the
proposed one is 1.5 times smaller than the 4IGU method.
The reason is that the proposed one uses only a single IGU
unit, while the 4IGU method uses four IGU units.

The limitation on the number of pins and the board
layout often prevent us attaching many off-chip SRAMs to
modern FPGA. Also, many off-chip SRAMs increase the

†The number of output bits for the main memory was 21, and
that for the AUX memory was 18.
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cost, decrease the reliability, and lose of the connection.
Thus, the cost for our system is lower than that for the 4IGU
method.

6. Conclusion and Comments

This paper showed a virus scanning engine using two-stage
matching. In the first stage, the IGU detects the subpatterns,
while in the second stage, the MicroBlaze MPU detects the
full length of patterns using PCRE library. Our system using
Xilinx FPGA and two SRAMs stored 1,290,617 ClamAV
virus patterns, and has the throughput of 3.2 Gbps. Com-
pared with previous systems, our virus scanning engine has
lower cost and higher performance.

Our virus scanning engine has a vulnerability for the
performance attack. When the attacker sends a sequence
of stored subpatterns, the first stage generates an IRQ for
every clock, and overflows the second stage. Kumar et al. [6]
have proposed a method to protect against the performance
attack. It attaches a flow counter to the FIFO in Fig. 3. When
the value of the counter exceeds the threshold, the circuit
detects the performance attack. Our virus scanning engine
can incorporate the Kumar’s method.

In our experiment, to find the optimum subpattern
length m, we scanned cygwin executable codes. However,
it is also possible to use other binary codes. One candi-
date is Windows executable codes, since many commercial
virus scanners scan them. Also, we implemented the inter-
face with the hardware IRQ and the software context switch.
Since the hardware context switch can switch the context
quickly, it may increase system throughput, however, this
also increases the amount of hardware. Considering practi-
cal simulation setup is the one of the future works.
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