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SUMMARY The parallel branching program machine (PBM128) con-
sists of 128 branching program machines (BMs) and a programmable inter-
connection. To represent logic functions on BMs, we use quaternary deci-
sion diagrams. To evaluate functions, we use 3-address quaternary branch
instructions. We realized many benchmark functions on the PBM128,
and compared its memory size, computation time, and power consump-
tion with the Intel’s Core2Duo microprocessor. The PBM128 requires ap-
proximately a quarter of the memory for the Core2Duo, and is 21.4-96.1
times faster than the Core2Duo. It dissipates a quarter of the power of
the Core2Duo. Also, we realized packet filters such as an access con-
troller and a firewall, and compared their performance with software on the
Core2Duo. For these packet filters, the PBM128 requires approximately
17% of the memory for the Core2Duo, and is 21.3-23.7 times faster than
the Core2Duo.
key words: embedded system, branching program machine, multi-
processing, BDD

1. Introduction

A branching program machine (BM) is a special-
purpose processor that evaluates binary decision dia-
grams (BDDs) [2], [3], [25]. The BM uses only two kinds
of instructions: Branch and output instructions. Thus, the
architecture for the BM is much simpler than that for a
general-purpose microprocessor (MPU). Since the BM uses
the dedicated instructions to evaluate BDDs, it is faster
than the MPU. In fact, for control applications, the BM
is much faster than the MPU [2]. The applications of BMs
include sequencers [3], [25], logic simulators [1], [11], [19],
and packet filters for the Internet [22].

In this paper, we show the parallel branching program
machine (PBM128) that consists of 128 BMs and a pro-
grammable interconnection. To reduce computation time
and code size, we use special instructions that evaluate con-
secutive two nodes at a time. To evaluate code size and com-
putation time for the PBM128, we compare with the Intel’s
general-purpose processor Core2Duo. In this paper, we im-
plement packet filters as well as a logic simulator.
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The rest of the paper is organized as follows: Sect. 2
introduces the BM that emulates a sequential circuit. Sec-
tion 3 presents an architecture of the PBM128. Section 4
shows the implementation of the PBM128, and compares
the PBM128 with the general-purpose MPU. Section 5
shows a realization of packet filters. Finally, Sect. 6 con-
cludes the paper.

This paper builds on the previous publication [18].

2. Branching Program Machine to Emulate Sequential
Circuits

In this section, we show the branching program ma-
chine (BM) that emulates the sequential circuit shown in
Fig. 1. First, the combinational circuit is represented by a
decision diagram. Next, it is translated into the codes of the
BM. Finally, these codes are executed by the BM. To emu-
late the sequential circuit, the BM uses registers that store
state variables. In this section, first, we introduce multi-
terminal binary decision diagrams (MTBDDs) that represent
multi-output logic functions. Next, we show instructions
that evaluate MTBDDs. Then, we show an instruction that
reduces the computation time and the code size. Finally, we
show the architecture of the BM.

We assume that the BM uses 32-bit instructions, which
match the data size of embedded systems and the embedded
memory of FPGAs.

Fig. 1 Model for a sequential circuit.

Fig. 2 Mnemonics and internal representations.
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Fig. 3 Example of MTBDD. Fig. 4 MTQDD derived from MTBDD in Fig. 3.

Fig. 5 Program code for
the MTBDD in Fig. 3.

Fig. 6 Program code for
the MTQDD in Fig. 8.

2.1 MTBDD and MTQDD

An arbitrary n-variable logic function can be represented by
a BDD (Binary Decision Diagram) [4]. An MTBDD (Multi-
Terminal Binary Decision Diagram) [13] can evaluate many
outputs at a time. Evaluation of an MTBDD requires n table
look-ups. The APL (average path length) of a BDD denotes
the average number of nodes to traverse the BDD. Evalua-
tion time for a BDD is proportional to the APL [5].

To further speed up the evaluation, an MDD (Multi-
valued Decision Diagram) [14] is used. In the MDD (k),
k variables are grouped to form a 2k-valued super variable.
Note that a BDD is equivalent to an MDD (1). When the
function is represented by an MDD (k), at most � n

k � ta-
ble look-ups are necessary to evaluate an input vector [12].
The evaluation time can be reduced by increasing k. How-
ever, a node for MDD (k) requires pointers proportional to
2k. For many benchmark functions, total memory size for
MDD (k) achieves its minimum when k = 2 [15]. Hence,
in logic evaluation, with regard to the area-time complexity,
MDD (2)s are more suitable than BDDs. Since MDD (2)
has 4 branches, it is denoted by a QDD (Quaternary Deci-
sion Diagram). In the MDD, we assume that the number of
binary variables in the groups can be different. Such MDDs
are heterogeneous MDDs. When the groups have the same
numbers of binary variables, the MDD is a homogeneous
MDD. In this paper, a QDD denotes a heterogeneous deci-
sion diagram where each group has either one or two binary
variables.

Example 2.1: Figure 3 shows an example of MTBDD.
Figure 4 shows the MTQDD that is derived from the
MTBDD in Fig. 3. (End of Example)

2.2 Instructions to Evaluate MTQDDs

Three types of instructions are used to evaluate an MTQDD.
A 2-address binary branch instruction (B BRANCH) and
a 3-address quaternary branch instruction (Q BRANCH)

Fig. 7 Four different Q BRANCH instructions

Fig. 8 MTQDD with 3-address quaternary branch instructions.

evaluate a non-terminal node, while a dataset instruc-
tion (DATASET) evaluates a terminal node [21]. Mnemon-
ics and their internal representations for B BRANCH,
Q BRANCH and DATASET are shown in Fig. 2.

B BRANCH performs a binary branch: If the value
of the variable specified by INDEX is equal to 0, then
GOTO ADDR0, else GOTO ADDR1. DATASET performs
an output operation and a jump operation. First, DATASET
writes DATA (16 bits) to a register specified by REG. Then,
GOTO ADDR. Q BRANCH jumps to one of four ad-
dresses: Three jump addresses are specified by ADDR0,
ADDR1, and ADDR2, while the remaining address is the
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Fig. 9 BM for a sequential circuit.

Fig. 10 Architecture of 8 BM. Fig. 11 Parallel branching program
machine (PBM128).

Fig. 12 An optimal assignment of Fig. 8.

next address (PC + 1) to the present one. Since it evalu-
ates two variables at a time, the total evaluation time is re-
duced up to a half of a B BRANCH instruction. Also, it can
reduce the total number of instructions. We use four dif-
ferent Q BRANCH instructions shown in Fig. 7. SEL in the
Q BRANCH specifies one of four combinations. Let i be the
value of the variable specified by INDEX. If (SEL = i), then
jump to PC + 1, otherwise jump to ADDRi. In addition, un-
conditional jump instructions are necessary to evaluate some
QDDs. The following example illustrates this:

Example 2.2: The program in Fig. 5 evaluates the
MTBDD in Fig. 3. Consider the MTQDD shown in Fig. 4.
Figure 8 shows the MTQDD with address assignment for
Q BRANCH instructions, where SEL has the same mean-
ing as Fig. 7. For A6, B BRANCH instruction is used for
an unconditional jump, since a terminal node ‘10’ is already
assigned as A3. Thus, the program in Fig. 6 evaluates the
MTQDD. (End of Example)

By changing the address and the S EL as shown in
Fig. 12, we can remove the unconditional jump. In this
way, for a 3-address quarternary branch, we can optimize
the code. The number of unconditional jumps can be mini-
mized by an optimization method shown in [21].

Fig. 13 Double-rank flip-flop.

2.3 Branching Program Machine for a Sequential Circuit

Figure 9 shows a branching program machine (BM) for a
sequential circuit. It consists of the instruction memory that
stores up to 256 words of 32 bits; the instruction decoder;
the program counter (PC); and the register file. In our imple-
mentation, two clocks are used to execute each instruction of
the BM. A Double-Rank Filp-Flop is used to implement the
state register and the output register [20]. Figure 13 shows
the Double-Rank Filp-Flop, where L1 and L2 are D-latches.
The DATASET instruction sends the values into L1 latches
by using C Clock. When all the outputs and state variables
are evaluated, the values of L1 are sent to L2 latches by using
S Clock.

In the BM, values of the state register are fed back into
its inputs. Thus, the BM can emulate a sequential circuit. A
BM can load the external inputs, the state variables, and the
outputs from other BMs by specifying the value of the input
select register.

3. Parallel Branching Program Machine

Since the combinational part of a sequential circuit usually
has many inputs and outputs, a direct implementation by a
single QDD is too large. Also, the QDD with many outputs
tend to have large APL. We partition the outputs of the com-
binational part into groups, and realize a QDD for each of
them. We can emulate them by the parallel branching ma-
chine (PBM). In this paper, the PBMn consists of n BMs.
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3.1 8 BM

Figure 10 shows the architecture of the 8 BM consisting of
eight BMs. The output registers of BMs are connected in
cascade through programmable routing boxes. Then, these
values are stored into the common registers of the 8 BM.
Also, the values of registers are fed back to the input of BM0.
Each BM can operate independently.

A programmable routing box implements the bitwise
AND and the bitwise OR operation. It also implements
constant values: In the programmable routing boxes (high-
lighted with gray in Fig. 10), constant 1s are generated to
perform the bitwise AND operation, while constant 0s are
generated to perform the bitwise OR operation. Since BMs
are connected each other by sharing a register, each BM can
send the signal to other BM by one clock within a 8 BM.
Since a BM uses two clocks to perform an instruction, the
communication delay within an 8 BM can be neglected.

3.2 Optimum Number of BMs

In this part, we consider the optimum number of BMs. For
several benchmark functions [24], we partition the outputs
into groups using a partition method [17], and constructed
the QDD that realizes each group. Then, we obtained
the maximum number of nodes and the maximum APL in
groups.

Figure14 shows the maximum APL for the benchmark
functions, for different numbers of groups nGRP = 32, 64,
128, and 256. From Fig. 14, we have the following:

1. The maximum APL for nGRP = 64 is, on the average,
70.1% of that for nGRP = 32.

2. The maximum APL for nGRP = 128 is, on the average,
80.9% of that for nGRP = 64.

3. However, the maximum APL for nGRP = 256 is, on
the average, 98.3% of that for nGRP = 128. This is
because, for nGRP = 128, the QDDs with large APLs
are already partitioned to singe QDDs, and we cannot
partition them any more.

We assume that each group is evaluated by a BM in
parallel. Since the evaluation time on BMs is dominant, the
connection time for BMs is negligible. Thus, the execu-
tion time for multiple BMs is proportional to the maximum
APL. From the above observations, the PBM64 (nGRP = 64)
is 1.42 times faster than the PBM32 (nGRP = 32); the
PBM128 (nGRP = 128) is 1.23 times faster than the PBM64.
However, the PBM256 (nGRP = 128) is only 1.01 times
faster than the PBM128.

Figure 15 shows the maximum number of nodes for the
benchmark functions. In this research, since the number of
steps of a BM is 256, it can realize the QDD that has less
than or equal to 256 nodes. Figure 15 shows that, when
NGRP = 128 and NGRP = 256, all benchmark functions sat-
isfy the restriction.

From the above discussion, we selected the parallel

Fig. 14 Maximum APL vs. number of BMs.

Fig. 15 Maximum number of nodes vs. number of BMs.
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Fig. 16 An example of the programmable
interconnection.

Fig. 17 Selector for the programmable
interconnection.

Fig. 18 Multiplexer for the programmable
interconnection.

branching program machine consisting of 128 BMs.

3.3 Parallel Branching Program Machine

Figure 11 shows the PBM128. Eight BMs constitute an
8 BM, and sixteen 8 BMs and a programmable intercon-
nection constitute the PBM128. Primary inputs and config-
uration signals are sent to the 8 BMs. Each 8 BM has ex-
ternal outputs and state variables. The external outputs are
connected to the system bus, while the state variables are
sent to 8 BMs through the programmable interconnection.
In addition, an MPU is used to control the whole system.

3.4 Programmable Interconnection

The programmable interconnection uses a multi-level circuit
of multiplexers. Figure 16 shows an example of the pro-
grammable interconnection. Note that, we use the PBM32
rather than the PBM128 for illustration. To reduce the num-
ber of select signals, the programmable interconnection se-
lects four outputs (16 bits) from 8 BMs. Since the DATASET
can writes 16 bits data in one instruction, it is easy to con-
nect the 8 BMs. Figure 17 shows the selector for the pro-
grammable interconnection. It selects four signals (16 bits)
from eight inputs (16 bits) using 16 bits multiplexers (MUX)
shown in Fig. 18.

To increase the throughput, pipeline registers are in-
serted into the programmable interconnection. The inser-
tion of pipeline registers increases the latency: Four clocks
are used to connect the outputs of an 8 BM to other 8 BM.
Since two clocks are used for an instruction of the BM, the
PBM128 requires two instructions time to finish the connec-
tion between BMs in different 8 BMs. In the code genera-
tion, the wait instruction (NOP) is inserted. The uncondi-
tional jump instruction is substituted for the NOP instruc-
tion.

4. Experimental Results and Analysis

4.1 Implementation of PBM128

We implemented the PBM128 on Terasic Corp. DE3
development board that contains an FPGA (StratixIII:
EP3S340H1152C4)†. For the FPGA synthesis tool, we used
QuartusII (v.8.0). To control the whole system, to send and
receive the data, and to configure the PBM128, the embed-
ded processor NiosII/e on the FPGA is used. To store the
configuration data, the SD-Card to the FPGA board is used.
The implemented SD-Card controller reads the configura-
tion data from the external SD-Card. The PBM128 con-
sumes 63007 ALUTs out of 270400 available ALUTs. Each
BM consumes 455 ALUTs, each 8 BM consumes 3560
ALUTs, and the programmable interconnection consumes
6046 ALUTs. Also, the PBM128 consumes 128 M9ks out
of 1040 available M9ks. In our implementation, the maxi-
mum frequency was 132.73 [MHz].

4.2 Comparison of the Code Size and the CPU Time

We compared the execution time and code size for
the PBM128 with the Intel’s general-purpose processor
Core2Duo using the benchmark functions [24]. We used a
laptop computer using Intel’s Core2Duo U7600 (1.2 GHz,
Cache L1 data 32 KB, L1 instruction 32 KB, and L2 2 MB),
and OS: Windows XP SP2. The execution code was gen-
erated by gcc compiler with optimization option -O3††.
The numbers of inputs and outputs for the selected bench-
mark functions are too large to be represented by a single
MTQDD. Thus, we partitioned the outputs into groups,
then represented them by multiple MTQDDs, and finally
converted them into the codes for the PBM128. We used a
grouping method that partitions outputs with similar inputs.

†This device contains more ALUTs than that of [18].
††The table look-up method [19] can also evaluate the BDD.

However, for selected benchmark functions, it is slower than our
method.
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Table 1 Comparison of execution code size and execution time.

Core2Duo@1.2 GHz PBM128@100 MHz Ratios (Core2Duo/PBM128)
Name In Out FF Total BNode Total Code Time QNode Max. Code Time Ratio.Code Ratio.Time

Grp APL [KB] [ns] with UJ APL [KB] [ns] Est. Act. Est. Act.
s5378 35 49 164 126 5702 703.9 74.6 12030 4131 13.1 17.8 323 4.14 4.19 49.1 37.2
s9234 36 39 211 117 10963 590.7 148.6 13450 7613 14.6 33.4 352 4.32 4.44 46.9 38.2
dsip 229 197 224 120 7907 649.3 112.1 17500 5342 6.1 24.8 182 4.44 4.52 95.0 96.1
bigkey 263 197 224 125 9971 831.7 149.5 19170 6876 8.0 33.9 220 4.35 4.41 98.9 87.1
apex6 135 99 99 1535 297.1 23.0 3700 1016 5.0 4.8 163 4.53 4.79 21.8 22.6
cps 24 102 102 3035 242.5 33.9 3468 2121 5.1 8.3 162 4.29 4.08 19.1 21.4
des 256 245 124 8952 770.3 123.1 16560 6730 12.4 30.7 308 3.99 4.00 50.2 53.7
frg2 143 139 116 3161 529.9 40.0 6390 2226 7.7 9.2 215 4.26 4.34 28.0 29.7

Fig. 19 C-code and assembly-code for a node of a BDD.

Fig. 20 C-code and assembly-code for a node of a QDD.

As for the data structure, the MTQDD is used for the
PBM128, while the MTBDD is used for the Core2Duo.
This is from the following reason. Figure 19 shows the
C-code and the assembly-code for the MPU representing a
non-terminal node of a BDD, while Fig. 20 shows those of
a QDD. To evaluate a non-terminal node for a BDD, the
assembly-code shown in Fig. 19 performs the following op-
erations:

1. Read an input variable by movl instruction.
2. Extract the specified bit by testb instruction.
3. Perform the conditional branch by je instruction.

These operations evaluate a node of a BDD using the 1-
address branch, and they are emulated by three x86 instruc-
tions. On the other hand, for a QDD, the assembly-code
shown in Fig. 20 performs the following operations:

1. Read an input variable by movl instruction.
2. Extract the specified bit by andl instruction.
3. Check a lower bit and set frags CF, ZF by cmpl instruc-

tion.
4. Perform the branch by je and jb instructions.

To evaluate a non-terminal node, the average number of

steps is 4+5+7+7
4 = 5.75. For benchmark functions,

APLMT BDD = 1.00, while APLMT QDD(APLMDD(2)) =
0.69 [16]. Thus, the average number of steps to evaluate
a path for the BDD is 3.00 × APLMT BDD = 3.00, while that
for the QDD is 5.75 × APLMT QDD = 3.96. Therefore, in
Core2Duo, the MTBDD is faster than the MTQDD.

For each node of the MTBDD, we generated a frag-
ment of program code (i.e., if then else BRANCH instruc-
tions). As a result, the code for the MTBDD has a higher
cache hit rate than that for the MTQDD. We used the
same partitions of the outputs in the Core2Duo and in the
PBM128. To obtain the execution time per a vector, we gen-
erated random test vectors, and obtained the average time
excluding the time for the reading and writing vectors. The
frequency for the PBM128 was 100 [MHz], while that for
the Core2Duo was 1.2 [GHz]. The code size of the MPU is
obtained as the size of the execution code for the MTBDD
minus the code size to generate test vectors and to measure
the execution time. The code size for the PBM128 is de-
rived from the total number of steps. Table 1 compares the
code size and the execution time for the Core2Duo and the
PBM128. In Table 1, Name denotes the name of benchmark
function; In denotes the number of inputs; Out denotes the
number of outputs; FF denotes the number of state vari-
ables†; Total Grp denotes the total number of groups; BNode
denotes the sum of the number of nodes for the MTBDD;
QNode with UJ denotes the sum of the number of nodes for
the MTQDD and the number of unconditional jump instruc-
tions; Code denotes the size of execution code [KBytes];
Time denotes the execution time [nsec]; Total APL denotes
the sum of the average path length (APL) for all the groups;
Max. APL denotes the maximum APL among the groups;
and Ratios denote that for the code size and that of the
execution time (Core2Duo/PBM128). Note that, Est. de-
notes the estimated ratio described later, and Act. denotes
the actual ratio from the experiment. Table 1 shows that
the PBM128 requires approximately a quarter of the mem-
ory for the Core2Duo, and is 21.4-92.5 times faster than the
Core2Duo.

†For combinational circuits (apex6, cps, des, and frg2), the
numbers of state variables are zero.
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4.3 Analysis of Execution Code Size

Let Est.Code.MPU be the estimated number of steps in the
MPU. Note that, the MPU evaluates MTBDDs. As shown
in Fig. 19, three instructions are used to evaluate a node of a
MTBDD. Thus, we have

Est.S tep.MPU = BNode × 3, (1)

where BNode is the number of MTBDD nodes in Table 1.
Let Est.S tep.PBM be the estimated number of steps

in the PBM128. To evaluate MTQDDs on the PBM128,
Q BRANCH instructions and unconditional jump instruc-
tions are necessary. So, we have

Est.S tep.PBM = QNode + UJ (2)

= QNode with UJ

where QNode is the number of MTQDD nodes, UJ
is the number of unconditional jump instructions, and
QNode with UJ is the sum of these values shown in Table 1.

Let Est.Ratio.S tep be the estimated ratio for the num-
ber of steps. From Exprs. (1) and (2), we have

Est.Ratio.S tep =
Est.S tep.MPU
Est.S tep.PBM

(3)

=
BNode

QNode with UJ
× 3

From Table 1, we can see that Est.Ratio.S tep is 3.99-
4.53, while Act.Ratio.Step is 4.00-4.79. In short, Core2Duo
requires about 4 times more steps than the PBM128.

4.4 Analysis of Execution Time

Let Est.Time be the estimated execution time for a decision
diagram. Then, we have the following relation:

Est.Time = ET PI × IPN × APL + TS T, (4)

where ETPI [nsec/inst] denotes the execution time per an
instruction; IPN [inst/node] denotes the number of instruc-
tions per a node; APL [node] denotes the average path
length; and TST [nsec] denotes the time to perform the state
transition.

Let Est.Time.PBM be the estimated execution time in
the PBM128. Since the PBM128 uses two clocks and the
operation frequency is 100 [MHz] to execute an instruction,
we have ET PIPBM = 20 [nsec/inst]. A Q BRANCH in-
struction evaluates a node for the MTQDD. Thus, we have
IPNPBM = 1.0. The PBM128 emulates QDDs in paral-
lel. So, the APL of the PBM128 is bounded by the maxi-
mum APL of all the groups. Let APLPBM = max{QAPLi},
where QAPLi denotes the APL for the QDD that represents
the i-th group. The programmable interconnection prop-
agates the state variables in four clocks. Thus, we have
TS TPBM = 40 [nsec].

Let Est.Time.MPU be the estimated execution time in

the general-purpose processor. Note that, ET PIMPU de-
pends on the cache access time. Execution time of an in-
struction depends on which of the caches is used: L1 or L2.
To obtain the access time for L1 and L2 cache, we did the ad-
ditional experiment: The average access time for L1 cache is
about 3 [nsec], while that for L2 cache is about 15 [nsec]. As
shown in Fig. 19, to evaluate a non-terminal node for a BDD
on the MPU, three instructions (mov, test, and jump) are
used. Generally, jump addresses in the B BRANCH instruc-
tions are random. Thus, the first instruction (mov) causes
the cache miss, which makes the instruction slow. On the
other hand, other two instructions (test and jump) are fast,
since these instructions are prefetched to the L1 cache. Let
TL1 be the access time for the L1 cache; TL2 be the access
time for the L2 cache; ML1 be the code size for the L1 cache;
MBDD be the code size for the BDD; and Tmov be the time for
the mov instruction that considers the cache miss. Note that,
the hit rates of the caches L1 and L2 are

ML1
MBDD

and
MBDD−ML1

MBDD
,

respectively. Thus, we have

Tmov =
TL2 (MBDD − ML1 ) + TL1 ML1

MBDD
. (5)

Also, we have

ET PIMPU =

{
TL1 (MBDD ≤ ML1 )
Tmov+2×TL1

3 (MBDD > ML1 ).
(6)

In Expr. (6), the upper expression shows ET PIMPU

without cache misses, and the lower one shows ET PIMPU

with cache misses. Obviously, when MBDD ≤ ML1 , no cache
miss occurs. In the lower expression of Expr. (6), the sec-
ond term in a numerator denotes the estimated execution
time for test and jump operations. From Fig. 19, we have
IPNMPU = 3.0. For the APL of the MPU, all BDDs are eval-
uated sequentially. Thus, we have APLMPU =

∑g−1
i=0 BAPLi.

Note that, BAPLi is the APL for the BDD representing the
i-th group, and g is the number of groups. For the state
transition, the MPU must update the state variables sequen-
tially. We assume that state variables are stored in the L1

cache which can be accessed in 3 [nsec]. So, we have
TS TMPU = #FF × 3, where #FF denotes the number of
state variables in Table 1.

Let Est.Ratio.Time be the estimated ratio for the execu-
tion time. Then, we have

Est.Ratio.Time =
Est.Time.MPU
Est.Time.PBM

. (7)

From Table 1, we can see that Est.Ratio.Time is 19.1-98.9,
while Act.Ratio.Time is 21.4-96.1.

From the observations, the PBM128 is faster than the
MPU by:

1. Eliminating the cache miss,
2. Using a special Q BRANCH instruction, and
3. Using 128 BMs in parallel.

The Core2Duo requires more memory than the
PBM128. So, the cache miss occurs frequently. On the
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Table 2 Comparison of power consumption (W).

Name Core2Duo@1.2 GHz PBM128
s5378 13.70 3.24
s9234 13.66 3.31
dsip 13.06 3.23
bigkey 13.68 3.21
apex6 13.61 3.22
cps 13.21 3.29
des 13.70 3.28
frg2 13.81 3.22

other hand, in the PBM128, each BM stores the necessary
data in its local memory. Thus, no cache miss occurs. Note
that, for the Core2Duo, since it operates on Windows XP, the
overhead of the operation system degrades the performance.
However, we ignore it.

4.5 Comparison of Power Consumption

Table 1 shows that the PBM128 is 21.4-96.1 times faster
than the Core2Duo. Even if the clock frequency for the
PBM128 is reduced to 1

21.4 ∼ 1
96.1 , the throughput of the

PBM128 is the same as the Core2Duo. Here, we consider
power consumption. The total power consumption con-
sists of the dynamic power and the static power. To re-
duce the dynamic power, we reduced the clock frequency
for the PBM128 so that the throughput is equal to that of the
Core2Duo. On the other hand, the clock frequency of the
Core2Duo is kept to 1.2 GHz. Then, we measured the total
power consumption. Table 2 compares the total power con-
sumption of the PBM128 and the Core2Duo. To obtain the
pure power consumption for the Core2Duo, we turned off
the display, and suspended applications except for the ker-
nel and the clock counter for measurement of the execution
time. Also, to make the comparison fair, we tried to make
the temperature of the PBM128 and the Core2Duo same.

Table 2 shows that the total power consumption for the
PBM128 is 23.6% of that for the Core2Duo. The static
power consumption for the PBM128 was 3.14 W that comes
from the leakage power of the FPGA.

Next, we obtained the relationship between the clock
frequency and the power consumption for the PBM128. Let
h be the clock frequency (MHz), and P be the total power
consumption (W). We measured power consumption sev-
eral times by changing the clock frequency. By applying the
linear approximation, we obtained the following relation:

P = 0.0059h + 3.3, (8)

where the first term corresponds to the dynamic power, and
the second term corresponds to the static power. In Expr (8),
when h = 0, we have P = 3.3 W, that does not match the
experimental value (3.14 W). This is because the increase
of temperature by the increase of frequency made an ap-
proximation error. Expr (8) shows that, in the PBM128, the
static power dominates the total power consumption. Thus,
the reduction of the chip area can reduce total power con-
sumption. Note that, in the PBM128, we obtained the static
power, since we can stop the system clock.

On the other hand, in the Core2Duo, we could not
stop the system clock, since dynamic RAM was used. So,
we obtained the standby power instead of the static power.
The Standby power of the Core2Duo consists of the leak-
age power, the refresh power of the DRAM, and the power
consumption for the kernel. In our experiment, the standby
power for the Core2Duo was 8.56 W.

5. Implementation of Packet Filter on the PBM128

We implemented an access controller (acl) and a fire-
wall (fw) for the Internet generated by ClassBench [23]. We
used ClassBench to produce synthetic filter sets modeling
real filter sets. Then, we compared their memory size and
computation time for the PBM128 with ones implemented
on the Core2Duo.†. ClassBench generates packet filters
consisting of rules. A rule consists of six fields: a desti-
nation IP address, a source IP address, a destination port, a
source port, a protocol number, and a flag††. In the packet
filter, an entry of the IP address field denotes IP addresses
that are detected by longest prefix (LPM) matching; an en-
try of the port field denotes a range of port numbers that is
detected by range matching; and entries of the protocol field
and the flag field that denote a protocol and a flag those are
detected by exact matching. In a general packet filter, rules
may have intersections. However, in this implementation,
we assume that rules have no intersection†††.

Example 5.3: Figure 21 shows an example of a packet fil-
ter. For simplicity, only three fields are shown: the source IP
address, the source port, and the protocol. (End of Example)

Since the packet filter contains range matching, a BDD
representing the packet filter becomes too large. So, the di-
rect realization of the packet filter on the PBM128 is diffi-
cult. Thus, we use DCFL (Distributed Crossproducting of
Field Labels) method [22]. First, we partitioned the packet
filter into six fields, and assigned a unique label to each en-
try of the field. Next, we generated the product table that
contains the combinations of fields corresponding to rules
for the packet filter. To detect a rule, we used six tables for
the fields and the product table.

Example 5.4: Figure 22 shows the tables that convert

†Different users require systems with different performance.
Thus, different architecture should be used. For the data centers
and the ISPs (Internet Service Providers), the required through-
put is more than tens giga bits per second. Thus, CAMs, FPGAs,
or ASICs are used. These devices dissipate much power or re-
quire a high development cost. On the other hand, for low-end
users including SOHO (small office and home office), the required
throughput is at most several giga bits per second. Thus, the em-
bedded processors or the general purpose processors are used. In
this research, we consider the packet filter for the low-end users.
So, we compare the performance with a general purpose proces-
sor.
††Since the access controller does not use the flag field, we use

five fields.
†††By using an option ‘-b’, we can generate rules without inter-

sections.
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Fig. 21 An example of packet filter.

Table 3 Comparison the PBM128 with the Core2Duo for the packet fil-
ter.

Core2Duo@1.2 GHz PBM128@100 MHz
Rule Total Total Code Time Max. Code Time

Grp APL [KB] [ns] APL [KB] [ns]
acl 86 187.0 157.6 1683.8 3.6 27.0 78.8
fw 99 190.8 160.7 1717.3 3.3 27.9 72.3

Fig. 22 Tables for fields.

fields into labels. They correspond to the packet filter shown
in Fig. 21. Figure 24 shows the product table for Fig. 22.

(End of Example)

To implement a packet filter, first, we generated a
packet filter consisting of 200 rules† by using a command
’db generator.exe -bc rulefile 200 2 −0.5 0.1 packetfilter-
file’. Next, we partitioned the rules into 10 subsets, each
consisting of 20 rules (Fig. 23 Step 1). Then, we partitioned
each subset into 6 fields (Fig. 23 Step 2), and generated the
product table (Fig. 23 Step 3). Next, we constructed seven
BDDs corresponding to six field tables and the product ta-
ble (Fig. 23 Step 4). Finally, we partition the BDD by each
bit of outputs (Fig. 23 Step 5), and converted to many QDDs.
We stored the program code for generated QDDs into the
PBM128. In the Core2Duo, the code for the BDD is sim-
pler than that for the QDD, thus, the code for the BDD
has a higher cache hit rate than that for the QDD. So, the
Core2Duo emulates BDDs instead of QDDs. We used the
same partitions of the outputs in the Core2Duo and in the
PBM128. To obtain the execution time per a vector, we
generated random packet headers, and obtained the average
time excluding the time for the reading and writing packet
headers.

Table 3 compares memory size and computation time,
where column labels are the same as Table 1. From Table 3,
we can observe that, as for memory size, the PBM128 re-
quires 17.1%-17.3% of the memory for the Core2Duo, and
as for the speed, the PBM128 is 21.3-23.7 times faster than
the Core2Duo.

Fig. 23 Realization of packet filter.

Fig. 24 The product table
for Table 3.

6. Conclusion

In this paper, we presented the PBM128 that consists of
128 BMs and a programmable interconnection. To repre-
sent logic functions on BMs, we used quaternary decision
diagrams. To evaluate functions, we used 3-address qua-
ternary branch instructions. We emulated many benchmark
functions on the PBM128 and the Intel’s Core2Duo micro-
processor. The PBM128 required approximately a quarter
of the memory of the Core2Duo, was 21.4-96.1 times faster
than the Core2Duo, and dissipated a quarter of the power of
the Core2Duo.

Three tricks for the fast operation are:

1. Special conditional branch instructions that evaluate
two variables at a time.

2. Parallel operation of 128 BMs.
3. Elimination of cache misses by distributed memories

and by special instructions that reduce the memory
size.

Also, we implemented two types of packet filters; the
access controller and the fire wall. For these applications,
the PBM128 requires approximately 17% of the memory
for the Core2Duo, and is 21.3-23.7 times faster than the
Core2Duo.
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