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A Systematic Design Method for Two-Variable Numeric Function
Generators Using Multiple-Valued Decision Diagrams∗
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SUMMARY This paper proposes a high-speed architecture to realize
two-variable numeric functions. It represents the given function as an edge-
valued multiple-valued decision diagram (EVMDD), and shows a system-
atic design method based on the EVMDD. To achieve a design, we char-
acterize a numeric function f by the values of l and p for which f is an
l-restricted Mp-monotone increasing function. Here, l is a measure of sub-
functions of f and p is a measure of the rate at which f increases with an
increase in the dependent variable. For the special case of an EVMDD,
the EVBDD, we show an upper bound on the number of nodes needed
to realize an l-restricted Mp-monotone increasing function. Experimen-
tal results show that all of the two-variable numeric functions considered
in this paper can be converted into an l-restricted Mp-monotone increas-
ing function with p = 1 or 3. Thus, they can be compactly realized by
EVBDDs. Since EVMDDs have shorter paths and smaller memory size
than EVBDDs, EVMDDs can produce fast and compact NFGs.
key words: two-variable numeric function generators (NFGs), edge-
valued multiple-valued decision diagrams (EVMDDs), edge-valued bi-
nary decision diagrams (EVBDDs), graph-based representation of numeric
functions, programmable memory-based architecture

1. Introduction

Numeric functions have wide applications including com-
puter graphics, direct digital frequency synthesizers [5],
and digital signal processing. Various design methods
for numeric function generators (NFGs) have been de-
veloped [18]. However, most existing methods are in-
tended for one-variable numeric functions [7], [16], [21],
[25], [29]–[31], and only a few methods have been reported
for specific multi-variable numeric functions [9], [10], [34].
Thus, different numeric functions require different methods.
As far as we know, no systematic design method for generic
multi-variable numeric functions has been presented.

A straightforward design method for an arbitrary multi-
variable function is to use a single memory. This method
produces a fast NFG, but requires a 2kn-word memory to
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realize a k-variable function with n bits for each variable.
Thus, even for a computation with a small number of bits,
this method is impractical because of large memory size.

To produce practical NFGs, we consider a design
method using decision diagrams (DDs) for two-variable
NFGs. DDs, such as binary DDs (BDDs), can compactly
realize various functions [8], [17], [35]–[37]. However, DDs
are not able to represent all classes of the functions com-
pactly. Thus, choosing a DD appropriate to a given class
of functions is important. Although DDs suitable for one-
variable numeric functions have been presented [21], [23],
[29], [33], as far as we know, no study on graph-based rep-
resentations for multi-variable numeric functions has been
reported.

First, we present a DD appropriate for two-variable nu-
meric functions. And then, we propose a design method
and an architecture for two-variable NFGs using this DD.
To analyze complexities for two-variable numeric functions,
we introduce a new class of integer-valued functions, l-
restricted Mp-monotone increasing functions. We derive
an upper bound on the number of nodes in an edge-valued
BDD (EVBDD) for this type of function. Theoretical analy-
sis and experimental results show that edge-valued multiple-
valued DDs (EVMDDs) can compactly represent both one-
and two-variable numeric functions, and our NFGs using
EVMDDs can compactly realize such functions with the
same architecture.

This paper is organized as follows: Section 2 intro-
duces a fixed-point representation to convert a real-valued
numeric function into an integer-valued function. Section 3
considers representations of two-variable numeric functions
using DDs. It introduces the l-restricted Mp-monotone in-
creasing function, and derives an upper bound on the num-
ber of nodes in an EVBDD for this type of function. Sec-
tion 4 presents an architecture and a design method for
NFGs based on EVMDDs. Experimental results using an
FPGA are also presented. Section 5 concludes the paper.

2. Preliminaries

2.1 Number Representation and Precision

Definition 1: Let B = {0, 1}, Z be the set of the integers,
and R be the set of the real numbers. A logic function is
Bn → Bm. An integer-valued function is Bn → Z. A one-
variable numeric (real) function is R → R. And, a two-
variable numeric function is R × R→ R.
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Definition 2: A numeric function generator (NFG) is a
logic circuit that computes approximate values for a numeric
function. A one-variable NFG is a logic circuit for a one-
variable numeric function f (x), whose input is x, and out-
put is an approximate value for f (x). A two-variable NFG
is a logic circuit for a two-variable numeric function f (x, y),
whose inputs are x and y, and output is an approximate value
for f (x, y).

Definition 3: The binary fixed-point representation of a
number is denoted by

X = (xn int−1 xn int−2 . . . x1 x0. x−1 x−2 . . . x−n f rac)2,

where xi ∈ {0, 1}, n int is the number of bits for the inte-
ger part, and n f rac is the number of bits for the fractional
part of X. This is the two’s complement representation:
X = −2n int−1xn int−1+2n int−2xn int−2+ . . .+2−n f racx−n f rac.
To distinguish the set of binary variables from the numeric
value X, we use brackets { }. Specifically, {X} denotes the
set of binary variables xi.

Definition 4: Precision is the total number of bits in a bi-
nary fixed-point representation. Specially, n-bit precision
specifies that n bits are used to represent the number; that is,
n = n int + n f rac. In this paper, an n-bit precision func-
tion f (X,Y) means that both of the input variables X and
Y have n-bit precision. The number of fractional bits for
function values is n. This is because the range of a function
can be different than its domain. Thus, function values have
(n int+n)-bit precision, where n int is the number of integer
bits for function values.

We can convert an n-bit precision two-variable numeric
function into a 2n-input m-output logic function, where
m = n int + n. The logic function can be converted into
an integer-valued function by considering binary vectors as
integers. That is, we can convert an n-bit precision two-
variable numeric function into an integer-valued function:
B2n → Pm, where Pm = {0, 1, . . . , 2m − 1}. In this paper,
two-variable numeric functions are converted into integer-
valued functions in this way. And, in the text that follows,
we assume that x0 and y0 denote the least significant bits in
the fixed-point representations of X and Y , respectively.

Example 1: Table 1 (a) is the function table for the Eu-
clidean norm function

√
X2 + Y2 for a two-dimensional vec-

tor from (0, 0) to (X,Y). The 2-bit precision fixed-point rep-
resentation of this function is the logic function fb(X,Y) in
Table 1 (b). By converting output vectors into integers, we
have the integer-valued function f (X,Y) of fb(X,Y) in Ta-
ble 1 (c). In this paper, the 2-bit precision 2-D norm function
denotes the integer-valued function f (X,Y) in Table 1 (c).

(End of Example)

2.2 Decision Diagrams

This subsection summarizes the DDs used in this paper. For
more detail on definitions and reduction rules, see [8], [27],
[37].

Table 1 Tables for 2-bit precision 2-D norm function.

(a) Table for 2-D norm.
X Y Norm

0.00 0.00 0.00
0.00 0.25 0.25
0.00 0.50 0.50
0.00 0.75 0.75
0.25 0.00 0.25
0.25 0.25 0.35
0.25 0.50 0.56
0.25 0.75 0.79
0.50 0.00 0.50
0.50 0.25 0.56
0.50 0.50 0.71
0.50 0.75 0.90
0.75 0.00 0.75
0.75 0.25 0.79
0.75 0.50 0.90
0.75 0.75 1.06

(b) Table for fb(X,Y).
X Y fb

0.00 0.00 0.00
0.00 0.01 0.01
0.00 0.10 0.10
0.00 0.11 0.11
0.01 0.00 0.01
0.01 0.01 0.01
0.01 0.10 0.10
0.01 0.11 0.11
0.10 0.00 0.10
0.10 0.01 0.10
0.10 0.10 0.11
0.10 0.11 1.00
0.11 0.00 0.11
0.11 0.01 0.11
0.11 0.10 1.00
0.11 0.11 1.00

(c) Table for f (X, Y).
X Y f
00 00 0
00 01 1
00 10 2
00 11 3
01 00 1
01 01 1
01 10 2
01 11 3
10 00 2
10 01 2
10 10 3
10 11 4
11 00 3
11 01 3
11 10 4
11 11 4

Definition 5: A multi-terminal binary decision diagram
(MTBDD) [6] is an extension of a BDD [3], [17], and rep-
resents an integer-valued function. In the MTBDD, the ter-
minal nodes are labeled by integers.

Definition 6: A binary moment diagram (BMD) [4] is
a rooted directed acyclic graph (DAG) representing an
integer-valued function. The BMD is obtained by repeatedly
applying the arithmetic transform expansion f = f0+ xi( f1−
f0) to the integer-valued function, where f0 = f (xi = 0), and
f1 = f (xi = 1). The BMD consists of terminal nodes repre-
senting the arithmetic coefficients, and non-terminal nodes
representing the arithmetic transform expansions. Each non-
terminal node has two edges corresponding to two terms: f0
and xi( f1 − f0) in the arithmetic transform expansion.

Definition 7: An edge-valued BDD (EVBDD) [14], [15] is
a variant of a BDD, and represents an integer-valued func-
tion. The EVBDD is obtained by repeatedly applying the
expansion f = xi f0 + xi( f ′1 + α) to the integer-valued func-
tion, where f0 = f (xi = 0), f ′1 + α = f1 = f (xi = 1), and α
is the constant term of f1. The EVBDD consists of only one
terminal node representing 0 and non-terminal nodes with
1-edges having integer weights α. In the EVBDD, 0-edges
always have zero weights. The incoming edge to the root
node can have a non-zero weight. In a reduced EVBDD,
each node represents a distinct sub-function.

Definition 8: For an n-bit precision number X, if {X} =
{Xu}∪{Xu−1}∪. . .∪{X1}, {Xi} � ∅, and {Xi}∩{Xj} = ∅ (i � j),
then {Xu, Xu−1, . . . , X1} is a partition of X. Each Xi forms a
super variable. Let |Xi| = ki and ku + ku−1 + . . . + k1 = n.
Then, by considering each super variable as a multiple-
valued variable, an integer-valued function f (X) : Bn → Z
can be converted into a multiple-valued input integer func-
tion f (Xu, Xu−1, . . . , X1) : Pu × Pu−1 × . . . × P1 → Z, where
Pi = {0, 1, 2, . . . , 2ki − 1}.
Definition 9: An edge-valued multiple-valued decision di-
agram (EVMDD) [21] is an extension of an MDD [13], and
represents a multiple-valued input integer function. It con-
sists of one terminal node representing 0 and non-terminal
nodes with edges having integer weights, and 0-edges al-
ways have zero weights. As shown in Fig. 1, an EVMDD is
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Fig. 1 Conversion of EVBDD nodes into an EVMDD node.

(a) MTBDD (b) BMD

(c) EVBDD (d) EVMDD

Fig. 2 Four types of DDs for the 2-bit precision 2-D norm function.

obtained by merging non-terminal nodes in an EVBDD ac-
cording to the partition of X. In an EVMDD, each multiple-
valued variable may have a different domain.

Example 2: Figure 2 (a), (b), (c), and (d) show the
MTBDD, the BMD, the EVBDD, and the EVMDD of the
2-bit precision 2-D norm function in Table 1 (c). For read-
ability of the figures, several terminal nodes are not shared.
In Fig. 2 (a) and (c), dashed lines and solid lines denote
0-edges and 1-edges, respectively. Note that the EVBDD
has weighted 1-edges. In Fig. 2 (b), ‘A’ in a circle denotes
the arithmetic transform expansion. And, in Fig. 2 (d), the
set of binary variables {X} ∪ {Y} is partitioned into {X2} =
{x1, x0, y1} and {X1} = {y0}. To obtain the function value
3 for X = (10)2 and Y = (10)2, in the MTBDD, we tra-
verse the MTBDD from the root node to a terminal node
according to the input values, and obtain the function value
from the terminal node. In the BMD, we obtain the func-
tion value by computing the arithmetic transform expan-
sion f = f0 + xi( f1 − f0) recursively at each non-terminal
node. And, in the EVBDD and the EVMDD, we obtain
the function value as the sum of the weights for the edges
traversed from the root node to the terminal node. Note
that we traverse the EVMDD using X2 = 5 and X1 = 0.

(End of Example)

3. Graph-Based Representations of Two-Variable Nu-
meric Functions

This section introduces an l-restricted Mp-monotone in-
creasing function, and derives an upper bound on the num-
ber of nodes in an EVBDD for the l-restricted Mp-monotone
increasing function. Experimental results in this section
show that EVBDDs for two-variable numeric functions are
more compact than MTBDDs and BMDs.

3.1 l-Restricted Mp-Monotone Increasing Functions

Definition 10: An n-bit precision integer-valued function
f (X) such that 0 ≤ f (X + 1) − f (X) ≤ p and f (0) = 0 is
a totally Mp-monotone increasing function (or simply, Mp-
monotone increasing function). Here, X + 1 is the binary
representation of the independent variable. That is, for an
Mp-monotone increasing function f (X), f (0) = 0, and the
increment of X by one increases the value of f (X) by at most
p.

Adding 1 as in X + 1 is simply incrementing the stan-
dard binary number X. It should not be confused with
adding 1 to a real-valued variable x.

Definition 11: An n-bit precision integer-valued function
f (X) is an l-restricted Mp-monotone increasing function
when, for 1 ≤ l < n, all the l-bit precision sub-functions
g(Xl) of f are Mp-monotone increasing functions, where
{X} = {xn−1, xn−2, . . . , x0}, {Xl} = {xl−1, xl−2, . . . , x0}, and
g(Xl) = f (�a, Xl), for all assignments �a of values to
(xn−1 xn−2 . . . xl)2.

Theorem 1: For an n-bit precision l-restricted Mp-
monotone increasing function f (X), the number of nodes in
the EVBDD is at most

2n−l +

l∑
i=1

(p + 1)2i−1 − l, (1)

where l is the largest integer satisfying 2n−l ≥ (p+1)2l−1, and
the variable order of the EVBDD is xn−1, xn−2, . . . , x0 (from
the root node to the terminal node).
Proof: See the appendix.

Theorem 1 also holds for EVMDDs because an
EVMDD is obtained by merging non-terminal nodes in
an EVBDD. Note that the upper bound for l-restricted
Mp-monotone increasing functions shown in Theorem 1
is equal to the upper bound for totally Mp-monotone in-
creasing functions shown in [21]. This upper bound is
much smaller than the worst-case upper bound, 2n, which
is reached by EVBDDs for power functions and polynomial
functions [23].

Example 3: Consider a 16-bit precision l-restricted Mp-
monotone increasing function. If p = 1, then we have l = 3,
and the upper bound given by (1) is 8,327. If p = 3, then
l = 2, and the upper bound is 16,450. (End of Example)
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Definition 12: An n-bit precision integer-valued function
f (X) is an extended l-restricted Mp-monotone increasing
function when, for 1 ≤ l < n, all the l-bit precision
sub-functions of f are Mp-monotone increasing functions
g(Xl) or represented by g(Xl) + b, where b is an inte-
ger, {X} = {xn−1, xn−2, . . . , x0}, {Xl} = {xl−1, xl−2, . . . , x0},
and sub-functions are f (�a, Xl), for all assignments �a to
(xn−1 xn−2 . . . xl)2.

Lemma 1: Let f (X) be an extended l-restricted Mp-
monotone increasing function. For any integer l′ satisfying
1 ≤ l′ ≤ l, f (X) is an extended l′-restricted Mp-monotone
increasing function.
Proof: This follows from Definition 12.

Lemma 2: Let f (X) be an l-restricted Mp-monotone in-
creasing function, and let g(X) be an extended l-restricted
Mp-monotone increasing function that is obtained by
adding constant values to the l-bit precision sub-functions
of f . Then, the EVBDDs for f (X) and g(X) have the same
number of nodes.
Proof: See the appendix.

Corollary 1: Let f (X) be an extended l-restricted Mp-
monotone increasing function, and let g(X) be an affine
transformation of f : g(X) = a f (X)+b, where a and b are in-
tegers. Then, the EVBDDs for f (X) and g(X) have the same
number of nodes.

EVBDDs can compactly represent not only l-restricted
Mp-monotone increasing functions, but also their extended
classes of functions. This property is helpful to compactly
represent various two-variable numeric functions.

3.2 Two-Variable Numeric Functions

As shown in Sect. 2, n-bit precision two-variable numeric
functions can be converted into 2n-bit precision integer-
valued functions. That is, n-bit precision two-variable func-
tions f (X,Y) can be converted into 2n-bit precision one-
variable functions f (Z), where

Z = 2nX + Y = (xn−1 xn−2 . . . x0 yn−1 yn−2 . . . y0)2.

When f (Z) is an l-restricted Mp-monotone increasing func-
tion for the largest integer l satisfying 22n−l ≥ (p + 1)2l−1,
Theorem 1 gives the upper bound on the number of nodes in
an EVBDD for f (X,Y).

Example 4: As shown in Table 2 (a), the 2-bit precision
2-D norm function

√
X2 + Y2 can be converted into an ex-

tended 2-restricted M1-monotone increasing function f (Z).

Table 2 Function tables for 2-bit precision two-variable functions.

(a) Table for 2-D norm.
X

Y 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 3 4
3 3 3 4 4

(b) Table for X
Y+1 .

X
Y 0 1 2 3
0 0 1 2 3
1 0 1 2 2
2 0 1 1 2
3 0 1 1 2

(c) Table for g(Z).
x1 x0

y1y0 00 01 10 11
00 0 −1 −2 −3
01 0 −1 −2 −2
10 0 −1 −1 −2
11 0 −1 −1 −2

Note that, in the table, values increase by at most one for
each column. Similarly, the 2-bit precision two-variable
function X

Y+1 shown in Table 2 (b) can be converted into
an affine transformation of the extended 2-restricted M1-
monotone increasing function g(Z) shown in Table 2 (c):
−1 × g(Z). (End of Example)

We now show two-variable numeric functions that can
be converted into integer-valued functions of classes dis-
cussed in Sect. 3.1. As a result, their EVBDDs are small.

Lemma 3: Let h(Y) be an n-bit precision Mp-monotone
increasing function. Then, for an arbitrary one-variable
function g(X), a two-variable function f (X,Y) = g(X)+h(Y)
is an extended n-restricted Mp-monotone increasing func-
tion.
Proof: See the appendix.

Lemma 4: Let h(Y) be an n-bit precision Mp-monotone
increasing function. Then, for an arbitrary one-variable
function g(X), the two-variable function f (X,Y) = g(X) −
h(Y) can be converted into an affine transformation of an
extended n-restricted Mp-monotone increasing function.
Proof: See the appendix.

Lemma 5: Let h(Y) be an n-bit precision Mp-monotone
increasing function, and let g(X) be a real function satisfying
0 ≤ g(X) ≤ 1. Then, an n-bit precision two-variable func-
tion f (X,Y) = g(X) · h(Y) is an n-restricted Mp-monotone
increasing function.
Proof: See the appendix.

In Lemma 5, if the range of g(X) is large, then the
EVBDD can be large. For example, the n-bit multiplier re-
quires O(2n) nodes [36].

Lemma 6: Let h(Y) be an affine transformation of an n-bit
precision Mp-monotone increasing function, and let g(X)
be a real function satisfying 0 ≤ g(X) ≤ 1. Then, an n-bit
precision two-variable function f (X,Y) = g(X) · h(Y) can
be converted into an affine transformation of an extended
n-restricted Mp-monotone increasing function.
Proof: See the appendix.

Example 5: 2-bit precision function 1
Y+1 is an affine trans-

formation of an M1-monotone increasing function [21]. As
shown in Example 4, f (X,Y) = X

Y+1 can be converted into
an affine transformation of an extended 2-restricted M1-
monotone increasing function. (End of Example)

Since many common one-variable numeric functions
can be converted into Mp-monotone increasing func-
tions [23], many two-variable numeric functions obtained
by four arithmetic operations of them can be converted into
extended l-restricted Mp-monotone increasing functions as
shown in the above lemmas.

In the following, we show that various two-variable
numeric functions, as well as the above functions, can be
converted into extended l-restricted Mp-monotone increas-
ing functions. Table 3 compares the numbers of nodes in
MTBDDs, BMDs, and EVBDDs for certain 8-bit precision
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Table 3 Numbers of nodes in MTBDDs, BMDs, and EVBDDs for 8-bit
precision two-variable numeric functions.

Numeric Type of Number of nodes R1 R2

functions function MTBDD BMD EVBDD√
X2 + Y2 M1 12,969 25,084 2,566 20 10

arctan( X
Y+1 ) M1+ 8,997 26,158 3,134 35 12

ln(X + 1) sin(Y) M1 9,776 25,994 3,444 35 13√
X sin(Y) M1 11,543 26,542 3,483 30 13

sin(
√

X2 + Y2) M1 11,521 27,858 4,013 35 14
sin(XY) M1 11,282 21,746 3,789 34 17

X/(Y + 1) M1+ 9,664 25,878 3,162 33 12
XY/
√

X2 + Y2 M1 9,325 23,634 2,269 24 10
WaveRings M3+ 17,423 27,691 5,047 29 18

Average 11,389 25,621 3,434 30 13
Domain of the functions is 0 ≤ X < 1 and 0 ≤ Y < 1.
Number of fractional bits for function values is 8.
Mp+: the function is an affine transformation of an extended 8-
restricted Mp-monotone increasing function.
R1 = (EVBDD) / (MTBDD) × 100. R2 = (EVBDD) / (BMD) × 100.
Variable orders of DDs are produced by the sifting algorithm [26].

two-variable numeric functions [2]. WaveRings in the table
is

WaveRings =
cos

(√
X2 + Y2

)
√

X2 + Y2 + 0.25
.

In the column labeled “Type of function” of Table 3, Mp
denotes an extended 8-restricted Mp-monotone increasing
function, while Mp+ denotes an affine transformation of an
extended 8-restricted Mp-monotone increasing function.

Two-variable numeric functions whose range changes
smoothly on a given domain can be converted into ex-
tended l-restricted Mp-monotone increasing functions with
small p. As shown in Theorem 1, such functions have
small EVBDDs. In fact, the two-variable numeric func-
tions in Table 3 are converted into 8-restricted M1 or M3-
monotone increasing functions, and EVBDDs have many
fewer nodes than MTBDDs and BMDs. Since non-terminal
nodes of EVBDD have weighted 1-edges, a non-terminal
node of EVBDD requires larger memory size than a non-
terminal node of MTBDD and BMD. However, the increase
due to the weighted edges is negligible, because EVBDDs
have many fewer non-terminal nodes than MTBDDs and
BMDs [21].

As shown in [21], by converting EVBDDs into
EVMDDs, we can often reduce memory size and path length
of decision diagrams. In the next section, we present a de-
sign method that takes advantage of EVMDDs.

4. Two-Variable NFGs Based on EVMDDs

4.1 Architecture for NFGs

In DDs based on the Shannon expansion, function values
can be obtained by traversing the DDs from the root node
to a terminal node [11], [12]. In EVBDDs and EVMDDs,
function values can be obtained as the sum of the weights
for traversed edges. Figure 3 shows an NFG based on an

(a) Architecture for NFGs. (b) Address computation circuit.

Fig. 3 Architecture for NFGs based on EVMDDs.

EVMDD. It consists of a memory to store an EVMDD, an
address computation circuit to traverse the EVMDD, and an
accumulator to compute the sum of edge weights. Note that,
for readability, registers, circuits for initialization, and some
signals are omitted from Fig. 3.

In Fig. 3 (a), the block labeled “Memory for EVMDD”
stores data for edges in an EVMDD. Data for an edge con-
sists of a pointer to the next node, data for the variable of the
next node, and an edge weight. From the memory, a pointer
to the next node and data for the next variable are read and
fed to the address computation circuit. And, an edge weight
is fed to the accumulator. The address computation circuit
produces an address of the next edge from an address of the
node and a value of the input variable.

Figure 3 (b) shows the address computation circuit.
Data for the next variable consist of shift data and mask data.
A value of the corresponding input variable is retrieved by
the left shifter and the AND gates. And, the value is added
to the address of next node to generate the edge address.
This circuit just selects an edge to be traversed. Thus, we
could use a multiplexer. However, it is inefficient because,
in EVMDDs, each input variable can have a different do-
main. Note that EVBDDs require neither the AND gates
nor the adder because in EVBDDs, all input variables are
binary.

Since the circuit shown in Fig. 3 just traverses an
EVMDD and computes the sum of edge weights, it can eval-
uate both one- and two-variable functions with the same ar-
chitecture.

4.2 Design Method for NFGs Using EVMDDs

For a given numeric function, its domain, and precision, we
can systematically design the circuit in Fig. 3. First, con-
vert a given numeric function into an n-bit precision integer-
valued function. Next represent the integer-valued function
using an EVMDD, and finally generate HDL code for the
circuit in Fig. 3 from the EVMDD. Since our NFG directly
realizes the function table, it is more accurate than existing
NFGs using polynomial approximation [7], [16], [25], [30],
[31].

To generate memory data for an NFG in Fig. 3, we first
assign an address to each edge in an EVMDD. For each non-
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terminal node, we assign addresses to edges in ascending or-
der from 0-edges. Thus, addresses assigned to 0-edges cor-
respond to addresses of non-terminal nodes. Next, we gen-
erate shift data and mask data of each edge. For an EVMDD
for f (Xu, Xu−1, . . . , X1), shift data and mask data of an edge
are computed as follows:

shift data =
u−1∑
j=i

k j, mask data = 2ki − 1, and

bit size for mask = max
1≤ j≤u

(k j),

where the edge points to a node representing Xi, variable
order of the EVMDD is Xu, Xu−1, . . . , X1 from the root, and
k j = |Xj| ( j = 1, 2, . . . , u).

Example 6: Table 4 shows memory data and initial values
for the NFG produced from the EVMDD in Fig. 2 (d). This
example shows how to compute the function value for X =
(10)2 and Y = (10)2 using Table 4.

First, the address computation circuit produces an edge
address from the initial values. Since the initial shift data
is 0, the bitwise AND between the most significant 3 bits of

Table 4 Memory data for the NFG for 2-bit precision 2-D norm func-
tion.

Edge Shift Mask data Address of Edge
address data (binary) next node weight

0 1 001 8 0
1 1 001 8 2
2 0 000 0 1
3 1 001 8 2
4 0 000 0 2
5 1 001 8 3
6 0 000 0 3
7 0 000 0 4
8 0 000 0 0
9 0 000 0 1

Initial values
Shift data: 0 Mask data: 111
Address of node: 0 Edge weight: 0

Table 5 FPGA implementation of 8-bit precision two-variable numeric functions.

FPGA device: Altera Stratix EP1S25F672C8
Logic synthesis tool: Altera QuartusII 7.1 (speed optimization, timing requirement of 100 MHz)

Numeric EVBDD EVMDD Ratio [%]
functions LE Mem Freq. LPL Delay LE Mem Freq. LPL Delay Mem Delay

[bits] [MHz] [nsec] [bits] [MHz] [nsec]√
X2 + Y2 367 155,736 80 16 201 96 103,080 66 5 76 66 38

arctan( X
Y+1 ) 256 132,174 79 16 204 94 88,760 66 6 91 67 44

ln(X + 1) sin(Y) 169 142,640 79 16 202 91 86,256 66 5 76 60 37√
X sin(Y) 317 157,080 81 16 198 91 91,404 67 5 74 58 38

sin(
√

X2 + Y2) 204 184,968 69 16 231 93 101,916 65 5 77 55 33
sin(XY) 365 151,520 81 16 197 91 90,828 67 5 74 60 38

X/(Y + 1) 338 145,782 82 16 195 91 88,236 67 5 75 61 38
XY/
√

X2 + Y2 269 145,200 80 16 200 94 99,826 67 5 75 69 37
WaveRings 114 235,934 68 16 234 101 144,892 65 5 77 61 33

Average 267 161,226 78 16 207 94 99,466 66 5 77 62 37
LE: Number of logic elements Mem: Memory size Freq.: Operating frequency
LPL: Longest path length of DDs Delay: maximum delay time = LPL / Freq.
Ratio for Mem =Mem for EVMDD /Mem for EVBDD×100
Ratio for Delay = Delay for EVMDD / Delay for EVBDD×100

input variable (x1 x0 y1)2 = (101)2 and the initial mask data
(111)2 is computed to produce (101)2. Adding the initial
address of node 0 to the result of bitwise AND yields the
first edge address (101)2 = 5, which corresponds to the edge
5 of the root node in Fig. 2 (d).

Next, data for address 5 is read from the memory and
fed to the address computation circuit and the accumula-
tor. The accumulator obtains the sum of the edge weight 3
given by the memory and the initial edge weight 0. In the
address computation circuit, the value of input variable is
(x0 y1 y0)2 = (010)2, which is shifted 1-bit left, and the bit-
wise AND is performed with the mask data (001)2. Adding
the result of bitwise AND 0 to the address of next node 8
yields the second edge address 8, which corresponds to the
edge 0 of the node for X1 in Fig. 2 (d).

Since the mask data 0 at the address 8 means arrival
at the terminal node, adding the edge weight 0 to the pre-
vious sum of edge weights 3 yields the function value 3.

(End of Example)

Memory size and delay time of our NFG depend
largely on memory size and path length of EVMDD. There-
fore, the memory minimization algorithm and the APL min-
imization algorithm for MDDs [19], [20] are useful for pro-
ducing fast and compact NFGs.

4.3 FPGA Implementation Results

We implemented the NFGs in Fig. 3 for the two-
variable functions shown in Table 3 on an Altera FPGA
(EP1S25F672C8). To show the effectiveness of MDDs,
NFGs for EVBDDs and EVMDDs were compared. Table 5
shows the results.

EVBDD-based NFGs can achieve higher operating fre-
quency than EVMDD-based NFGs, because the EVBDD-
based NFGs require neither AND gates nor an adder for
the address computation circuit. However, as for the time
to obtain the function value (i.e., latency), EVMDD-based
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Table 6 Performance comparison with CORDIC for 16-bit sin(X).

FPGA: Xilinx Virtex-II XC2V1000-6
Logic synthesis tool: Synplify Premier Ver. 8.5

NFGs Freq. [MHz] Delay [nsec]
CORDIC (RTL) [1] 102 157

CORDIC (structural) [1] 222 72
EVBDD-based 193 83
EVMDD-based 141 43

CORDIC (RTL): The circuit is synthesized from RTL.
CORDIC (structural): The circuit is manually imple-
mented to make it suitable for the FPGA structure.

NFGs are shorter than EVBDD-based NFGs, because the
path length of EVMDD is shorter than that of EVBDD.
The maximum delay time needed to obtain a function value
for EVMDD-based NFGs is, on the average, only 37% of
that for EVBDD-based NFGs. And, EVMDD-based NFGs
require, on the average, only 62% of the memory size
needed for EVBDD-based NFGs. These results show that
EVMDDs produce fast and compact two-variable NFGs.

Two-variable functions are often designed using a com-
bination of one-variable NFGs, multipliers, and adders. For
example, the compound function sin(

√
X2 + Y2) can be de-

signed using two circuits realizing a2, an adder, a square root
circuit, and a sine function circuit. But, it can produce a slow
implementation due to long path delays. For such a com-
pound function, two-variable NFGs that can directly realize
two-variable functions are much faster [24]. To compare the
EVMDD-based NFGs with the previous two-variable NFGs
based on polynomial approximation [24], we implemented
the EVMDD-based NFGs for

√
X2 + Y2 and XY/

√
X2 + Y2

using the same Altera FPGA (EP3SL340F1517C2) and
QuartusII 9.0.

For both functions, the maximum delay times of
the EVMDD-based NFGs are 21 nsec., while those of
the polynomial-based two-variable NFGs [24] are 35 and
37 nsec., respectively. Since the EVMDD-based NFGs are
faster than the polynomial-based NFGs, and they can di-
rectly realize two-variable functions, the proposed two-
variable NFGs are faster than the NFGs designed by any
other existing approaches.

As mentioned previously, our NFGs can also realize
one-variable functions. To show the effectiveness of our
NFGs for one-variable functions, we compare our NFGs
with a CORDIC shown in [1], which is well known as a
standard one-variable NFG for FPGA implementation, in
terms of performance. Table 6 shows the results. From this
table, we can see that the EVMDD-based NFG that is au-
tomatically generated from the function table evaluates the
sine function faster than a manually implemented CORDIC.
And, the EVBDD-based NFG is faster than the CORDIC
synthesized from RTL.

In this way, we can implement fast and compact one-
variable and two-variable NFGs by using EVMDDs.

5. Conclusion and Comments

This paper introduces a new class of integer-valued func-

tions, called an l-restricted Mp-monotone increasing func-
tion. It also derives an upper bound on the number of nodes
in an EVBDD to represent the function. EVBDDs repre-
sent l-restricted Mp-monotone increasing functions or their
affine transformations more compactly than MTBDDs and
BMDs when p is small.

This paper also presents a design method for NFGs
based on EVMDDs. With EVMDDs, we can design accu-
rate, fast, and compact NFGs for one- and two-variable nu-
meric functions. In FPGA implementations for two-variable
numeric functions, we show that EVMDD-based NFGs re-
quire, on the average, only 37% of the delay time and 62%
of the memory size needed for EVBDD-based NFGs.
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Appendix

Lemma A: [21] The number of distinct n-bit precision
Mp-monotone increasing functions is (p + 1)2n−1.

Definition A: A shared EVBDD (SEVBDD) is an exten-
sion of an EVBDD, and it has multiple root nodes to rep-
resent multiple integer-valued functions. The SEVBDD is
obtained by sharing equivalent sub-graphs in EVBDDs for
the integer-valued functions.

Lemma B: [21] Let η(l, p) be the number of non-terminal
nodes in the SEVBDD representing all the l-bit precision
Mp-monotone increasing functions, where the variable or-
der of the SEVBDD is xl−1, xl−2, . . . , x0 (from the root nodes
to the terminal node). Then,

η(l, p) =
l∑

i=1

(p + 1)2i−1 − l.

Proof for Theorem 1: Suppose that an EVBDD for f (X)
is partitioned into two parts: the upper and the lower parts
as shown in Fig. A· 1. In this case, the lower part represents
l-bit precision Mp-monotone increasing functions, and the
upper part represents the selector function. The upper part
has the maximum number of nodes when it forms a com-
plete binary tree. That is, the maximum number of nodes in
the upper part is 2n−l − 1.

The lower part has the maximum number of nodes
when it represents all the l-bit precision Mp-monotone in-
creasing functions. From Lemma B, the maximum number
of nodes in the lower part is η(l, p).

Therefore, the number of non-terminal nodes in the
EVBDD for f (X) is at most

Fig. A· 1 Partition of EVBDD.
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2n−1 − 1 + η(l, p) = 2n−l +

l∑
i=1

(p + 1)2i−1 − l − 1.

By adding 1 to account for the terminal node to this, we
have (1). From Lemma A, the number of Mp-monotone
increasing functions that can be represented in the lower part
is (p + 1)2l−1. It does not exceed the number of functions
which can be selected by the upper part: 2n−l. Therefore, we
have the relation: (p + 1)2l−1 ≤ 2n−l.
Proof for Lemma 2: In the EVBDD for f (X), adding con-
stant values to the weights of edges pointing to the corre-
sponding sub-functions can produce the EVBDD for g(X).
This conversion of EVBDDs does not change the number of
nodes.
Proof for Lemma 3: For f (X,Y), any sub-function with
respect to an assignment to X can be represented by h(Y)+b,
where b is an integer. Thus, from Definition 12, the lemma
holds.
Proof for Lemma 4:

f (X,Y) = g(X) − h(Y) = −(−g(X) + h(Y))

From Lemma 3, (−g(X) + h(Y)) is an extended n-restricted
Mp-monotone increasing function. Therefore, we have the
lemma.
Proof for Lemma 5: For f (X,Y), any sub-function with
respect to an assignment to X can be represented by a · h(Y),
where a is a real number satisfying 0 ≤ a ≤ 1. Since a ·
h(0) = 0 and 0 ≤ a · h(Y + 1) − a · h(Y) ≤ p hold, from
Definition 11, the lemma holds.
Proof for Lemma 6: Let h(Y) = a · h0(Y) + b. Then,

f (X,Y) = g(X)(a · h0(Y) + b)

= a

(
g(X) · h0(Y) +

b
a
· g(X)

)
.

From Lemmas 3 and 5, g(X)·h0(Y)+ b
a ·g(X) is an extended n-

restricted Mp-monotone increasing function. Thus, we have
the lemma.
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