
2762
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

PAPER Special Section on VLSI Design and CAD Algorithms

BDD Representation for Incompletely Specified Multiple-Output
Logic Functions and Its Applications to the Design of LUT Cascades

Munehiro MATSUURA† and Tsutomu SASAO†a), Members

SUMMARY A multiple-output function can be represented by a bi-
nary decision diagram for characteristic function (BDD for CF). This pa-
per presents a method to represent multiple-output incompletely speci-
fied functions using BDD for CFs. An algorithm to reduce the widths of
BDD for CFs is presented. This method is useful for decomposition of
incompletely specified multiple-output functions. Experimental results for
radix converters, adders, a multiplier, and lists of English words show that
this method is useful for the synthesis of LUT cascades. An implementa-
tion of English words list by LUT cascades and an auxiliary memory is also
shown.
key words: incompletely specified function, characteristic function, binary
decision diagram, functional decomposition, LUT cascade

1. Introduction

Construction of a Binary Decision Diagram (BDD) for an
incompletely specified Boolean function arises in several
applications in the CAD domain: verification, logic synthe-
sis, and software synthesis. Three methods are known to
represent an incompletely specified logic function by binary
decision diagrams (BDDs) [9]:

1. A ternary function that takes 0, 1 and don’t care [9].
2. A pair of BDDs to represent three values [4].
3. An auxiliary variable that represents don’t cares [3],

[9].

Most works are related to the minimization of total
number of nodes in BDDs [3], [6], [20], [21]. However,
these methods are unsuitable for functional decompositions
of multiple-output functions. In a functional decomposi-
tion, the minimization of width of a BDD is more impor-
tant than the minimization of total number of nodes. To
find an efficient decomposition of a multiple-output logic
function, we can use a multi-terminal binary decision dia-
gram (MTBDD), or a BDD that represents the characteris-
tic function of the multiple-output function (BDD for CF)
[15]. BDD for CFs usually require fewer nodes than cor-
responding MTBDDs, and the widths of the BDD for CFs
tend to be smaller than that of the corresponding MTBDDs.

In this paper, we show a new method to represent an
incompletely specified multiple-output function. It uses

Manuscript received March 5, 2007.
Manuscript revised June 1, 2007.
Final manuscript received July 27, 2007.
†The authors are with the Department of Computer Science

and Electronics, Kyushu Institute of Technology, Iizuka-shi, 820-
8502 Japan.

a) E-mail: sasao@cse.kyutech.ac.jp
DOI: 10.1093/ietfec/e90–a.12.2762

a BDD for CF, and is suitable for functional decomposi-
tion. We also show a method to reduce the width of the
BDD for CF. Experimental results using radix converters,
adders, a multiplier, and English word lists show the effec-
tiveness of the approach. A preliminary version of this paper
has been published as [17].

2. Definitions

Definition 2.1: x is a support variable of f if f depends on
x. A function f : {0,1}n→ {0,1,d} is an incompletely spec-
ified function, where d denotes the don’t care. Let f 0, f 1,
and f d be the functions represented by sets f −1(0), f −1(1),
and f −1(d), respectively. Note that f 0 ∨ f 1 ∨ f d = 1,
f 0 · f 1 = 0, f 1 · f d = 0, and f 0 · f d = 0.

Definition 2.2: [2] Let F = (f1(X), f2(X), . . . , fm(X)) be a
multiple-output function, and let X = (x1, x2, . . . , xn) be the
input variables. The characteristic function of the com-
pletely specified multiple-output function F is

χ(X,Y) =
m∧

i=1

(yi ≡ fi(X)),

where yi is the variable representing the output fi, and i ∈
{1,2, . . . ,m}.
The characteristic function of a completely specified
multiple-output function denotes the set of the valid input-
output combinations. Let fi 0(X)= f̄i(X) and fi 1(X)= fi(X),
then the characteristic function χ is represented as follows:

χ(X,Y) =
m∧

i=1

{ȳi · fi 0(X)∨yi · fi 1(X)}

In an incompletely specified function, when the function
value fi is don’t care, the value of the function can be ei-
ther 0 or 1. Therefore, for such inputs, the characteristic
function is independent of the values of output variables yi.
Let fi d denote the don’t care set, then we have

ȳi(fi 0(X)∨ fi d(X))∨yi(fi 1(X)∨ fi d(X))

= ȳi fi 0(X)∨yi fi 1(X)∨ fi d(X)

Thus, we have the following:

Definition 2.3: The characteristic function χ of an incom-
pletely specified multiple-output function
F = (f1(X), f2(X), . . . , fm(X)) is

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

MATSUURA and SASAO: BDD REPRESENTATION FOR INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT LOGIC FUNCTIONS
2763

Table 1 Truth table of an incompletely specified function.

x1 x2 x3 x4 f1 f2 x1 x2 x3 x4 f1 f2
0 0 0 0 d 1 1 0 0 0 0 1
0 0 0 1 d 1 1 0 0 1 0 1
0 0 1 0 0 0 1 0 1 0 1 0
0 0 1 1 0 0 1 0 1 1 1 0
0 1 0 0 d d 1 1 0 0 1 d
0 1 0 1 d d 1 1 0 1 1 d
0 1 1 0 1 0 1 1 1 0 d 0
0 1 1 1 1 1 1 1 1 1 d 1

χ(X,Y) =
m∧

i=1

{ȳi fi 0(X)∨yi fi 1(X)∨ fi d(X)}

Example 2.1: Consider the incompletely specified func-
tion shown in Table 1. Since,

f1 0 = x̄1 x̄2x3∨ x1 x̄2 x̄3

f1 1 = x̄1x2x3∨ x1 x̄2x3∨ x1x2 x̄3

f1 d = x̄1 x̄3∨ x1x2x3

f2 0 = x̄1 x̄2x3∨ x1 x̄2x3∨ x2x3 x̄4

f2 1 = x̄2 x̄3∨ x2x3x4

f2 d = x2 x̄3,

the characteristic function is

χ = {ȳ1(x̄1 x̄2x3∨ x1 x̄2 x̄3)∨
y1(x̄1x2x3∨ x1 x̄2x3∨ x1x2 x̄3)∨ (x̄1 x̄3∨ x1x2x3)}
· {ȳ2(x̄1 x̄2x3∨ x1 x̄2x3∨ x2x3 x̄4)∨
y2(x̄2 x̄3∨ x2x3x4)∨ (x2 x̄3)}

(End of Example)

Next, we will consider the BDD that represents the char-
acteristic function for an incompletely specified multiple-
output function.

Definition 2.4: The BDD for CF of a multiple-output
function F = (f1, f2, . . . , fm) represents the characteristic
function χ of F, where the variable representing the output
yi is in the below of the support variables for fi. (We assume
that the root node is in the top.)

Figure 1 illustrates a BDD for CF of an incompletely spec-
ified multiple-output function, where solid lines denote the
1-edges, while dotted lines denote the 0-edges. When the 1-
edge of the node yi is connected to a constant 0 node, fi = 0
(Fig. 1(a)); when the 0-edge of the node yi is connected to a
constant 0 node, fi = 1 (Fig. 1(b)); and when both the 0-edge
and 1-edge of the node yi are connected to the same node ex-
cept for the constant 0 node, fi = d (don’t care) (Fig. 1(c)).
In the case of fi = d, the node for yi is redundant, and it is
deleted during the minimization of the BDD.

In the case of a BDD for CF representing a completely
specified function, each path from the root node to the con-
stant 1 node involves nodes for all the output variables yi.
Furthermore, one of the edges of the node for yi is connected
to the constant 0 node. On the other hand, in the case of a

(a) fi = 0 (b) fi = 1 (c) fi = d

Fig. 1 BDD for CF representing an incompletely specified function.

(a) BDD for CF when 0’s are
assigned to all the don’t
cares.

(b) BDD for CF for incompletely
specified function.

Fig. 2 BDD for CF representing multiple-output function.

BDD for CF representing an incompletely specified func-
tion, each path from the root node to the constant 1 node
may not involve nodes for some variable yi. For the path
where the output variables yi is missing, fi is don’t care.

Example 2.2: Figure 2 shows two BDD for CFs repre-
senting the function in Example 2.1. For simplicity, the con-
stant 0 node and all the edges connecting to it are omitted.
Figure 2(a) shows the BDD for CF representing the com-
pletely specified function where 0’s are assigned to all the
don’t cares. Figure 2(b) shows the BDD for CF represent-
ing the incompletely specified function. The solid and dot-
ted bold edges denote that at least one node for output vari-
ables is missing, and the output value is don’t care. Note
that in Fig. 2(a), all the output variables {y1, y2} appear in
each path from the root node to the constant 1 node. On the
other hand, in Fig. 2(b), in the bold edges at least one out-
put variable yi is missing, and the corresponding output fi is
don’t care. (End of Example)

3. Decomposition and BDD for CFs

3.1 Decomposition Using BDD for CF

By using a BDD for CF, we can decompose a multiple-
output logic function efficiently [15]. When we decompose
the function by using a BDD, the smaller the width of the
BDD, the smaller the network becomes after decomposition.
In the case of an incompletely specified function, we can of-
ten reduce the width of the BDD for CF by finding an ap-
propriate assignment of constants to the don’t cares. From
here, we will consider a method to reduce the width of a

2764
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Table 2 Decomposition chart of an incompletely specified function.

X1 = {x1, x2}
00 01 10 11

00 0 0 d 1
X2 = {x3, x4} 01 1 1 d d

10 d 1 0 d
11 0 d 0 0
Φ1 Φ2 Φ3 Φ4

BDD for CF representing an incompletely specified func-
tion.

Definition 3.5: Let the height of the root node be the total
number of variables, and let the height of the constant node
be 0. Let (zn+m,zn+m−1, . . . ,z1) be the ordering of the vari-
ables, where zn+m corresponds to the variable for the root
node. The width of the BDD for CF at the height k is the
number of edges crossing the section of the BDD between
variables zk and zk+1, where the edges incident to the same
node are counted as one, also the edges pointing the con-
stant 0 are not counted. The width of the BDD for CF at the
height 0 is defined as 1.

Definition 3.6: Let f (X) be a logic function, and (X1,X2)
be a partition of the input variables. Let |X| be the number
of elements in X. The decomposition chart for f is a two-
dimensional matrix with 2|X1 | columns and 2|X2 | rows, where
each column and row has a label of unique binary code, and
each element corresponds the truth value of f . In the de-
composition chart, the column multiplicity denoted by µ is
the number of different column patterns†. The function rep-
resented by a column pattern is a column function.

Example 3.3: Table 2 shows a decomposition chart of a
4-input 1-output incompletely specified function. Since all
the column patterns are different, the column multiplicity is
µ = 4. (End of Example)

In a conventional functional decomposition using a BDD,
the width of a BDD is equal to the column multiplicity µ.
Let (X1,X2) be a partition of the input variables, then the
nodes except for variables X1 that are directly connected to
the nodes for variables X1 correspond to the column patterns
in the decomposition chart. In a partition (X1,X2), nodes
representing column functions may have different heights.
In a functional decomposition, such a relation is denoted by
f (X1,X2) = g(h(X1),X2). When �log2µ� < |X1|, the function
f can be decomposed into two networks: The first one real-
izes h(X1), and the second one realizes g(h,X2). The func-
tional decomposition is effective when the number of inputs
for g is smaller than that of f .

Definition 3.7: Two incompletely specified functions f
and g are compatible, denoted by f ∼ g, iff f 0 ·g 1 = 0 and
f 1 ·g 0 = 0.

Lemma 3.1: Let χa and χb be the characteristic functions
of two incompletely specified functions. If χa ∼ χb and χc =

χaχb, then χc ∼ χa and χc ∼ χb.

Example 3.4: In the decomposition chart of Table 2, for
pairs of column functions {Φ1,Φ2}, {Φ1,Φ3}, and {Φ3,Φ4},

Table 3 Reduction of column multiplicity.

X1 = {x1, x2}
00 01 10 11

00 0 0 1 1
X2 = {x3, x4} 01 1 1 d d

10 1 1 0 0
11 0 0 0 0
Φ∗1 Φ

∗
2 Φ

∗
3 Φ

∗
4

Fig. 3 Decomposition of multiple-output function.

the functions are compatible. Make the logical product of
columns Φ1 and Φ2, and replace them with Φ∗1 and Φ∗2, re-
spectively. Where, Φ∗1 and Φ∗2 show that the functions ob-
tained by assigning constants to don’t cares. Also, make
the logical product of columns Φ3 and Φ4, and replace them
with Φ∗3 and Φ∗4, respectively. Then, we have the decompo-
sition chart in Table 3, where µ = 2.

(End of Example)

The following theorem is similar to, but different from
well known theorem on conventional functional decompo-
sition using BDDs [8], [13]. It is an extension of [15] into
incompletely specified functions.

Theorem 3.1: Let (X1,Y1,X2,Y2) be the variable ordering
of the BDD for CF that represents the incompletely speci-
fied function, where X1 and X2 denote the disjoint ordered
sets of input variables, and Y1 and Y2 denote the disjoint
ordered sets of output variables. Let n2 be the number of
variables in X2, and m2 be the number of variables in Y2.
Let W be the width of the BDD for CF at height n2 +m2.
When counting the width W, ignore the edges that connect
the nodes of output variables and the constant 0. Suppose
that the multiple-output function is realized by the network
shown in Fig. 3. Then, the necessary and sufficient number
of connections between two blocks H and G is �log2 W�.

3.2 Algorithm to Reduce the Width of a BDD for CF

Various methods exist to reduce the number of nodes in
BDDs representing incompletely specified functions [3],
[6], [21]–[23]. In the method [22], for each node, two chil-
dren are merged when the functions represented by them
are compatible. For example, when two children f and g in
Fig. 4(a) are compatible, the BDD is simplified as shown in
Fig. 4(b). By doing this operation repeatedly, we can reduce
the number of nodes in the BDD. The following algorithm
is used in our experiment, which is a simplified version of
[22]. Note that our data structure is a BDD for CF instead
of an SBDD.

†In the case of BDD for CF, we do not count the columns that
consist of all zeros.

MATSUURA and SASAO: BDD REPRESENTATION FOR INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT LOGIC FUNCTIONS
2765

Algorithm 3.1: From the root node of the BDD, do the fol-
lowing operations recursively.

1. If the function represented by node v has no don’t care,
then terminate.

2. For v, check if two children v0 and v1 are compatible.
Let the functions represented by v0 and v1 be χ0 and χ1,
respectively.

• If they are incompatible, then apply this algorithm
to v0 and v1.

• If they are compatible, then replace v0 and v1 with
vnew, where vnew represents χnew=χ0 ·χ1, and apply
this algorithm to vnew.

Example 3.5: Figures 5(a) and (b) show the BDD for CFs
before and after the application of Algorithm 3.1, respec-
tively. When there is only one edge coming down from a
node, it denotes two edges that coincide. In Fig. 5(a), nodes
1 and 2 have compatible two children. For this function, the
node replaced for node 1, and the node replaced for node
2 are the same. So, in Fig. 5(b), two nodes 1 and 2 are re-
placed with node 3. In the figures, the rightmost columns
headed with “Width” denote the widths of the BDDs for
each height. Note that the maximum width is reduced from
8 to 5, and the number of non-terminal nodes is reduced
from 15 to 12. (End of Example)

The method in [22] is effective for local reduction of the
number of nodes. However, since it only considers the com-
patibility of two children for each node at one time, it is not
so effective to reduce the width of the BDD. Thus, in our
method, we check the compatibility of column functions in
each height, and perform the minimal clique cover of the
functions to reduce the width of the BDD.

(a) (b)

Fig. 4 Simplification method in [22].

(a) Before application. (b) After application.

Fig. 5 BDD for CF before and after application of Algorithm 3.1.

Definition 3.8: In a compatibility graph, each node corre-
sponds to a function, and an edge exists between nodes if
the corresponding functions are compatible.

In the functional decomposition, check the compatibility of
the column functions, and construct the compatibility graph.
Then, minimize the column multiplicity µ by finding the
minimum clique cover [3], [23]. Since this problem is NP-
hard [5], we use the following heuristic method.

Algorithm 3.2: (Heuristic Minimal Clique Cover)
Let S a be the set of all the nodes in the compatibility graph.
Let C be the set of subset of S a. From S a, delete isolated
nodes, and put them into C. While S a � φ, iterate the fol-
lowing operations:

1. Let vi be the node that has the minimum number of
edges in S a. Let S i ← {vi}. Let S b be the set of nodes
in S a that are connecting to vi.

2. While S b � φ, iterate the following operations:

a. Let v j be the node that has the minimum edges in
S b. Let S i← S i∪{v j}. S b← S b−{v j}.

b. From S b, delete the nodes that are not connected
to v j.

3. C← C∪{S i}, S a← S a−S i.

Algorithm 3.3: (Reduction of Widths of a BDD for CF)
Let the height of the root node be t, and let the height of the
constant nodes be 0. From the height t− 1 to 1, iterate the
following operations:

1. Construct the set of all the column functions, and con-
struct the compatibility graph.

2. Find the minimum clique cover for the compatibility
graph by Algorithm 3.2.

3. For each clique, make a function by AND operation of
all functions that corresponds the nodes of the clique.

4. For each column function, replace it with the function
produced in step 3, and re-construct the BDD with a
smaller width.

Example 3.6: Figure 6 shows the BDD for CF after ap-
plying Algorithm 3.3 to Fig. 2(b). At the height of x3, nodes
2 and 4 are compatible in Fig. 6(a). So, these nodes are
merged into node a in Fig. 6(b). Next, at the height of y1,
the compatibility graph is shown in Fig. 7. Note that in
Fig. 6(c), nodes 6 and 8 are replaced by node b, and nodes 7
and 10 are replaced by node c. The resulting BDD is shown
in Fig. 6(d). By comparing Figs. 6(a) and (d), we can see
that the maximum width is reduced from 8 to 4, and the
number of non-terminal nodes is reduced from 15 to 12.

(End of Example)

3.3 Reduction of Support Variables

In incompletely specified functions, some variables can be
redundant [14]. In this case, such support variables can
be removed by appropriately assigning values to the don’t
cares. Reduction of the support variables often reduces the

2766
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Fig. 6 Reduction of width of BDD for CF using Algorithm 3.3.

Fig. 7 Compatibility graph.

width of corresponding BDD for CF. Thus, we try to reduce
support variables before applying Algorithm 3.1 or 3.3.

We use a greedy algorithm to reduce support variables.
For each height in the BDD for CF, check whether the vari-
able is redundant or not. Next, if it is redundant, then we
delete the variable by appropriately assigning values to the
don’t cares. We apply the operation from the root to the leaf
nodes.

4. Benchmark Functions

To evaluate the performance of Algorithm 3.3, we used the
following incompletely specified functions.

4.1 Arithmetic Functions [17]

• Residue number to binary number converters.
• p-nary to binary converters.
• Decimal adders and multiplier.

Each of these functions represents a mapping f : P0 ×
P1 × · · · × Pk−1 → Q, where Pi = {0,1, . . . , pi − 1} and Q =
{0,1, . . . ,q−1}. In these benchmark functions, binary-coded-
pi-nary codes are used to represent pi-nary digits. When pi

Fig. 8 Realization of English word list by using LUT cascade and AUX
memory.

is not a power of 2, the pi-nary digit has unused input combi-
nations. In this case, we assign don’t cares to the undefined
outputs. We call such don’t cares as input don’t cares.

Let us consider the ratio of these input don’t cares for
benchmark functions. Note that each digit of a pi-nary num-
ber uses bi = �log2 pi� bits. Thus, the ratio of input don’t

cares is 2bi−pi

2bi
= 1 − pi

2bi
, since each variable uses only pi

combinations out of 2bi . For a benchmark function with k
digits, the ratio of input don’t cares is

1−
k−1∏

i=0

pi

2bi
.

Example 4.7: Consider the 10-digit ternary to binary con-
verter. Assume that binary-coded-ternary is used to repre-
sent a ternary digit: 0 is represented by (00); 1 is represented
by (01); and 2 is represented by (10). (11) is an undefined
input, and the corresponding outputs are don’t cares. Note
that p0 = p1 = p2 = 3, b0 = b1 = b2 = 2, and k = 10. Thus,

only
(

3
4

)10
= 0.0563 of the input combinations are specified,

and the remaining 1−
(

3
4

)10
= 0.9437 of the combinations

are unspecified. (End of Example)

4.2 English Word Lists [19]

We considered logic functions that represent three lists of
English words [19] (Details are shown in Sect. 5.3.). For the
English words consisting of fewer than 8 letters, we append
blanks to the end of words to make them 8-letter words.
Each English alphabet letter is represented by 5 bits, and
each English word is represented by n = 40 bits. The num-
bers of words in the three lists are 1730, 3366, and 4705,
respectively. In each word list, each English word has a
unique index of an integer from 1 to k, where k = 1730 or
3366 or 4705. In this case, the outputs for undefined inputs
are assigned to 0. The numbers of bits to represent the in-
dices are m = 11, 12, and 13, respectively. Such a function
denotes a mapping f : P8→ Q, where P = {0,1, . . . ,26} and
Q = {0,1, . . . ,k}. In this case, the ratio of input don’t cares is

1−
(

27
25

)8
= 0.74.

In the realization shown in Fig. 8 [19], we can replace
the output 0 with don’t care. In this case, the ratio of
don’t cares will be increased to 1− k

240 . Note that for our
benchmark function, only k different input combinations are

MATSUURA and SASAO: BDD REPRESENTATION FOR INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT LOGIC FUNCTIONS
2767

mapped to integers from 1 to k, and other (2n−k) input com-
binations are mapped to don’t cares. In Fig. 8, an English
word list is implemented by using LUT cascades and an aux-
iliary memory [19]. The auxiliary memory checks whether
output is correct or not. With this method, we can drastically
reduce the size of the cascade.

5. Experimental Results

5.1 Reduction of BDD Width

We applied Algorithms 3.1 and 3.3 to each of the incom-
pletely specified function presented in Sect. 4, and reduced
the widths of the BDD for CF. Before applying algorithms,
we optimized the order of the variables in the BDD for CF
by sifting algorithm [12], where the sum of the widths is
used as the cost function.

When all the output functions are represented by a
single BDD for CF, the circuits were too large to imple-
ment. Handling many outputs at a time makes it difficult
to find 0-1 assignments that simplify the BDD for CF. On
the other hand, splitting outputs makes it easier to find 0-1
assignment to don’t cares. However splitting all the out-
puts into single will conflict the optimization of multiple-
output function. Similar things happen in the minimization
of sum-of-products expressions for multiple-output func-
tions. So, we partitioned the outputs into two sets, and
represented each of them by a BDD for CF separately. Ta-
ble 4 shows the maximum widths of the BDD for CF and

Table 4 Maximum width and number of nodes in BDD for CF.

Function In Out DC Maximum width # of nodes Time [Sec]
[%] DC=0 DC=1 ISF Alg3.1 Alg3.3 DC=0 DC=1 ISF Alg3.1 Alg3.3 Alg3.1 Alg3.3

5-7-11-13 RNS 14 13 69.5 426 426 426 425 395 2208 2220 2214 1983 1906 0.011 0.156
375 375 375 374 320 2022 2022 2028 1742 1741

7-11-13-17 RNS 16 15 74.0 450 450 450 449 316 2974 2985 2978 2444 2316 0.033 0.562
897 897 897 896 896 4730 4730 4737 4254 4073

11-13-15-17 RNS 17 16 72.2 1259 1259 1259 1258 777 6830 6845 6838 6271 4576 0.063 2.437
2143 2144 2144 2143 1231 9870 9871 9877 9019 7114

4-digit 11-nary to binary 16 14 77.7 117 117 117 116 115 1223 1227 1223 1086 1203 0.017 0.094
256 256 257 256 128 1931 1931 1935 1582 1328

4-digit 13-nary to binary 16 15 56.4 226 226 226 225 224 2293 2299 2293 2150 2288 0.031 0.078
257 257 257 256 128 2231 2231 2235 1821 1456

5-digit 10-nary to binary 20 17 90.5 393 393 393 392 391 3260 3267 3260 2794 3251 0.032 0.154
257 257 78 76 64 2322 2322 593 527 439

6-digit 5-nary to binary 18 14 94.0 134 134 134 133 129 1442 1445 1442 1215 1432 0.030 0.063
257 257 257 256 128 1875 1875 1878 1373 1337

6-digit 6-nary to binary 18 16 82.2 185 185 189 188 184 1310 1317 1367 1185 1328 0.032 0.015
257 257 89 64 32 1849 1849 445 299 307

6-digit 7-nary to binary 18 17 55.1 464 464 464 463 463 4917 4923 4917 4566 4826 0.093 0.421
513 513 513 512 256 4723 4723 4726 3901 3177

10-digit 3-nary to binary 20 16 94.4 265 265 265 264 240 2814 2819 2814 2342 2782 0.063 0.328
513 513 513 512 256 4005 4005 4007 2842 2961

3-digit decimal adder 24 16 94.0 27 27 14 13 10 187 207 129 93 109 0.046 0.000
200 101 14 13 10 1643 1035 125 95 108

4-digit decimal adder 32 20 97.7 79 79 14 13 10 487 509 176 128 152 2.875 0.015
1398 649 14 13 10 10047 5764 177 136 160

2-digit decimal multiplier 16 16 84.7 945 946 955 945 945 3013 3020 3035 2716 2980 0.014 0.124
499 505 193 192 192 2776 2790 1330 1193 1257

1730 words 40 11 99.9 866 901 735 383 100 16900 17321 9433 1140 954 0.031 0.486
834 836 843 427 149 16616 16670 11478 1698 2121

3366 words 40 12 99.9 1322 1337 1325 634 192 17534 17710 14931 1990 2205 0.063 1.704
1709 1713 1729 975 441 25434 25446 21510 3428 4729

4705 words 40 13 99.9 2025 2042 1895 751 213 33556 33923 27484 2438 2255 0.078 2.673
2188 2185 2182 1161 385 40627 40506 35159 4561 6027

Ratio 1.000 0.970 0.833 0.735 0.540 1.000 0.982 0.807 0.580 0.583

the number of nodes when the multiple-output function
F = (f1, . . . , fm) is partitioned into two: F1 = (f1, . . . , f�m/2�)
and F2 = (f�m/2�+1, . . . , fm). The upper numbers denote the
values for F1, and the lower numbers denote the values for
F2.

In the table, the column headed by In denotes the num-
ber of inputs; Out denotes the number of outputs; DC de-
notes the ratio of don’t cares; DC = 0 denotes the case where
constant 0’s were assigned to all the don’t cares; DC = 1 de-
notes the case where constant 1’s were assigned to all the
don’t cares; ISF denotes the case where incompletely spec-
ified functions (ternary functions) were represented; Alg3.1
denotes the case where Algorithm 3.1 was applied; Alg3.3
denotes the case where Algorithm 3.3 was applied; and
Time denotes the computation time for Algorithms 3.1 and
3.3. Reduction ratio was normalized to 1.00 for the case of
DC = 0.

By partitioning the outputs into two sets, we could
drastically reduce the sizes of the BDDs for all the func-
tions. For some functions, the maximum width of the BDD
became less than 1/100 of the original BDD, and the total
number of nodes became less than 1/30. With bi-partitions
of outputs, we could implement the circuits with reasonable
sizes.

Table 4 shows that Algorithm 3.3 produced BDDs with
smaller widths than Algorithm 3.1, especially for F2, the
outputs for the least significant bits. Algorithm 3.1 checks
only the compatibility of two children for each node, and
reduces the number of nodes locally. On the other hand, Al-

2768
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Table 5 Reduction of LUT cascades by using don’t cares.

Function DC=0 Alg3.3
#Cel #LUT #Cas #Cel #LUT #Cas

5-7-11-13 RNS 6 35 3 4 29 2
7-11-13-17 RNS 9 53 3 8 50 3
11-13-15-17 RNS − − − 24 118 8
4-digit 11-nary to binary 4 29 2 4 28 2
4-digit 13-nary to binary 4 31 2 4 30 2
5-digit 10-nary to binary 8 50 3 6 48 2
6-digit 5-nary to binary 6 44 2 5 35 2
6-digit 6-nary to binary 5 33 2 4 29 2
6-digit 7-nary to binary 9 62 3 8 54 3
10-digit ternary to binary 9 58 3 6 48 2
3-digit decimal adder 6 35 2 3 17 1
4-digit decimal adder 9 62 2 4 24 1
2-digit decimal multiplier 8 51 3 7 48 3

gorithm 3.3 checks compatibilities among all the functions
for each height of a BDD, to reduce the width more effec-
tively. Let w be the width of the BDD, then the algorithm
checks (w2−w)/2 compatibilities. Also, Algorithm 3.3 finds
the minimal clique cover, so it is more time-consuming than
Algorithm 3.1.

We used gcc version 3.2 compiler on a PC having
Athlon64 (2.6 GHz) with 2 GByte memory. The longest
CPU times were as follows: When all the outputs were rep-
resented by a single BDD for CF: 110 sec (the list of 4705
English words) to generate BDD for CF. 2433 sec (6-digit
7-nary to binary converter) to reduce the width of the BDD.
When the outputs are bi-partitioned: 3.2 sec (11-13-15-17
RNS) to generate a pair of BDD for CFs. 2.4 sec (11-13-
15-17 RNS) to reduce the widths of BDD for CFs.

5.2 Optimization of LUT Cascades

In the functional decomposition, when the width of the BDD
is slightly larger than 2k, by properly assigning the constants
to don’t cares, we can often reduce the width of the BDD,
and reduces the number of interconnections between two
blocks H and G in Fig. 3.

To see the usefulness of Algorithm 3.3, we designed
benchmark functions in Sect. 4 by LUT cascades [15]. Ta-
ble 5 shows the sizes of LUT cascades. For benchmark func-
tions, we used cells with at most 12 inputs and at most 8
outputs to implement the cascades [11]. In Table 5, #Cel
denote the number of cells in the cascade; #LUT denotes to-
tal number of LUT outputs; and #Cas denotes the number
of cascades. The symbol ‘−’ shows that the function could
not be realized by LUT cascades.

For example, consider 5-7-11-13 RNS. In this function,
69.5% of the input combinations are don’t cares. Figure 9(a)
shows the case where constant 0’s were assigned to all the
input don’t cares, while Fig. 9(b) shows the case where Al-
gorithm 3.3 was used to assign don’t cares. Algorithm 3.3
produced smaller cascades: On the average, the total num-
bers of cells is reduced by 22.4%, the total number of cell
outputs is reduced by 17.9%, and the total numbers of cas-
cades is reduced by 16.7%. We also designed cascades by
using Algorithm 3.1. In this case, the reduction rates were,
16.4%, 14.6%, and 13.9%, respectively. So, Algorithm 3.1
was not so effective as Algorithm 3.3.

(a) When 0’s were assigned to all the don’t cares.

(b) When Algorithm 3.3 was used to assign don’t cares.

Fig. 9 5-7-11-13 RNS to binary number converters.

Table 6 Realization of English word lists.

Design # of #Cel #LUT #Cas #RV MemBits
Method words LUT AUX

1730 26 237 2 0 954,624 0
DC=0 3366 60 475 6 0 1,892,416 0

4705 132 1094 12 0 4,279,936 0
1730 5 36 1 9 110,592 81,920

Fig. 8 3366 11 77 2 9 258,048 163,840
4705 14 100 2 3 310,272 327,680

5.3 Realization of English Word Lists by LUT Cascade
and Auxiliary Memory

We designed English word lists by the architecture in Fig. 8.
Although this architecture requires the auxiliary memory
with n2m bits, we can drastically reduce the number of cells
and number of memory bits for LUT cascades. Hence, we
have a faster circuit. By replacing the output 0 with don’t
care, we often have a function with redundant variables. If
the cascade consists of a single memory, reduction of i vari-
ables reduces the size of memory into 1

2i .
Table 6 shows the size of LUT cascades and auxiliary

memory. In Table 6, DC = 0 denotes the case where circuits
were designed by only LUT cascades; Fig. 8 denotes the
case where circuits were designed by architecture in Fig. 8;
#Cel denote the number of cells in the cascade; #LUT de-
notes total number of LUT outputs; #Cas denotes the num-
ber of cascades; #RV denotes the number of redundant vari-
ables; LUT in MemBits denotes the total memory bits for
LUT cascades; and AUX in MemBits denotes the memory
bits for a auxiliary memory. To implement the cascade, the
case of DC=0 requires 12-input 10-output cells. Thus, we
used cells with at most 12 inputs and at most 10 outputs.

Table 6 shows that the total number of LUT outputs
is reduced by 83.8% to 90.9%; the total number of cells is
reduced by 80.8% to 89.4%; the number of memory bits
for LUT cascades is reduced by 86.4% to 92.8%; and the
number of memory bits including the auxiliary memory is
reduced by 77.7% to 85.1%. We could remove 9 variables
for the lists of 1730 word and 3366 word, and could remove
3 variables for the lists of 4705 word.

6. Concluding Remarks

In this paper, we first showed a new method to repre-
sent an incompletely specified multiple-output function by

MATSUURA and SASAO: BDD REPRESENTATION FOR INCOMPLETELY SPECIFIED MULTIPLE-OUTPUT LOGIC FUNCTIONS
2769

a BDD for CF. Second, we presented a method to reduce
the width of the BDD. Third, we applied this method to
radix converters, adders, a multiplier, and lists of English
words. When all the outputs were represented by a single
BDD for CF, we could not reduce the width of the BDD
even if we use the don’t cares. However, when the outputs
were partitioned into two sets, and each set was represented
by a BDD for CF, we could reduce the width of the BDD
by using don’t cares. We also applied this method to design
LUT cascades. By using the method, we could reduce the
numbers of cells in cascades, on the average, by 22.4%.

Acknowledgments

This research is supported in part by Grant in Aid for Sci-
entific Research of MEXT, and Grant of Kitakyushu Area
Innovative Cluster Project.

References

[1] R.L. Ashenhurst, “The decomposition of switching functions,” Inter-
national Symposium on the Theory of Switching, pp.74–116, April
1957.

[2] P. Ashar and S. Malik, “Fast functional simulation using branching
programs,” Int. Conf. on CAD, pp.408–412, Nov. 1995.

[3] S. Chang, D. Cheng, and M. Marek-Sadowska, “Minimizing
ROBDD size of incompletely specified multiple output functions,”
European Design & Test Conf., pp.620–624, 1994.

[4] K. Cho and R.E. Bryant, “Test pattern generation for sequential
MOS circuits by symbolic fault simulation,” Design Automation
Conference, pp.418–423, June 1989.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability, Free-
man, San Francisco, 1979.

[6] Y. Hong, P. Beerel, J. Burch, and K. McMillan, “Safe BDD
minimization using don’t cares,” Design Automation Conference,
pp.208–213, 1997.

[7] I. Koren, Computer Arithmetic Algorithms, 2nd ed., A.K. Peters,
Natick, MA, 2002.

[8] Y.-T. Lai, M. Pedram, and S.B.K. Vrudhula, “BDD based decompo-
sition of logic functions with application to FPGA synthesis,” De-
sign Automation Conference, pp.642–647, 1993.

[9] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision dia-
gram with attributed edges for efficient Boolean function manipula-
tion,” Design Automation Conference, pp.52–57, June 1990.

[10] A. Mishchenko and T. Sasao, “Encoding of Boolean functions and
its application to LUT cascade synthesis,” International Workshop
on Logic and Synthesis 2002, pp.115–120, New Orleans, Louisiana,
June 2002.

[11] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K. Yoshizumi,
H. Qin, and Y. Iguchi, “Programmable logic device with an 8-stage
cascade of 64K-bit asynchronous SRAMs,” Cool Chips VIII, IEEE
Symposium on Low-Power and High-Speed Chips, pp.382–389,
April 2005.

[12] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” International Conference on Computer Aided Design,
pp.42–47, Nov. 1993.

[13] T. Sasao, “FPGA design by generalized functional decomposition,”
in Logic Synthesis and Optimization, pp.233–258, Kluwer Aca-
demic Publisher, 1993.

[14] T. Sasao, “On the number of dependent variables for incompletely
specified multiple-valued functions,” International Symposium on
Multiple-Valued Logic, pp.91–97, May 2000.

[15] T. Sasao and M. Matsuura, “A method to decompose multiple-output
logic functions,” Design Automation Conference, pp.428–433, San

Diego, June 2004.
[16] T. Sasao, “Radix converters: Complexity and implementation

by LUT cascades,” International Symposium on Multiple-Valued
Logic, pp.256–263, May 2005.

[17] T. Sasao and M. Matsuura, “BDD representation for incom-
pletely specified multiple-output logic functions and its applica-
tions to functional decomposition,” Design Automation Conference,
pp.373–378, June 2005.

[18] Available at http://www.lsi-cad.com/dac2005
[19] T. Sasao, “A design method of address generators using hash memo-

ries,” International Workshop on Logic and Synthesis, pp.102–109,
June 2006.

[20] M. Sauerhoff and I. Wegener, “On the complexity of minimizing
the OBDD size for incompletely specified functions,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.15, no.11, pp.1435–
1437, 1996.

[21] C. Scholl, “Multi-output functional decomposition with exploitation
of don’t cares,” Design Automation and Test Europe, pp.743–748,
Feb. 1998.

[22] T.R. Shiple, R. Hojati, A.L. Sangiovanni-Vincentelli, and R.K.
Brayton, “Heuristic minimization of BDDs using don’t cares,” De-
sign Automation Conference, pp.225–231, 1994.

[23] W. Wan and M.A. Perkowski, “A new approach to the decomposi-
tion of incompletely specified functions based on graph-coloring and
local transformations and its application to FPGA mapping,” IEEE
EURO-DAC’92, pp.230–235, Hamburg, Sept. 1992.

Munehiro Matsuura was born on 1965
in Kitakyushu City, Japan. He studied at the
Kyushu Institute of Technology from 1983 to
1989. He received the B.E. degree in Natu-
ral Sciences from the University of the Air, in
Japan, 2003. He has been working as a Tech-
nical Assistant at the Kyushu Institute of Tech-
nology since 1991. He has implemented several
logic design algorithms under the direction of
Professor Tsutomu Sasao. His interests include
decision diagrams and exclusive-OR based cir-

cuit design.

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in Electronics Engineering
from Osaka University, Osaka Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, IBM T. J. Watson Research Center, York-
town Height, NY and the Naval Postgraduate
School, Monterey, CA. He has served as the Di-
rector of the Center for Microelectronics Sys-
tems at the Kyushu Institute of Technology,
Iizuka, Japan. Now, he is a Professor of De-

partment of Computer Science and Electronics. His research areas include
logic design and switching theory, representations of logic functions, and
multiple-valued logic. He has published more than 8 books on logic de-
sign including, Logic Synthesis and Optimization, Representation of Dis-
crete Functions, Switching Theory for Logic Synthesis, and Logic Synthe-
sis and Verification, Kluwer Academic Publishers 1993, 1996, 1999, 2002
respectively. He has served Program Chairman for the IEEE International
Symposium on Multiple-Valued Logic (ISMVL) many times. Also, he was
the Symposium Chairman of the 28th ISMVL held in Fukuoka, Japan in
1998. He received the NIWA Memorial Award in 1979, Takeda Techno-
Entrepreneurship Award in 2001, and Distinctive Contribution Awards
from IEEE Computer Society MVL-TC for papers presented at ISMVLs,
in 1987, 1996, 2003. He has served an associate editor of the IEEE Trans-
actions on Computers. He is a Fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

