
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.6 JUNE 2007
905

PAPER

Design Methods of Radix Converters Using Arithmetic
Decompositions

Yukihiro IGUCHI†a), Tsutomu SASAO††b), and Munehiro MATSUURA††c), Members

SUMMARY In arithmetic circuits for digital signal processing, radixes
other than two are often used to make circuits faster. In such cases, radix
converters are necessary. However, in general, radix converters tend to
be complex. This paper considers design methods for p-nary to binary
converters. First, it considers Look-Up Table (LUT) cascade realizations.
Then, it introduces a new design technique called arithmetic decomposi-
tion by using LUTs and adders. Finally, it compares the amount of hard-
ware and performance of radix converters implemented by FPGAs. 12-digit
ternary to binary converters on Cyclone II FPGAs designed by the proposed
method are faster than ones by conventional methods.
key words: radix converter, LUT cascades, FPGA, functional decomposi-
tion

1. Introduction

Arithmetic operations of digital systems usually use radix
two [9]. However, in digital signal processing, for high
speed operations, p-nary (p > 2) numbers are often
used [2], [6]. In such cases, conversions between binary
numbers and p-nary numbers are necessary. Such an opera-
tion is called radix conversion [3], [8]. Various methods ex-
ist to convert p-nary numbers into binary numbers. Many of
them require large amount of computation. Especially when
the radix conversion is implemented by a random logic cir-
cuit, the network tends to be quite complex [7]. Radix con-
verters can be implemented by table lookup. That is, to store
the conversion table in the memory. This method is fast but
requires a large memory.

In [11], LUT cascade realizations [10] of binary to
ternary converters, ternary to binary converters, binary to
decimal converters, and decimal to binary converters are
presented. In [13], the concept of weighted-sum functions
(WS functions) is used to design radix converters by using
LUT cascades.

In this paper, we consider the design of circuits that
convert p-nary numbers into binary numbers by using arith-
metic decomposition [12]. We also consider the implemen-
tations on field programmable gate arrays (FPGAs). For
readability, we use examples for p = 3, however the meth-

Manuscript received August 28, 2006.
Manuscript revised February 1, 2007.
†The author is with the Department of Computer Science,

Meiji University, Kawasaki-shi, 214–8571 Japan.
††The authors are with the Department of Computer Science

and Electronics, Kyushu Institute of Technology, Iizuka-shi, 820–
8502 Japan.

a) E-mail: iguchi@cs.meiji.ac.jp
b) E-mail: sasao@cse.kyutech.ac.jp
c) E-mail: matsuura@cse.kyutech.ac.jp

DOI: 10.1093/ietisy/e90–d.6.905

ods can be easily extended to any prime number p.
A preliminary version of this paper was presented at

ISMVL-2006 [4].

2. Radix Converter

2.1 Radix Conversion

Definition 1: Let a p-nary number of n-digit be �x =
(xn−1, xn−2, . . . , x0)p, and let a q-nary number of m-digit be
�y = (ym−1, ym−2, . . . , y0)q. Given a vector �x, the radix con-
version is the operation to obtain�y that satisfies the relation:

n−1∑

i=0

xi p
i =

m−1∑

j=0

y jq
j, (1)

where xi ∈ P, y j ∈ Q, P = {0, 1, . . . , p − 1}, and Q =
{0, 1, . . . , q − 1}.

Let �y = (ym−1, ym−2, . . . , y0)2, yi ∈ {0, 1} be the out-
put functions of p-nary to binary converter. Then, when
p is a prime number, yi depends on all the inputs xi (i =
0, 1, . . . , n − 1). When p is not a power of two, we have
an incompletely specified function. When we implement a
p-nary to binary converter, unused combinations exist. Usu-
ally, we assign 0s to the undefined outputs.

Example 1: In the case of a ternary to binary converter,
we use the binary-coded-ternary code to represent a ternary
number. That is, 0 is represented by (00), 1 is represented
by (01), and 2 is represented by (10). Note that (11) is the
unused code. Table 1 is the truth table of a two-digit ternary
to binary converter. In the binary-coded-ternary representa-
tion, (11) is an undefined input, and the corresponding out-
put is don’t care. In Table 1, the inputs in the binary-coded-
ternary representation are denoted by �z = (z3, z2, z1, z0).

Table 1 Truth table of a ternary to binary converter.

Binary-coded Ternary Binary Decimal
-ternary

z3 z2 z1 z0 x1 x0 y3 y2 y1 y0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 1
0 0 1 0 0 2 0 0 1 0 2
0 1 0 0 1 0 0 0 1 1 3
0 1 0 1 1 1 0 1 0 0 4
0 1 1 0 1 2 0 1 0 1 5
1 0 0 0 2 0 0 1 1 0 6
1 0 0 1 2 1 0 1 1 1 7
1 0 1 0 2 2 1 0 0 0 8

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

906
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.6 JUNE 2007

The inputs in the ternary representations are denoted by
�x = (x1, x0). The output in the binary representations are
denoted by �y = (y3, y2, y1, y0). (End of Example)

2.2 Direct Method

2.2.1 Realization by Random Logic

A straightforward way to implement a radix converter is to
apply a logic synthesis tool directly to Eq. (1).

Example 2: Consider the 8-digit ternary to binary con-
verter (8ter2bin). In this case, we realize

37x7+36x6+35x5+34x4+33x3+32x2+31x1+30x0. (2)

Figure 1 shows the circuit for 8ter2bin produced by a logic
synthesis tool. Note that 32x2 is implemented as 8x2+x2 and
31x1 is implemented as 2x1+ x1, but 3ixi (i = 3, 4, . . . , 7) are
implemented by multipliers. Also, a cascade adder is used
to obtain the result. Since the coefficients are constants, the
multipliers can be replaced by adders. However, the wiring
of resulting circuit is rather complex. (End of Example)

2.2.2 Realization by a Single Memory

The simplest realization uses a single memory that stores the
truth table of the radix converter.

A p-nary number of n-digit takes values from 0 to pn −
1. A binary number requires m = �log2(pn−1)� bits to repre-
sent the number. When the input is represented by a binary-
coded p-nary number, let d be the number of bits for an input
digit. Then, we have the relation: d = �log2 p�. In this pa-
per, we will consider networks that convert p-nary numbers

Fig. 1 8-digit ternary to binary converter: Direct method.

Fig. 2 n-digit p-nary to binary converter: A single memory realization.

into binary numbers, where each input is represented by a
binary-coded p-nary number. Let SIZE(n, p) be the number
of bits to realize the network by a single memory. We have
the relation: SIZE(n, p) = 2�log2 p�·n · �log2(pn − 1)�.

Figure 2 shows the network that converts n-digit
binary-coded p-nary numbers into binary numbers.

Example 3: An 8-digit ternary to binary converter takes
the range [0, 38 − 1] = [0, 6560]. The number of bits in
the output is m = �log2 6560� = 13. When it is real-
ized by a single memory, the necessary number of bits is
SIZE(8, 3) = 22·8 · 13 = 851,968. (End of Example)

When the number of digits for the radix converter is
large, the memory will be huge.

3. LUT Cascade Realization and WS Function

In a direct realization of a p-nary to binary converter, the
amount of hardware and the propagation delay increase with
the number of input digits. To reduce the amount of hard-
ware, LUT cascades realizations are used in [11], where out-
puts are partitioned into groups, and each group is synthe-
sized by using functional decomposition.

From here, we will consider LUT cascades realization
without partitioning outputs.

3.1 LUT Cascade Realization of a Radix Converter

A single memory realization of a radix converter is sim-
ple, but requires a large memory. We can reduce the to-
tal amount of memory by decomposing the memory. First,
we consider the method to decompose the memory into M0

and M1, shown in Fig. 3. In Fig. 3, the lower k-digits of a
binary-coded p-nary number are connected to the inputs of
M0. Outputs from M0 and the upper n− k digits of the input
are connected to the inputs of M1. Outputs of M1 represent
the converted binary number.

By using the functional decomposition theory [9], we
can decide such realization is possible or not.

Definition 2: Consider the function f (�X) : Pn → Q, where
P = {0, 1, . . . , p − 1} and Q = {0, 1, . . . , q}. Let (�XH , �XL)
be a partition of �X, where �XH = (X0, X1, . . . , Xk−1) and
�XL = (Xk, Xk+1, . . . , Xn−1). The decomposition chart for f
is a two-dimensional matrix, where the column labels have
all possible assignments of elements of X to �XH , the row la-
bels have all possible assignments of elements of X to �XL,

Fig. 3 m-digit p-nary to binary converter: LUT cascade method.

IGUCHI et al.: DESIGN METHODS OF RADIX CONVERTERS USING ARITHMETIC DECOMPOSITIONS
907

and the corresponding matrix value is equal to f (�XH , �XL).
The one whose column label values and row label values in-
crease when the label moves from left to right, and from top
to bottom, is the standard decomposition chart. The number
of different column patterns in the decomposition chart is
the column multiplicity.

Note that in an ordinary decomposition chart, the parti-
tions of variables and the order of labels in the columns and
rows are arbitrary. However, in the standard decomposition
chart, the labels of the columns are in increasing order of
�XH = (X0, X1, . . . , Xk−1), and the labels of the rows are in
increasing order of �XL = (Xk, Xk+1, . . . , Xn−1) [11].

Lemma 1: Consider the function f (�X) that represents the
conversion from p-nary numbers into binary numbers. The
column multiplicity of the standard decomposition chart for
f (�X) is pk, where (�XH, �XL) is the partition of �X, and the
number of variables in �XH is k.
(Proof) In the standard decomposition chart for f , when
we move from the left to the right, all values increase by
one, and all values are different each other. The number of
columns of this decomposition chart is pk, and all columns
have different patterns. Therefore, we have the lemma.

(Q.E.D.)

Example 4: Consider the converter from 4-digit ternary
numbers into 7-digit binary numbers. Table 2 shows a stan-
dard decomposition chart of it. (End of Example)

3.2 WS Functions

The weighted sum function (WS function) is a mathematical
model of radix converters, bit-counting circuits, and convo-
lution operations [12], [13].

Definition 3: An n-input WS function [13] is defined as

WS(�x) =
n−1∑

i=0

wi · xi, (3)

where �x = (xn−1, xn−2, . . . , x1, x0) is the input vector, �w =
(wn−1,wn−2, . . . ,w1,w0) is the weight vector, and each ele-
ment is an integer.

Table 2 Standard decomposition chart for a function of 4-digit ternary
to binary conversion.

0 0 0 1 1 1 2 2 2 X1 �XH�XL 0 1 2 0 1 2 0 1 2 X0
X3 X2

0 0 0 1 2 3 4 5 6 7 8
0 1 9 10 11 12 13 14 15 16 17
0 2 18 19 20 21 22 23 24 25 26
1 0 27 28 29 30 31 32 33 34 35
1 1 36 37 38 39 40 41 42 43 44
1 2 45 46 47 48 49 50 51 52 53
2 0 54 55 56 57 58 59 60 61 62
2 1 63 64 65 66 67 68 69 70 71
2 2 72 73 74 75 76 77 78 79 80

In this paper, we represent a radix converter with a WS
function, where inputs are represented by binary-coded p-
nary numbers. From here, unless otherwise noted, wi and xi

denote non-negative integers.

Definition 4: Let MINn (MAXn) be the minimum (maxi-
mum) number represented by an n-variable WS function
WS(�x) =

∑n−1
i=0 wixi, where wi ≥ 0, xi ∈ {0, 1, . . . , p − 1},

and p ≥ 2.

When all the input xi are 0’s, a WS function takes the
minimum value, MINn = WS(0, 0, . . . , 0) = 0. When all the
input xi are p−1, the WS function takes the maximum value,
MAXn = WS(p − 1, p − 1, . . . , p − 1) =

∑n−1
i=0 {wi · (p − 1)} =

(p − 1)
∑n−1

i=0 wi.

Definition 5: Given i < j, [i, j] denotes the set of integers,
{i, i + 1, . . . , j}.

Next, we will consider the range of WS functions.

Definition 6: Range(f (x)) denotes the range of a function
f (x).

Example 5: For WS1(�x) = x0 + 3x1, and xi ∈ {0, 1, 2},
we have Range(x0) = {0, 1, 2}, and Range(3x1) = {0, 3, 6}.
Therefore, Range(WS 1(�x)) = {0, 1, 2, 3, 4, 5, 6,7, 8} =
[0, 8]. On the other hand, for WS2(�x) = x0 + 4x1,
and xi ∈ {0, 1, 2}, we have Range(x0) = {0, 1,2}, and
Range(4x1) = {0, 4,8}. Therefore, Range(WS2(�x)) =
{0, 1, 2, 4, 5, 6, 8,9, 10} � [0, 10]. For WS3(�x) = x0 + 2x1,
and xi ∈ {0, 1, 2}, we have Range(x0) = {0, 1,2}, and
Range(2x1) = {0, 2, 4}. Therefore, Range(WS 3(�x)) =
{0, 1, 2, 3, 4, 5, 6} = [0, 6]. (End of Example)

Example 5 shows that Range(WS(�x)) = [0,MAXn]
holds in some cases and does not in other cases. It depends
on the combinations of values of wi. In the case of WS2(�x) =
x0 + 4x1, MIN = 0, and MAX = 2(1 + 4) = 10. Because the
number of values for xi is 3, WS2(�x) takes at most 32 = 9
different values. Therefore, Range(WS2(�x)) � [0, 10].

Lemma 2: The number of values produced by a WS func-
tion, WS(�x), is at most pn, where WS(�x) =

∑n−1
i=0 wixi, wi ≥ 0,

xi ∈ {0, 1, . . . , p − 1}, and p ≥ 2.
(Proof) Since the cardinality of the domain is pn, the cardi-
nality of the range is at most pn. (Q.E.D.)

The next theorem shows the necessary and sufficient
condition for Range(WS(�x)) = [0,MAXn].

Theorem 1: Consider a WS function WS(�x) =
∑n−1

i=0 wi xi,
wi ≥ 0, xi ∈ {0, 1, . . . , p − 1}, and p ≥ 2. The necessary
and sufficient condition for Range(WS(�x)) = [0,MAXn] is
w0 = 1 and wi ≤ MAXi + 1.
(Proof) Assume that the elements of the weight vector are
arranged in the ascending order.

First, we will show the sufficiency. Consider the one-
variable function, WS(�x) = w0 x0. When w0 = 1, MAX1 =

p−1. Since WS(�x) takes all the values in [0, p−1], therefore,
the theorem holds.

Next, assume that the theorem holds for k-variable WS

908
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.6 JUNE 2007

function, WSk(�x) =
∑k−1

i=0 wi xi. That is if w0 = 1 and wi < wj

(i < j) then Range(WSk(�x)) = [0,MAXk], where i < j ≤ k,
and MAXk = (p − 1)

∑k−1
i=0 wi.

Then, consider the (k + 1)-variable WS func-
tion, WSk+1(�x) =

∑k
i=0 wixi. Note that WSk+1(�x) =∑k

i=0 wi xi = (
∑k−1

i=0 wi xi) + (wk xk). Since, Range(wk xk) =
{0,wk, 2wk, . . . , (p − 1)wk}, the range for WSk+1(�x) =∑k

i=0 wi xi is [0,MAXk] ∪ [wk,wk + MAXk] ∪ [2wk, 2wk +

MAXk]∪· · ·∪[(p−1)wk, (p−1)wk+MAXk]. From the hypoth-
esis of induction, we have wk ≤ MAXk + 1. Hence, we have
Range(WSk+1(�x)) = [0, (p− 1) ·wk +MAXk] = [0,MAXk+1].
Thus, the theorem holds.

Next, we will show the necessity. If w0 ≥ 2, MAX1 =

(p−1)w0. On the other hand, since x0 can take only p values,
Range(WS(�x)) � [0,MAXn]. If wi > MAXi+1, WS(�x) cannot
represent MAXi+1. Therefore, Range(WS(�x)) � [0,MAXn].
Hence, we have the theorem. (Q.E.D.)

Corollary 1: WS(�x) =
∑n−1

i=0 pixi takes all the value in
[0, pn − 1].
(Proof) w0 = p0 = 1, MAXk =

∑k−1
i=0 (pi(p − 1)) = (p −

1)
∑k−1

i=0 pi = (p−1) pk−1
p−1 = pk−1. Since wk = pk = MAXk+1,

Range(WS(�x)) = [0, pn − 1] by Theorem 1. (Q.E.D.)

From here, we will consider LUT cascade realizations
for radix converter, where total amount of memory is the
minimum. Figure 4 shows an LUT cascade realization of an
n-digit p-nary to binary converter, where each LUT has only
one external input xi. In this case, i-th LUT (0 ≤ i ≤ n − 1)
produces values in [0, pi+1 − 1], ri = �(i + 1) log2 p�-output
lines is necessary and sufficient. To find the minimum cas-
cades, we have to consider the cases where adjacent LUTs
are merged and not. The number of different combinations
is 2n−1. In this case, input variable xi incidents to each LUTi.
Each LUT has d = �log2 p� two-valued inputs. With these
constraints, we have 2n−1 combinations for all LUT cascades
realizations.

Theorem 2: Under the fixed variable ordering, we can ob-
tain the minimum LUT cascade realization of n-digit radix
converter by checking at most 2n−1 combinations. (Proof :
Omitted)

Example 6: Figure 5 shows all possible realizations of a 4-
digit ternary to binary converter by LUT cascades. We have
24−1 = 8 different realizations shown in Fig. 5 (0) – (7). The
number in each LUT denotes the size of memory.

(0) is the realization using 4 LUTs, where the total
amount of memory is 8+64+320+896 = 1288 (bits). (1) is

Fig. 4 LUT cascade realization of a radix converter.

obtained by merging the leftmost two LUTs in (0). (7) is ob-
tained by merging all the LUTs in (0). Among these 8 com-
binations, (3) is the minimum realization. (End of Example)

The next lemma shows a method to detect mergible
LUTs in an LUT cascade.

Lemma 3: Consider the LUT cascade in Fig. 6, where
LUT H has k-input and k-output. In this case, without
loss of minimality, LUTs H and G can be merged into G’.
(Proof : Omitted)

By using Lemma 3, we can find the mergible LUTs,
and reduce the number of combinations to find the minimum
LUT cascades. In the case of Example 6, we can see that the
leftmost two LUTs in (0) can be merged, to obtain the LUT
cascade in (1). Next, by merging the leftmost two LUTs in
(1), we have the LUT cascade in (3). In (3), the number
of LUTs is two. So, we need only to consider the cascades
where these two LUTs are merged and not.

The next algorithm finds the LUT cascade for the radix
converters with the minimum amount of memory.

Fig. 5 All possible LUT cascade realizations for 4ter2bin.

Fig. 6 Mergible LUT.

IGUCHI et al.: DESIGN METHODS OF RADIX CONVERTERS USING ARITHMETIC DECOMPOSITIONS
909

Fig. 7 8-digit ternary to binary converter: LUT cascade realization.

Algorithm 1:
1. Obtain the LUT cascade for the radix converter where

LUTi has only one external input xi, (i = 0, 1, . . . , n−1).
2. Apply Lemma 3, and merge the LUT whose number

of inputs is equal to the number of outputs with the
succeeding LUT to make a new LUT, and produce the
data for a new LUT. Iterate this step while we can.

3. Let s be the number of LUTs in the LUT cascade ob-
tained by the previous step. The number of combina-
tions to merge adjacent LUTs or not is 2s−1. Calculate
the sizes of these cascades, and select the LUT cascade
that has the minimum memory among 2s−1 realizations.

Example 7: Figure 7 (a) and (b) show two LUT cascade
realizations for 8ter2bin shown in Example 3. While
a single memory realization needs 851,968-bit memory,
Fig. 7 (a) requires 427,776 bits, and Fig. 7 (b) requires only
221,184 bits.

By partitioning outputs into plural groups, we can re-
alize radix converters with plural LUT cascades [11]. This
method uses binary decision diagrams to find functional de-
compositions. Example 8 shows LUT cascades realizations
obtained by partitioning outputs.

Example 8: Realize an 8-digit ternary to binary converter
(8ter2bin) by partitioning outputs [11]. Assume that we use
LUTs with 10 inputs. Figure 8 shows the cascade realiza-
tion. The 13 outputs are divided into two groups: The upper
cascade realizes the least significant 6 bits, while the lower
cascade realizes the most significant 7 bits. The total amount
of memory is 210(7 + 7 + 7 + 6 + 6) + 28(6) = 35,328 bits.

(End of Example)

To find an optimal solution for the radix converter with
many digits, the method [11] requires a large amount of
computation. On the other hand, Algorithm 1 requires only
small amount of computation. In the next section, we will
present the more compact realizations of the radix converter
by using arithmetic decomposition [12].

Fig. 8 8-digit ternary to binary converter: Outputs are partitioned into
two groups.

4. Realization Based on Arithmetic Decomposition

4.1 Arithmetic Decompositions of WS Functions

In the previous section, we presented a design method of
radix converters by using LUT cascades. In this section, we
will propose design methods of radix converters by using
arithmetic decompositions [12].

Theorem 3: A WS function can be represented as a sum
of two WS functions as follows:

WS(�x) =
n−1∑

i=0

wi xi = αWSA(�x) +WSB(�x), (4)

where WSA(�x) =
∑n−1

i=0 aixi, WSB(�x) =
∑n−1

i=0 bixi, and α is an
integer. This is the arithmetic decomposition, and α is the
decomposition coefficient.

α can be an arbitrary integer, where 2 ≤ α < MAXn.
Let MAXB be the maximum value of WSB(�X). α need not
satisfy MAXB < α, however, in this paper, we consider only
cases where MAXB < α.

Next, we will consider properties of WS functions ob-
tained by arithmetic decompositions of the WS function rep-
resenting a radix converter.

Theorem 4: Consider the arithmetic decomposition for a
WS(�x) which represents a radix converter, where WS(�x) =∑n−1

i=0 wi xi = αWSA(�x) + WSB(�x), α is an integer, 2 ≤ α <
pn − 1, WSA(�x) =

∑n−1
i=0 wA

i xi, and WSB(�x) =
∑n−1

i=0 wB
i xi. In

this case, Range(WSB(�X)) = [0, (p − 1)
∑n−1

i=0 wB
i].

(Proof) WSB(�X) is a reminder, which is obtained by divid-
ing WS(�x) by α. Assume that Range(WSB(�x)) � [0, (p −
1)
∑n−1

i=0 wB
i], then Range(WS(�x)) � [0, pn−1] holds. This

contradicts the hypothesis that WS(�x) represents the radix
conversion. Hence, the theorem. (Q.E.D.)

4.2 Arithmetic Decompositions for Different Decomposi-
tion Coefficients

A radix converter can be represented as a WS function. By
using arithmetic decompositions with different decomposi-
tion coefficients α, we can realize different radix converters.

910
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.6 JUNE 2007

In this part, we consider two cases: One uses 2k as the de-
composition coefficient, and the other uses pk as the decom-
position coefficient.

(1) When the decomposition coefficient is 2k.

In this case, the radix converter is realized as

WS(�x) = 2kWSA(�x) +WSB(�x).

Since the multiplication of 2k can be realized by the shift-
ing, it is realized compactly. However, WSB depends on all
the input variables, and the total size of the circuit is not so
small.

(2) When the decomposition coefficient is pk.

In this case, the radix converter is realized as

WS(�x) = pkWSA(�x) +WSB(�x).

The multiplication of pk increases the number of outputs for
pkWSA. However, when k = n/2, the numbers of inputs for
WSA and WSB can be a half of the original function, so the
total network can be much smaller.

Example 9: Let us design the 8-digit ternary to binary con-
verter (8ter2bin). Consider two cases where the decompo-
sition coefficients are α = 26 = 64 and α = 34 = 81. The
ternary number is represented by the binary-coded ternary
code. Table 3 shows the coefficients of arithmetic decom-
positions of 3i (i = 0, 1, 2, . . . , 7). Note that these coeffi-
cients are equal to the weights for WSA(�x) and WSB(�x). We
assume that 11-input cells are available for cascade realiza-
tion. From Table 3, we have two different realizations for
8ter2bin.

1. When the decomposition coefficient is 26.

• WS(�x) = 26WSA(�x) +WSB(�x).
• WSA(�x) = 34x7 + 11x6 + 3x5 + 1x4 + 0x3 + 0x2 +

0x1 + 0x0.
• WSB(�x) = 11x7+25x6+51x5+17x4+27x3+9x2+

3x1 + 1x0.
• WSA(�x) depends on the inputs {x4, x5, x6, x7}. The

number of inputs is 8. Since the output takes val-
ues from 0 to 2(1 + 3 + 11 + 34) = 98, 7 bits are
necessary to represent the output. WSA(�x) has 8
inputs and 7 outputs, so it is implemented by a
single cell.

Table 3 Coefficients of arithmetic decompositions of the powers of 3.

Decomposition Coefficients

i 3i α = 26 = 64 α = 34 = 81
0 1 64 × 0 + 1 81 × 0 + 1
1 3 64 × 0 + 3 81 × 0 + 3
2 9 64 × 0 + 9 81 × 0 + 9
3 27 64 × 0 + 27 81 × 0 + 27
4 81 64 × 1 + 17 81 × 1 + 0
5 243 64 × 3 + 51 81 × 3 + 0
6 729 64 × 11 + 25 81 × 9 + 0
7 2187 64 × 34 + 11 81 × 27 + 0

• WSB(�x) depends on all the inputs {x0, x1, x2, x3,
x4, x5, x6, x7}, so the number of inputs is 16. Since
each weight vector wi satisfies the condition of
Theorem 1, the output range is [0, 2(1 + 3 + 9 +
27+ 17+ 51+ 25+ 11)] = [0, 288], 9 bits are nec-
essary to represent it. WSB(�x) has 16 inputs and 9
outputs. It is implemented by a 3-LUTs cascade
with 11-input cells.
• The multiplication by 26 can be implemented by

shifting 6 bits positions. We add the upper 3 bits
of WSB and the outputs of WSA by a 7-bit adder.
Figure 9 shows the network, which uses memory
with 45824 bits and a 7-bit adder.

2. When the decomposition coefficient is 34.

• WS(�x) = 34WSA(�x) +WSB(�x).
• WSA(�x) = 33x7 + 32x6 + 31x5 + 30x4.
• WSB(�x) = 33x3 + 32x2 + 31x1 + 30x0.
• WSA(�x) depends on inputs {x4, x5, x6, x7}, so the

number of the inputs is 8. By Theorem 1, the max-
imum value of the output is 2(1+3+9+27) = 80.
It can be represented by 7 bits. Thus, WSA(�x) can
be implemented by an 8-input 7-output LUT.
• WSB(�x) depends on inputs {x0, x1, x2, x3}, so the

number of inputs is 8. By Theorem 1, the output
range is [0, 2(1 + 3 + 9 + 27)] = [0, 80].
• The maximum value of 34WSA is 6480. So 13 bits

are necessary to represent the output. We directly
implement 34WSA by a cell.
• We add 34WSA with WSB by a 13-bit adder. Fig-

ure 10 shows the network, which uses memory

Fig. 9 8-digit ternary to binary converter: Arithmetic decomposition
with coefficient 26.

Fig. 10 8-digit ternary to binary converter: Arithmetic decomposition
with coefficient 34.

IGUCHI et al.: DESIGN METHODS OF RADIX CONVERTERS USING ARITHMETIC DECOMPOSITIONS
911

with 5120 bits and a 13-bit adder.
(End of Example)

4.3 Arithmetic Decomposition Using the Binary Repre-
sentation of Inputs

In this part, we will introduce an arithmetic decomposition
with respect to the binary representation of the inputs.

Definition 7: Let i be an integer. BIT(i, j) denotes the j-th
bit of the binary representation of i, where the LSB is the
0-th bit.

Example 10: BIT(2, 1) = 1, BIT(2, 0) = 0, BIT(1, 1) = 0,
and BIT(1, 0) = 1.

An integer number i can be represented by �log2 i� bits.
Thus, we have the relation:

i =
�log2 i�−1∑

j=0

2 jBIT(i, j).

From this, we have the following:

Theorem 5: A p-nary to binary converter can be repre-
sented by

WS (�x) =
�log2 p�−1∑

j=0

2 j
n−1∑

i=0

piBIT(xi, j).

(Proof)

WS(�x) =
n−1∑

i=0

pixi =

n−1∑

i=0

pi
�log2 p�−1∑

j=0

2 jBIT(xi, j)

=

�log2 p�−1∑

j=0

2 j
n−1∑

i=0

piBIT(xi, j).

(Q.E.D.)

Example 11: Consider the 8-digit ternary to binary con-
verter (8ter2bin). By Theorem 5, WS(�x) can be represented
as:

WS (�x) = 2
7∑

i=0

3iBIT(xi, 1) +
7∑

i=0

3iBIT(xi, 0). (5)

Figure 11 shows the circuit corresponding to the above
decomposition. Each cell has 8 inputs. Since

∑7
i=0 3i =

3280, each cell has 12 outputs. The multiplication by two is
implemented by shifting one bit position. The circuit uses
6144 bits of memories and a 13-bit adder.

We can further reduce the circuit by using Theorem 3,
where 34 is the decomposition coefficient:

WS(�x)

= 2[34
7∑

i=4

3i−4BIT(xi, 1) +
3∑

i=0

3iBIT(xi, 1)]

Fig. 11 8-digit ternary to binary converter: Decomposed using the binary
representation of inputs.

Fig. 12 8-digit ternary to binary converter: Decomposed using the binary
representation of inputs and further decomposed with coefficient 34.

+ [34
7∑

i=4

3i−4BIT(xi, 0) +
3∑

i=0

3iBIT(xi, 0)]. (6)

Figure 12 is the network corresponding Eq. (6), where
each cell has only 4 inputs. The total amount of memory is
576 bits. It uses two 12-bit adders and a 13-bit adder.

(End of Example)

5. Implementation on FPGAs

To see the effectiveness of the approach, we implemented
various designs of ternary to binary converters on FPGAs,
and compared the amount of hardware and performance.

5.1 FPGAs and Their Development System

We used Altera Cyclone II (EP2C5T144C7) FPGA de-
vice, having 13 Embedded Multipliers (EMs) that perform
the multiply-and-sum operations, 26 embedded memories
(M4Ks), and 4608 logic elements (LEs). Each M4K con-
tains 4096 bits. We used Altera Quartus II V.4.1 as the de-
velopment tool. We also developed a radix converter syn-
thesis system shown in Fig. 13 that generates Verilog-HDL
codes describing various designs, and data for M4Ks. In the
FPGAs, LUTs (cells) were implemented by M4Ks, while
adders were implemented by LEs.

5.2 8-Digit Ternary to Binary Converters

Table 4 compares 7 different designs of 8-digit ternary to
binary converters (8ter2bin).

1. Direct Method (DM): The system generated a Verilog-

912
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.6 JUNE 2007

Fig. 13 Development system for radix converters.

Table 4 Amount of hardware and performance of 8-digit ternary to bi-
nary converters on Cyclone II.

Design Method LE M4K EM Delay
[nsec]

DM1 With EM Fig. 1 66 0 7 26.7
DM2 W/O EM Fig. 1 195 0 0 23.7

AD1 26 Fig. 9 8 13 0 30.0

AD2 34 Fig. 10 13 2 0 14.8

AD3 BIT Fig. 11 12 2 0 14.3

AD4 BIT+34 Fig. 12 36 4 0 16.8
PAR M4K only Fig. 8 0 11 0 22.2

HDL code from the specification: radix p and the num-
ber of digits n. We could not implement a radix con-
verter by a single memory because size of memory was
too large for this FPGA.

• DM1 directly implements
∑7

i=0 3ixi. Figure 1 is
the circuit generated by the Quartus II. After map-
ping, the Quartus II replaced the multipliers with
7 EMs, and adders with 66 LEs. It uses no M4Ks.
• DM2 also corresponds to Fig. 1. In this case, how-

ever, the Quartus II replaced multipliers with LEs
instead of EMs. So, the circuit consists of LEs
only. It has 195 LEs, which means 129 LEs were
replaced by 7 EMs. It is faster than DM1, since
LEs perform constant multiplications faster than
EMs.

2. Arithmetic Decomposition Method (AD): The system
generated Verilog-HDL codes and data for M4Ks.

• AD1 corresponds to Fig. 9, which was obtained
with the decomposition coefficient 26. The Quar-
tus II replaced four LUTs with 13 M4Ks, and the
adder with 8 LEs.
• AD2 corresponds to Fig. 10, which was obtained

Table 5 Amount of hardware and performance of 12-digit ternary to bi-
nary converters on Cyclone II.

Design Method LE M4K EM Delay
[nsec]

DM1 With EM Fig. 1 139 0 15 35.8
DM2 W/O EM Fig. 1 457 0 0 32.0

AD2 36 Fig. 10 20 30† 0 17.3
AD3 BIT Fig. 11 19 38‡ 0 16.6

AD4 BIT+36 Fig. 12 57 4 0 17.6
†:Used EP2C8T144C7
‡:Used EP2C20F256C7

with the decomposition coefficient 34. The Quar-
tus II replaced two LUTs with two M4Ks, and the
adder with 13 LEs.
• AD3 corresponds to Fig. 11, which was obtained

with the arithmetic decomposition using binary
representation of inputs. The Quartus II replaced
two LUTs with two M4Ks, and the adder with 12
LEs.
• AD4 corresponds to Fig. 12, which was obtained

by the arithmetic decomposition with the coef-
ficient 34 and using binary representation of in-
puts. The Quartus II replaced four LUTs with four
M4Ks, and adders with 36 LEs. It is slower than
AD3 since the adder is more complex.

3. Partition of Outputs Method (PAR): The system gener-
ated Verilog-HDL codes and data for M4Ks.

• PAR corresponds to Fig. 8, which consists of 6
LUTs. The Quartus II replaced 6 LUTs with 11
M4Ks.

In the case of 8ter2bin, we can conclude that AD3 is the
best realizations: It is the fastest and requires the smallest
amount of hardware.

5.3 12-Digit Ternary to Binary Converters

Table 5 compares 5 different designs of 12-digit ternary to
binary converters (12ter2bin).

1. Direct Method (DM):

• DM1 is similar to Fig. 1, but uses 15 EMs.
• DM2 is similar to Fig. 1. Also in this case, it is

faster than DM1.

2. Arithmetic Decomposition Method (AD):

• AD2 is similar to Fig. 10, but the decomposition
coefficient is 36. In this case, it uses a 12-input
20-output LUT, a 12-input 10-output LUT, and a
20-bit adder. The Quartus II replaced these LUTs
with 30 M4Ks, and the adder with 20 LEs. So,
it requires a larger FPGA, EP2C8T144C7 which
contains 36 M4Ks.
• AD3 is similar to Fig. 11, but uses a pair of 12-

input 19-output LUTs and a 20-bit adder. The

IGUCHI et al.: DESIGN METHODS OF RADIX CONVERTERS USING ARITHMETIC DECOMPOSITIONS
913

Quartus II replaced these LUTs with 38 M4Ks.
So, we had to use a larger FPGA, EP2C20F256C7
which contains 52 M4Ks.
• AD4 is similar to Fig. 12, but uses the decompo-

sition coefficient 36. It uses four LUTs with 6 in-
puts. The Quartus II replaced these LUTs with
four M4Ks, and the adders with 57 LEs.

Since AD1 uses too many M4Ks and PAR requires too
much computation time, they are not used in the design. In
the case of 8ter2bin, AD2 and AD3 are faster. On the other
hand, in the case of 12ter2bin, AD2 and AD3 require larger
FPGAs, so AD4 is the best choice.

Almost all embedded memories in recent FPGAs are
synchronous. M4Ks in Cyclone II FPGAs are also syn-
chronous. So, the circuits require clock signals to operate.
Therefore, when we realize radix converters by using LUT
cascades, we require at least s clocks to convert a binary
number from a p-nary number. Delay [nsec] in Table 4 and
5 shows latency.

AD4 is the best choice for implementing radix convert-
ers with 12 digits.

5.4 Observations

1. In Fig. 9, variables x4, x5, x6, and x7 appear in both
the upper and the lower cascades. This decomposition
is a non-disjoint [1]. On the other hand, in Figs. 10, 11,
and 12, each variable appears only once. These decom-
positions are disjoint [1]. The disjoint decomposition
in Fig. 10 is easy to find from Eq. (2) or Fig. 1, while
the disjoint decomposition in Fig. 11 is not so easy to
find. Also, the decomposition in Fig. 10 produces sim-
ilar but different sub-circuits, while the decomposition
in Fig. 11 produces two identical sub-circuits.

2. These techniques can be combined to design radix con-
verts with more digits, and other arithmetic circuits [5].

3. Since the propagation delay of an adder and an LUT
are almost the same, we can achieve higher throughput
for AD2, AD3, and AD4 by pipelining them.

6. Conclusion

In this paper, we presented arithmetic decompositions to de-
sign p-nary to binary converter. We used ternary to binary
converters to illustrate the idea. We also implemented the
converts on FPGAs to confirm the effectiveness of the meth-
ods. An interesting future work is the extension to radix
converters for signed-digit numbers.

Acknowledgements

This research is supported in part by the Grant in Aid for
Scientific Research of MEXT, the Kitakyushu Area Innova-
tive Cluster Project of MEXT, and Special Research of Meiji
University.

References

[1] H.A. Curtis, A New Approach to the Design of Switching Circuits,
D. Van Nostrand Company, 1962.

[2] T. Hanyu and M. Kameyama, “A 200 MHz pipelined multiplier us-
ing 1.5 V-supply multiplevalued MOS current-mode circuits with
dual-rail source-coupled logic,” IEEE J. Solid-State Circuits, vol.30,
no.11, pp.1239–1245, 1995.

[3] C.H. Huang, “A fully parallel mixed-radix conversion algorithm for
residue number applications,” IEEE Trans. Comput., vol.32, no.4,
pp.398–402, 1983.

[4] Y. Iguchi, T. Sasao, and M. Matsuura, “On design of radix converters
using arithmetic decompositions,” 36th International Symposium on
Multiple-Valued Logic, p.3, Singapore, May 2006.

[5] K. Ishida, N. Homma, T. Aoki, and T. Higuchi, “Design and verifi-
cation of parallel multipliers using arithmetic description language:
ARITH,” 34th International Symposium on Multiple-Valued Logic,
Toronto, pp.334–339, Canada, May 2004.

[6] I. Koren, Computer Arithmetic Algorithms, 2nd ed., A.K. Peters,
Natick, MA, 2002.

[7] S. Muroga, VLSI System Design, pp.293–306, John Wiley & Sons,
1982.

[8] D. Olson and K.W. Current, “Hardware implementation of supple-
mentary symmetrical logic circuit structure concepts,” 30th IEEE
International Symposium on Multiple-Valued Logic, pp.371–376,
Portland, Oregon, May 2000.

[9] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[10] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of
multiple-output function for reconfigurable hardware,” International
Workshop on Logic and Synthesis (IWLS01), pp.225–230, Lake
Tahoe, CA, June 2001.

[11] T. Sasao, “Radix converters: Complexity and implementation by
LUT cascades,” 35th International Symposium on Multiple-Valued
Logic, pp.256–263, Calgary, Canada, May 2005.

[12] T. Sasao, Y. Iguchi, and T. Suzuki, “On LUT cascade realizations of
FIR filters,” DSD2005, 8th Euromicro Conference on Digital Sys-
tem Design: Architectures, Methods and Tools, pp.467–474, Porto,
Portugal, Aug.-Sept. 2005.

[13] T. Sasao, “Analysis and synthesis of weighted-sum functions,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.25, no.5,
pp.789–796, May 2006.

Yukihiro Iguchi was received the B.E.,
M.E., and Ph.D. degrees in electronic engineer-
ing from Meiji University, Kanagawa Japan, in
1982, 1984, and 1987, respectively. He is now
an associate professor of Meiji University. His
research interest includes logic design, switch-
ing theory, and reconfigurable systems. In 1996
and 2006, he spent each year at Kyushu Insti-
tute of Technology. He received Takeda Techno-
Entrepreneurship Award in 2001.

914
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.6 JUNE 2007

Tsutomu Sasao was received the B.E.,
M.E., and Ph.D. degrees in Electronics Engi-
neering from Osaka University, Osaka Japan,
in 1972, 1974, and 1977, respectively. He has
held faculty/research positions at Osaka Univer-
sity, Japan, IBM T.J. Watson Research Center,
Yorktown Height, NY and the Naval Postgrad-
uate School, Monterey, CA. He has served as
the Director of the Center for Microelectronic
Systems at the Kyushu Institute of Technology,
Iizuka, Japan. Now, he is a Professor of De-

partment of Computer Science and Electronics, His research areas include
logic design and switching theory, representations of logic functions, and
multiple-valued logic. He has published more than 8 books on logic de-
sign including, Logic Synthesis and Optimization, Representation of Dis-
crete Functions, Switching Theory for Logic Synthesis, and Logic Syn-
thesis and Verification, Kluwer Academic Publishers 1993, 1996, 1999,
respectively. He has served Program Chairman for the IEEE International
Symposium on Multiple-Valued Logic (ISMVL) many times. Also, he was
the Symposium Chairman of the 28th ISMVL held in Fukuoka, Japan in
1998. He received the NIWA Memorial Award in 1979, Takeda Techno-
Entrepreneurship Award in 2001, and Distinctive Contribution Awards
from IEEE Computer Society MVL-TC for papers presented at ISMVLs
in 1987, 1996, 2003 and 2004. He has served an associate editor of the
IEEE Transactions on Computers. He is a Fellow of the IEEE.

Munehiro Matsuura was born in Ki-
takyushu City, Japan. He studied at the Kyushu
Institute of Technology from 1983 to 1989, and
received the B.E. degree from the University of
the Air, in Japan, 2003. He has been working
as a Technical Assistant at the Kyushu Institute
of Technology since 1991. He has implemented
several logic design algorithms under the direc-
tion of Professor Tsutomu Sasao. His interests
include decision diagrams and exclusive-OR
based circuit design.

