
932
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.5 MAY 2007

PAPER Special Section on Discrete Mathematics and Its Applications

A New Equivalence Relation of Logic Functions and Its Application
in the Design of AND-OR-EXOR Networks

Debatosh DEBNATH†a), Nonmember and Tsutomu SASAO††b), Member

SUMMARY This paper presents a design method for AND-OR-EXOR
three-level networks, where a single two-input exclusive-OR (EXOR) gate
is used. The network realizes an EXOR of two sum-of-products expres-
sions (EX-SOPs). The problem is to minimize the total number of prod-
ucts in the two sum-of-products expressions (SOPs). We introduce the
notion of µ-equivalence of logic functions to develop exact minimization
algorithms for EX-SOPs with up to five variables. We minimized all the
NP-representative functions for up to five variables and showed that five-
variable functions require 9 or fewer products in minimum EX-SOPs. For
n-variable functions, minimum EX-SOPs require at most 9 · 2n−5 (n ≥ 6)
products. This upper bound is smaller than 2n−1, which is the upper bound
for SOPs. We also found that, for five-variable functions, on the average,
minimum EX-SOPs require about 40% fewer literals than minimum SOPs.
key words: three-level networks, AND-EXOR, NP-equivalence, coordinate
representation, µ-equivalence, spectral method, logic minimization

1. Introduction

Logic networks are usually designed by using AND and OR
gates. However, it has been observed that the addition of
exclusive-OR (EXOR) gates in the design often produces
better networks [18]–[23]. For example, on the average,
five-variable functions require 7.46 products in minimum
sum-of-products expressions (SOPs), while 6.16 products
in minimum EXOR sum-of-products expressions (ESOPs)
[19]. To realize an arbitrary function of six variables, mini-
mum SOPs (MSOPs) require 32 or fewer products, while
minimum ESOPs require 15 or fewer products [13]. In these
designs, EXOR gates with unlimited fan-in are used. How-
ever, in most technologies, EXOR gates with many inputs
are expensive.

This paper presents an exact minimization method for
AND-OR-EXOR three-level networks. The network real-
izes an EXOR of two SOPs (EX-SOPs), where only a single
two-input EXOR gate is used (Fig. 1). An EX-SOP for a
function f can be written as F = G ⊕ H, where G and H are
SOPs. The objective of the minimization is to reduce the
total number of products in G and H.

Manuscript received August 21, 2006.
Manuscript revised November 11, 2006.
Final manuscript received December 28, 2006.
†The author is with the Department of Computer Science

and Engineering, Oakland University, Rochester, Michigan 48309,
U.S.A.
††The author is with the Department of Computer Science and

Electronics, Kyushu Institute of Technology, Iizuka-shi, 820-8502
Japan.

a) E-mail: debnath@oakland.edu
b) E-mail: sasao@cse.kyutech.ac.jp

DOI: 10.1093/ietfec/e90–a.5.932

Fig. 1 An AND-OR-EXOR three-level network.

AND-OR-EXOR is one of the simplest three-level ar-
chitecture, since it contains only a single two-input EXOR
gate. However, its logic capability is quite high. Because of
this, various programmable logic devices (PLDs) with two-
input EXOR gates in the outputs were developed. Espe-
cially, RICOH, Lattice and AMD (MMI) produced series of
such PLDs [14], [16], [17], and recently millions of complex
PLDs (CPLDs) with output EXOR gates have been shipped
[1], [2]. An AND-OR-EXOR three-level network is suitable
for implementing arithmetic functions. For example, Texas
Instruments’ SN74LS181 arithmetic logic unit has EXOR
gates in the outputs [24]. Programmable logic arrays (PLAs)
with two-input EXOR gates in the outputs efficiently realize
adders [5], [25].

Design methods for AND-OR-EXOR three-level net-
works were considered in the past [9], [16], [22]. Upper
bounds on the number of products in an AND-OR-EXOR
expansion was also reported [7]. During the last sev-
eral years significant progress in the heuristic minimiza-
tion of EX-SOPs have been made [4], [8], [12], [20]. How-
ever, other than [3], no exact minimization algorithm for
EX-SOPs is reported. In this paper, an exact minimiza-
tion algorithm for EX-SOPs is presented. The algorithm
is based on the notion of a new equivalence class, namely
µ-equivalence, of logic functions.

The rest of the paper is organized as follows: Sect. 2
introduces the terminology and develops the concept of µ-
equivalence of logic functions. Section 3 provides the key
idea for the minimization. Section 4 describes how the µ-
equivalence of logic functions can be used to reduce the
computation time and shows a minimization algorithm for
EX-SOPs with five variables. Section 5 reports experimen-
tal results. Section 6 presents conclusions and comments.

2. Definitions and Basic Properties

This section introduces the notations used in the paper and
considers the modified coordinate representation of logic
functions. By using the representation, we develop the con-

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

DEBNATH and SASAO: AN EQUIVALENCE RELATION OF LOGIC FUNCTIONS AND ITS APPLICATION
933

Fig. 2 Karnaugh maps for the SOP and EX-SOP in Example 1.

cept of the µ-equivalence of logic functions and illustrate its
properties. In this paper, we distinguish functions and their
expressions. We use lower case letters, such as f , g, and h,
to represent functions, and upper case letters, such as F, G,
and H, to represent expressions of functions.

Definition 1: A sum-of-products expression (SOP) is the
OR of product terms. An EX-SOP is the EXOR of two
SOPs. An ESOP is the EXOR of product terms.

Example 1: Figure 2(a) shows an SOP for f : Fsop =

x̄1 x̄3x4 ∨ x2 x̄3x4 ∨ x̄1x2x4 ∨ x̄1x3 x̄4 ∨ x2x3 x̄4 ∨ x1 x̄2 x̄3 x̄4 ∨
x1 x̄2x3x4. Figures 2(b) and 2(c) show an EX-SOP for f :
Fexsop = (x̄3x4 ∨ x3 x̄4) ⊕ (x̄1x2x3x4 ∨ x1 x̄2). Note that Fsop

and Fexsop represent the same function.

Definition 2: An expression of a function is said to be
minimum if it has the least number of product terms.

Example 2: In Example 1, Fsop is a minimum SOP and
Fexsop is a minimum EX-SOP.

Definition 3: Let τ(SOP: f) and τ(EX-SOP: f) be the
number of products in a minimum SOP (MSOP) for func-
tion f and minimum EX-SOP (MEX-SOP) for function f ,
respectively.

Example 3: In Example 1, τ(SOP: f) = 7 and τ(EX-SOP:
f) = 4. For this function, MSOP requires 23 literals, while
MEX-SOP requires only 10 literals.

Let a function f be represented as follows:

f = g ⊕ h. (1)

Note that g and h correspond to G and H in Fig. 1, respec-
tively. To compute τ(EX-SOP: f), we must choose g and
h such that they satisfy Eq. (1). Thus, we have τ(EX-SOP:
f) = min{τ(SOP: g) + τ(SOP: h)}.
Definition 4: Let τ(EX-SOP: F) be the number of products
in an EX-SOP F. We note that τ(EX-SOP: f) which is intro-
duced in Definition 3 and τ(EX-SOP: F) are different.

Example 4: In Example 1, τ(EX-SOP: Fexsop) = 4.

Definition 5: Let the minterm expansion of an n-variable
function be f (x1, x2, . . . , xn) = m0 · x̄1 x̄2 · · · x̄n ∨ m1 ·
x̄1 x̄2 · · · xn∨· · ·∨m2n−1 · x1x2 · · · xn,where m0,m1, . . . ,m2n−1

∈ {0, 1}. The 2n bit binary number m0m1 · · ·m2n−1 is the bi-
nary representation of f . The hexadecimal number which
is obtained from the binary number m0m1 · · ·m2n−1 is the
hexadecimal representation of f . To denote a binary (hex-
adecimal) number, a subscripted 2 (16) is used after it.

Example 5: Let the three-variable function f (x1, x2, x3) =
x̄1 x̄2 x̄3 ∨ x1. The binary representation of f is 100011112.
Let the five-variable function g(x1, x2, x3, x4, x5) =

x̄1 x̄2 x̄3 x̄4 x̄5 ∨ x1. The hexadecimal representation of g is
8000ffff16.

2.1 NP-Equivalence Classes

Logic functions can be grouped into classes by using simple
transformations.

Definition 6: The set of functions which are identical un-
der (a) the permutation of the variables and/or (b) the com-
plementation (i.e., negation) of one or more variables are
called NP-equivalent functions [10], [11], [15]. Let f NP∼g
denote that f and g are NP-equivalent, and let f

NP
�g denote

that f and g are not NP-equivalent. NP-equivalent functions
form an NP-equivalence class of functions.

Example 6: Consider the three functions: f1(x1, x2, x3) =
x1 x̄2 ∨ x1 x̄2 x̄3, f2(x1, x2, x3) = x̄2x3 ∨ x̄1 x̄2x3, and
f3(x1, x2, x3) = x̄2 x̄3 ∨ x̄1 x̄2 x̄3. Since f2(x3, x2, x1) =
x1 x̄2 ∨ x1 x̄2 x̄3 = f1(x1, x2, x3), we have f1

NP∼ f2, and since
f3(x1, x2, x̄3) = x̄2x3 ∨ x̄1 x̄2x3 = f2(x1, x2, x3), we have
f2

NP∼ f3. Therefore, the functions f1, f2 and f3 belong to the
same NP-equivalence class.

Definition 7: The function which has the smallest binary
representation among the functions of an NP-equivalence
class is the NP-representative function of the class.

Example 7: Functions x1x2, x1 x̄2, x̄1x2, and x̄1 x̄2 form an
NP-equivalence class of two variables. In binary represen-
tation: x1x2 = 00012, x1 x̄2 = 00102, x̄1x2 = 01002, and
x̄1 x̄2 = 10002. Since 00012 < 00102 < 01002 < 10002, the
NP-representative function of this class is x1x2.

For NP-equivalent functions we have the following:

Property 1: If f NP∼g, then τ(SOP: f) = τ(SOP: g) and
τ(EX-SOP: f) = τ(EX-SOP: g).

2.2 Modified Coordinate Representation
and µ-Equivalence Classes

In the following, we first show a new representation of logic
functions, called modified coordinate representation and in-
troduce a novel equivalence relation, called µ-equivalence
of logic functions. We then present properties of modified
coordinate representation and µ-equivalence classes.

Definition 8: Let w(f) be the number of true minterms of
the function f .

Definition 9 ([10]): The coordinate representation of a
five-variable function f , denoted by COR(f), consists of
32 integers: COR(f) = (c0; c1, c2, c3, c4, c5; c12, c13, c14,
c15, c23, c24, c25, c34, c35, c45; c123, c124, c125, c134, c135, c145,
c234, c235, c245, c345; c1234, c1235, c1245, c1345, c2345; c12345).

934
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.5 MAY 2007

And c’s are calculated as follows:

c0 = 2n−1 − w(f),

ci = 2n−1 − w(f ⊕ xi), i ∈ L;

ci j = 2n−1 − w(f ⊕ xi ⊕ x j), i, j ∈ L;

ci jk = 2n−1 − w(f ⊕ xi ⊕ x j ⊕ xk), i, j, k ∈ L;

ci jk� = 2n−1 − w(f ⊕ xi ⊕ x j ⊕ xk ⊕ x�), i, j, k, � ∈ L;

c12345 = 2n−1 − w(f ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5),

where n = 5 and L = {1, 2, 3, 4, 5}. The elements of COR(f)
which are separated by ‘;’ (semicolon) form a group.

Example 8: Let a five-variable function f be 65c5ab8d16.
Here c4 = 16 − w(65c5ab8d16 ⊕ 3333333316) = 16 −
w(56f698be16) = 16 − 19 = −3. COR(f) = (−1; 1, −1,
3, −3, 1; 1, −3, −1, 7, −1, 5, −3, −3, −7, −1; 1, −1, 3, −1,
−1, 5, 1, 1, 3, 3; 3, −1, 1, 1, 3; 1).

Definition 10: The modified coordinate representation of
a five-variable function f , denoted by µ(f), consists of 32
integers: µ(f) = (d0; d1, d2, d3, d4, d5; d12, d13, d14, d15,
d23, d24, d25, d34, d35, d45; d123, d124, d125, d134, d135, d145,
d234, d235, d245, d345; d1234, d1235, d1245, d1345, d2345; d12345).
The µ(f) is calculated from COR(f) as follows: (a) d0 = c0.
(b) di (i ∈ {1, 2, 3, 4, 5}) are obtained from ci by deleting the
sign and then rearranging the elements of the group in as-
cending order; di j, di jk and di jk� (i, j, k, � ∈ {1, 2, 3, 4, 5}) are
obtained in similar ways. (c) d12345 is obtained by deleting
the sign of c12345.

Example 9: For the function f shown in Example 8,
µ(f) = (−1; 1, 1, 1, 3, 3; 1, 1, 1, 1, 3, 3, 3, 5, 7, 7; 1, 1, 1, 1,
1, 1, 3, 3, 3, 5; 1, 1, 1, 3, 3; 1).

The definitions of the coordinate representation and the
modified coordinate representation for functions with any
arbitrary n variables are similar to Definitions 9 and 10, re-
spectively.

Theorem 1: µ(f) is invariant under (a) the permutation of
the variables and/or (b) the complementation of one or more
variables of f .

Proof : We will show that (d1, d2, d3, d4, d5) is invariant un-
der (a) and (b). The other groups can be shown to be in-
variant in a similar way. From the definition of COR(f),
the permutation of the variables only permutes the val-
ues of (c1, c2, c3, c4, c5) within the group. The elements of
the group (c1, c2, c3, c4, c5) are rearranged in ascending or-
der to obtain the group (d1, d2, d3, d4, d5) of µ(f). Thus,
(d1, d2, d3, d4, d5) is invariant under the permutation of the
variables. Note that ci = 2n−1 −w(f ⊕ xi) = 2n−1 −

(
w(x̄i f)+

w(xi f̄)
)
=
(
2n−1 − w(xi f̄)

)
− w(x̄i f) = w(xi f) − w(x̄i f). This

implies that the complementation of the variable xi only
changes the sign of ci. Note that we discard the signs of
ci’s to obtain di’s. Therefore, (d1, d2, d3, d4, d5) is invariant
under the complementation of the variables. �

Definition 11: Two functions f and g are µ-equivalent, de-

noted by f
µ∼g, if and only if they have the same modified co-

ordinate representation. The functions that are µ-equivalent
form a µ-equivalence class of functions.

From the definitions of the NP-equivalent and µ-
equivalent functions, and by Theorem 1, we have the fol-
lowing:

Property 2: If f NP∼g, then f
µ∼g.

Example 10: The five-variable functions fb1e4b3d16 and
6bfa79e116 are NP-equivalent, and both have the same
modified coordinate representation: (−4; 0, 2, 2, 2, 4; 0, 0,
2, 2, 2, 2, 2, 2, 4, 4; 0, 0, 0, 0, 2, 2, 2, 2, 4, 8; 2, 2, 4, 4, 4; 2).

For functions with three or fewer variables the converse
of Property 2 holds, i.e., if f

µ∼g then f NP∼g. But the converse
of Property 2 is not true for all functions with four or more
variables.

Observation 1: Among the five-variable functions, there

exist functions f and g such that f
µ∼g but f

NP
�g.

Example 11: The five-variable functions 07b4e93e16,
166ea5b916, 16979ae516 and 169a9e7516 belong to differ-
ent NP-equivalence classes, but they have the same modified
coordinate representation: (−1; 1, 1, 1, 1, 3; 1, 1, 1, 1, 1, 1,
3, 3, 3, 3; 1, 1, 1, 1, 1, 1, 3, 3, 7, 7; 1, 3, 3, 5, 5; 3).

3. Minimization of EX-SOPs

This section presents several key ideas for the minimization
of EX-SOPs.

3.1 Idea for Minimization

The following theorem is the basis for the minimization of
EX-SOPs.

Theorem 2: Let f be an n-variable function and Gn be the
set of all the n-variable functions. Then,

τ(EX-SOP: f) = min
g∈Gn

{
τ(SOP: g) + τ(SOP: f ⊕ g)

}
. (2)

Proof : Suppose that the MEX-SOP for f is represented as
f = g ⊕ h, which implies h = f ⊕ g. Since all possible g’s
are considered in Eq. (2), we have the theorem. �

3.2 Straightforward Minimization Algorithm

Based on Theorem 2, the following is a straightforward al-
gorithm to minimize EX-SOPs.

Let f be the n-variable function to be minimized and
Gn be the set of all the n-variable functions. Let best be
the minimum number of products among all the EX-SOPs
considered so far and sol be a pair of n-variable functions.

Algorithm 1: (EX-SOP Minimization: Straightforward)

1. Initialize: best ← τ(SOP: f); sol← (f , 0);

DEBNATH and SASAO: AN EQUIVALENCE RELATION OF LOGIC FUNCTIONS AND ITS APPLICATION
935

2. for each g ∈ Gn such that τ(SOP: g) < best do
temp← τ(SOP: g) + τ(SOP: f ⊕ g);
if temp < best then

best ← temp; sol← (g, f ⊕ g);
endif

repeat
3. Print best and sol.

3.3 Reduction of Search Space

To obtain a minimum EX-SOP for an n-variable function
f by using Algorithm 1, we must check about 22n

differ-
ent g’s in the worst case, and choose the g that produces
a minimum value for τ(SOP: g) + τ(SOP: f ⊕ g). For up to
four-variable functions, this search space is relatively small,
and Algorithm 1 produces solutions quickly. However, for
five-variable functions, the search space is extremely large.
The following theorem shows that we can drastically reduce
the search space.

Theorem 3: In Algorithm 1, suppose we need to find an
EX-SOP with fewer than t products. If we consider g’s so
that τ(SOP: g) is in increasing order, then we have only to
consider those g’s, such that τ(SOP: g) ≤ 	t/2 − 1
, where
	k
 denotes the least integer greater than or equal to k.

Proof : Suppose we already considered all the g’s such that
τ(SOP: g) ≤ 	t/2 − 1
. Now it is sufficient to prove that a
further increase in τ(SOP: g) by considering other g’s cannot
produce an EX-SOP F with τ(EX-SOP: F) < t. We prove
this by contradiction. We already considered g’s such that
τ(SOP: g) = 0, 1, . . . , 	t/2− 1
 and to obtain τ(EX-SOP: F) <
t we increase τ(SOP: g) by 1, i.e., τ(SOP: g) is now 	t/2
. We
have τ(EX-SOP: F) = τ(SOP: g) + τ(SOP: f ⊕ g). Therefore,
τ(SOP: f ⊕ g) < 	t/2
 which implies τ(SOP: f ⊕ g) = 	t/2 −
1
, . . . , 1, or 0. But if such an EX-SOP exist, it must have
been found when we considered τ(SOP: g) = 0, 1, . . . , 	t/2−
1
. Thus, τ(EX-SOP: F) is not less than t. Similarly, we
can show that a further increase in τ(SOP: g) by considering
other g’s cannot produce an EX-SOP with fewer products.
Hence, we have the theorem. �

To find an EX-SOP with fewer than 8 products, we
have only to consider those g’s such that τ(SOP: g) ≤ 3.
Similarly to find an EX-SOP with fewer than 9 products,
we have only to consider those g’s such that τ(SOP: g) ≤ 4.

Example 12: The numbers of five-variable functions
which require up to three and four products in their mini-
mum SOPs are 839,000 and 16,888,780, respectively. Thus,
by using Theorem 3 for five-variable functions, to find an
EX-SOP with fewer than 7 or 8 products, we must consider
at most 839,000 g’s, and to find an EX-SOP with fewer than
9 or 10 products, we must consider at most 16,888,780 g’s.
These numbers of g’s are only 0.0195% and 0.3932% of the
total number of five-variable functions, respectively.

4. Minimization of EX-SOPs with Five Variables

In this section, we first develop several techniques to reduce
the computation time for EX-SOPs. We then present an al-
gorithm to minimize EX-SOPs with five variables. The most
time consuming part of Algorithm 1 is the computation of
τ(SOP: g) + τ(SOP: f ⊕ g) in step 2. The techniques we used
to obtain τ(SOP: g) and τ(SOP: f ⊕ g) are different which is
explained in the following.

4.1 Obtain τ(SOP: g): Eliminate Redundant Work

We can quickly obtain τ(SOP: g) in Algorithm 1, by using a
table of g ∈ Gn and the corresponding τ(SOP: g). According
to Theorem 3, we can reduce the number of g’s in step 2
of Algorithm 1 by considering the g’s in ascending order of
their τ(SOP: g). We found that, for five-variable functions,
the maximum value of τ(SOP: g) is 4. For five variables, the
number of g’s such that τ(SOP: g) ≤ 4 is 16,888,780, but it is
inconvenient to work with a table of such size. To reduce the
table size, we use NP-equivalence classes. From Property 1,
the number of products in MSOPs for the NP-equivalent
functions are equal. There are only 6,138 NP-representative
functions whose MSOPs require up to four products. Thus,
we use the sorted function table (Fig. 3). The left column of
the sorted function table stores only those NP-representative
function grep’s such that τ(SOP: grep) ≤ 4, and the right col-
umn stores the corresponding τ(SOP: grep)’s. The data in
the table is arranged in ascending order of τ(SOP: grep). We
access the sorted function table sequentially from the be-
ginning — i.e., starting with the smallest τ(SOP: grep) — to
get an NP-representative function grep and the correspond-
ing τ(SOP: grep). We then obtain g’s by generating all the
functions of the class grep. Since τ(SOP: grep) and τ(SOP: g)
are equal, we obtain τ(SOP: g) quickly.

4.2 Compute τ(SOP: f ⊕ g): Time Consuming Part

We have shown in Sect. 4.1 that τ(SOP: g) can be quickly
obtained from the sorted function table. Thus, the most time
consuming part of Algorithm 1 is the computation of τ(SOP:
f ⊕ g) in step 2. A straightforward computation of τ(SOP:
f ⊕ g) is time consuming. Thus, instead of doing logic mini-
mization, we can use a table of all the five-variable functions

Fig. 3 Sorted function table (NP-representative functions with τ(SOP:
grep) ≤ 4).

936
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.5 MAY 2007

Fig. 4 Cost table (NP-representative functions).

h and the corresponding τ(SOP: h). But the total number of
five-variable functions is 232 ≈ 4.3 × 109, and it is impracti-
cal to store a table of this size.

4.2.1 Reduce Table Size: Use NP-Equivalence

To reduce the table size, we use a cost table (Fig. 4) for all
the NP-representative functions of five variables. The num-
ber of NP-equivalence classes of five-variable functions is
1,228,158. The left column of the cost table stores all the
NP-representative functions hrep and the right column stores
the corresponding τ(SOP: hrep). We arranged the data in the
left column of the cost table, which helps to quickly locate
the position of an NP-representative function in the table.
Note that the data in the sorted function table is a subset of
the data in the cost table. Also the arrangements of data in
the two tables are different. For a given function hgiven, to ob-
tain τ(SOP: hgiven) from the cost table, first we compute the
NP-representative function hrep of hgiven. Since the number
of products is invariant under the NP-equivalence class, we
have τ(SOP: hgiven) = τ(SOP: hrep). By using hrep to look-up
the cost table, we obtain τ(SOP: hgiven). However, to get the
NP-representative function hrep from a given function hgiven

is rather time consuming.

4.2.2 Quickly Estimate τ(SOP: f ⊕ g): Use µ-Equivalence

Since determination of τ(SOP: f ⊕ g) by using the cost ta-
ble requires computation of an NP-representative function
which is a time consuming process, we use properties of
µ-equivalence classes to quickly estimate it. Often the es-
timated value is sufficiently accurate to avoid the time con-
suming computation of NP-representative functions.

Definition 12: Let t�ow(h) = min
h µ∼ hj

τ(SOP: hj) and tup(h) =
max
h µ∼ hj

τ(SOP: hj).

Example 13: For the four functions shown in Example 11,
the number of products in the MSOPs are 10, 9, 10 and 8, re-
spectively. Only the functions of these four NP-equivalence
classes have the modified coordinate representation shown
in Example 11. Thus, for any function h in these classes,
t�ow(h) = 8 and tup(h) = 10.

The modified coordinate representation of h, denoted
by µ(h), is quickly calculated from h and has Property 2
(Sect. 2.2). But Observation 1 shows that, for five variables,
µ(h) corresponds to more than one NP-equivalence classes

Fig. 5 Modified cost table (µ-representative functions).

for some h. All the 1,228,158 NP-equivalence classes of
five-variable functions can be partitioned into 149,466 µ-
equivalence classes. Although the µ-equivalence classes
cannot uniquely identify the NP-equivalence classes, we can
use them to quickly estimate the value of τ(SOP: f ⊕ g) in
step 2 of Algorithm 1. Thus, we use the modified cost table
(Fig. 5). The left column of the modified cost table stores
the distinct values of µ(h) for any five-variable function h.
The middle and the right columns store the corresponding
values of t�ow(h) and tup(h), respectively. Since µ(h) is an
array of 32 integers, we use hash technique to look-up the
modified cost table.

Observation 2: For any five-variable function h, the dif-
ferences between τ(SOP: h) and t�ow(h) are small, which is
shown in the following:

δ 0 1 2 3 4

Ψ 1,664,817,920 2,169,159,536 449,837,280 11,132,720 19,840

% 38.76 50.51 10.47 0.26 0.00

δ: τ(SOP: h) − t�ow(h). Ψ: no. of functions. %: % of total functions.

Observation 2 reveals that the differences between
τ(SOP: h) and t�ow(h) are small. Thus, without comput-
ing τ(SOP: f ⊕ g) and by using the modified cost table, we
can often show that τ(SOP: g) + t�ow(f ⊕ g) ≥ best, i.e.,
temp ≥ best in step 2 of Algorithm 1. This implies that using
the modified cost table, we can often avoid the computation
of τ(SOP: f ⊕ g). If we have τ(SOP: g) + t�ow(f ⊕ g) < best,
i.e., a possibility that temp < best in step 2 of Algorithm 1,
only then we obtain τ(SOP: f ⊕ g) from the cost table.

Observation 3: For any five-variable function h, the differ-
ences between t�ow(h) and tup(h) are small, which is shown
in the following:

γ 0 1 2 3 4

Ψ 413,076,664 1,692,187,888 1,913,993,984 273,853,840 1,854,920

% 9.62 39.40 44.56 6.38 0.04

γ: tup(h) − t�ow(h). Ψ: no. of functions. %: % of total functions.

For about 9.62% cases t�ow(f⊕g) and tup(f⊕g) are equal
(Observation 3). In these cases we get the actual — not an
estimated — value of τ(SOP: f ⊕ g) from the modified cost
table. When we have τ(SOP: g)+ t�ow(f ⊕ g) < best in step 2
of Algorithm 1 and t�ow(f ⊕g) � tup(f ⊕g), we obtain τ(SOP:
f ⊕ g) from the cost table by using a more time consuming
routine.

DEBNATH and SASAO: AN EQUIVALENCE RELATION OF LOGIC FUNCTIONS AND ITS APPLICATION
937

4.3 Minimization Algorithm

Based on the above discussions, an algorithm for the mini-
mization of EX-SOPs with five variables is presented in the
following.

Let f be the function to be minimized. Let g, h and
grep represent functions, and tg, t�ow, tup and th represent the
number of products. texsop denotes the minimum number of
products in EX-SOP ever found and tbound represents an up-
per bound on the number of products in an MSOP for g.
From [7], we know that texsop < 11. Section 4.1 shows that
tbound ≤ 4. This algorithm uses three tables: the sorted func-
tion table, the cost table, and the modified cost table; we
have already introduced them in Sects. 4.1 and 4.2.

Algorithm 2: (EX-SOP Minimization: Five Variables)

1. Initialize: texsop ← 11; tbound ← 4.
2. tg ← τ(SOP: grep), where grep is the first function of the

sorted function table.
3. Generate all the functions of the NP-equivalence class
grep. Take the first function g of this class.

4. h ← f ⊕ g. Calculate µ(h). Look-up the modified
cost table by using µ(h), and let t�ow ← t�ow(h) and
tup ← tup(h).

5. If tg + t�ow ≥ texsop (i.e., reduction of texsop is impossible
using the current h), then go to step 10.

6. If t�ow = tup (i.e., τ(SOP: h) is obtained from the modi-
fied cost table), then th ← t�ow and go to step 8.

7. Look-up the cost table by using h; let th ← τ(SOP: h).
8. If tg + th ≥ texsop (i.e., reduction of texsop is impossible

using the current h), then go to step 10.
9. (Found a new solution.) texsop ← tg+ th. Save g and h as

the latest solution. tbound ← 	texsop/2
−1. If tbound ≤ tg,
then go to step 11.

10. Take the next function g in the class grep (g was com-
puted in step 3), and go to step 4.
If all the functions of the class grep are already con-
sidered, then tg ← τ(SOP: grep) where grep is the next
function of the sorted function table.
If tbound < tg, then go to step 11, otherwise go to step 3.

11. Print the latest solution saved in step 9, and texsop as the
final number of products.

The execution time of Algorithm 2 mainly depends on
tbound, the upper bound on the number of products in the
MSOP for g in Theorem 2. In Algorithm 2, tbound is initial-
ized in step 1 and it is updated in step 9. We have mentioned
in Sect. 4.2 that we must compute the NP-representative
function hrep of h before look-up the cost table for τ(SOP:
h). But the computation of hrep is time consuming. This
leads to a relatively long execution time for step 7 in Algo-
rithm 2. However, the following observation reveals that the
algorithm executes step 7 less frequently.

Observation 4: We have conducted an experiment by us-
ing Algorithm 2 for 10,000 pseudo-random functions with

16 true minterms. We found that, for each of the func-
tions, on the average, steps 5, 6 and 7 of Algorithm 2 ex-
ecute 43,519, 1,972 and 138 times, respectively. It should
be noted that although each of the passes through step 7 of
Algorithm 2 takes a significant amount of computation time,
it is not the most time consuming step of the algorithm. On
the average, the step takes about 11% of the execution time
of the algorithm. Each execution of the step takes about 28
microseconds on a 3.00 GHz Intel Pentium 4 CPU.

4.4 Technique to Reduce Number of Literals

A given function f may have more than one MEX-SOP,
such that f = g1 ⊕ h1 = g2 ⊕ h2 = · · · = gk ⊕ hk,
where τ(EX-SOP: f) = τ(SOP: g1) + τ(SOP: h1) = τ(SOP:
g2) + τ(SOP: h2) = · · · = τ(SOP: gk) + τ(SOP: hk). But Al-
gorithm 2 finds only one MEX-SOP. We modified steps 5,
8 and 9 of Algorithm 2 to generate a set of MEX-SOPs and
took the EX-SOP with the minimum number of literals. To
count the literals of an EX-SOP, we must count the literals
of two SOPs. Our approach is to count the number of lit-
erals of SOPs by table look-up. We use a table, similar to
the one shown in Fig. 4. Instead of storing τ(SOP: hrep), the
table stores the number of literals in MSOP for hrep in the
right column. Note that we use Quine-McCluskey method
[15] to minimize SOPs, where the number of literals may
not be the minimum. To reduce the computation time we
generate at most 100 MEX-SOPs for a given function and
took the EX-SOP with the minimum number of literals.

5. Experimental Results

We implemented the proposed EX-SOP minimization algo-
rithms in C language and carried out experiments on a 3.00
GHz Intel Pentium 4 PC with one gigabytes memory run-
ning Red Hat Enterprise Linux WS Release 4. We mini-
mized all the NP-representative functions of four and five
variables. A five-variable function, on the average, takes
about 34 milliseconds of CPU time; this average is obtained
by minimizing 10,000 randomly generated functions. For
five-variable functions, when the number of products in the
minimum EX-SOP (MEX-SOP) is 6 and 9 (worst case), we
could minimize each of the functions within 11 and 140 mil-
liseconds of CPU time, respectively. The program requires
about 25 megabytes of memory space.

Table 1 shows the numbers of five-variable functions
requiring t products by different minimum expressions. In
the table, ‘av’ indicates average number of products which
is equal to

(∑
t(t × λt)

)
/232, where λt represents the num-

ber of functions requiring t products and 232 is the to-
tal number of five-variable functions. A similar table for
four-variable functions is omitted for brevity. In Table 1,
data for SOPs and ESOPs are taken from [19], and EX-
SOPs were minimized by Algorithm 2. For five-variable
functions, on the average, MEX-SOPs require 6.02 prod-
ucts, while minimum SOPs (MSOPs) require 7.46 prod-

938
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.5 MAY 2007

ucts. For five-variable functions, on the average, MEX-
SOPs require fewer products than minimum ESOPs. We
found that, for four- and five-variable functions, the up-
per bounds on the number of products in MEX-SOPs are
5 and 9, respectively. Thus, from the observations in [7],
MEX-SOPs with n variables require at most 9 · 2n−5 (n ≥ 6)
products. For five-variable functions, there is only one NP-
equivalence class whose MEX-SOPs require 9 products.
The NP-representative function of the class is 177e7ee916;
the class has 32 NP-equivalent functions.

Table 2 shows a distribution of five-variable functions
with respect to the number of products in MSOPs and MEX-
SOPs. It reveals statistical data about the functions. For
example, from the table we can state that there are 160 five-
variable functions which require 8 products in MSOPs but
only 3 products in MEX-SOPs. We found that MEX-SOPs
of 84.35% of the five-variable functions require fewer prod-
ucts than MSOPs. The table also shows that, for some func-
tions, the difference between the number of products in an

Table 1 Numbers of five-variable functions requiring t products in mini-
mum expressions.

t SOP ESOP EX-SOP

0 1 1 1
1 243 243 243
2 20676 24948 25988
3 818080 1351836 1511996
4 16049780 39365190 47838990
5 154729080 545193342 694830748
6 698983656 2398267764 2678055614
7 1397400512 1299295404 870943300
8 1254064246 11460744 1760384
9 571481516 7824 32

10 160200992
11 34140992
12 6160176
13 827120
14 84800
15 5312
16 114

av 7.46 6.16 6.02

av : average

Table 2 Numbers of five-variable functions requiring tsop and texsop products in minimum SOPs and
minimum EX-SOPs, respectively.

texsop

tsop 0 1 2 3 4 5 6 7 8 9

0 1
1 243
2 20676
3 2880 815200
4 1920 405020 15642840
5 512 237216 18144480 136346872
6 51520 10805520 289507904 398618712
7 2880 2801360 196734672 1077053888 120807712
8 160 395350 60602400 840982932 351985564 97840
9 45760 10318900 293832472 266795424 488960

10 3680 1217280 58113376 100323744 542912
11 97600 8453632 25172352 417376 32
12 4960 914840 5090088 150288
13 76080 695040 56000
14 160 8720 69520 6400
15 960 3744 608
16 2 112

MSOP and an MEX-SOP is up to 10. For example, an
MEX-SOP for 6996966916 (parity function with five vari-
ables) requires 6 products, while its MSOP requires 16 prod-
ucts.

To compare the number of literals in MSOPs and
MEX-SOPs, we minimized EX-SOPs for all the NP-
representative functions of five variables using the technique
presented in Sect. 4.4, where minimization of the number of
products is the primary objective and minimization of the
number of literals is the secondary objective. We note that
the number of literals is equal to the total fan-in of the AND
gates. Some of the findings of the experiment are as fol-
lows: (a) On the average, MEX-SOPs require 16.49 literals
and MSOPs require 27.24 literals, where SOPs are mini-
mized using Quine-McCluskey method [15]. (b) For some
functions MEX-SOPs require up to 80% fewer literals than
MSOPs. For example, an MEX-SOP for 6996966916 (a par-
ity function) requires 16 literals, while its MSOP requires
80 literals. The EX-SOP can be written as G ⊕ H, where
G and H are the MSOPs for 00ffff0016 and 6969696916,
respectively. (c) For some (about 0.02%) functions MEX-
SOPs require more literals than MSOPs. For example, an
MEX-SOP for 6ff7fefb16 requires 6 products and 25 liter-
als, while its MSOP requires 8 products and 18 literals. The
EX-SOP can be written as G ⊕ H, where G and H are the
MSOPs for ffffffff16 and 9008010416, respectively.

6. Conclusions and Comments

In this paper, we presented minimization algorithms for
AND-OR-EXOR three-level networks which implement
EX-SOPs with up to five variables. We developed the con-
cept of µ-equivalence of logic functions and used it to re-
duce the computation time of the minimization program for
EX-SOPs with five variables. We minimized all the NP-
representative functions with up to five variables, generated
the tables of minimum EX-SOPs (MEX-SOPs) for them,
and showed that MEX-SOPs for five-variable functions re-

DEBNATH and SASAO: AN EQUIVALENCE RELATION OF LOGIC FUNCTIONS AND ITS APPLICATION
939

quire 9 or fewer products. We established that, for n-variable
functions, the upper bound on the number of products in
MEX-SOPs is at most 9 · 2n−5 (n ≥ 6). This bound is tighter
than the previously known one which is 5 · 2n−4 (n ≥ 4) [7].
This upper bound for MEX-SOPs is also smaller than 2n−1,
which is the upper bound for minimum SOPs (MSOPs).
We showed that, for five-variable functions, on the aver-
age, MEX-SOPs require 6.02 products, while MSOPs re-
quire 7.46 products. We also found that, for five-variable
functions, on the average, MEX-SOPs require about 40%
fewer literals than MSOPs. For some five-variable functions
MEX-SOPs require up to 80% fewer literals than MSOPs.

In this paper we have not considered the sharing of
products between two SOPs of an EX-SOP. We consid-
ered this problem in [3] and found that, for five-variable
functions, the upper bound on the number of products for
MEX-SOPs with product sharing is also 9. The tables of
MEX-SOPs are used in another minimization program for
EX-SOPs with up to five-variables [3] and in the heuristic
simplification program for EX-SOPs with six or more vari-
ables [4]. A comparison with other methods is not possi-
ble because no other algorithms for the problem with five
variables are published. We are presently investigating the
usefulness of µ-equivalence classes for Boolean matching in
cell-library binding [6].

Acknowledgements

This work was supported in part by the Ministry of Educa-
tion, Science, Culture, and Sports of Japan. We thank Prof.
N. Koda for providing the table NP-representative functions
and Prof. J.T. Butler for carefully reviewing the manuscript.

References

[1] Altera Corporation, “MAX EPM7128 celebrates 50 million units,”
News & Views: Newsletter for Altera Customers, p.28, Fourth Quar-
ter, 2000.

[2] Altera Corporation, MAX 9000 Programmable Logic Device Family
Data Sheet, June 2003.

[3] D. Debnath and T. Sasao, “Minimization of AND-OR-EXOR three-
level networks with AND gate sharing,” IEICE Trans. Inf. & Syst.,
vol.E80-D, no.10, pp.1001–1008, Oct. 1997.

[4] D. Debnath and T. Sasao, “A heuristic algorithm to design AND-OR-
EXOR three-level networks,” Proc. Asia and South Pacific Design
Automation Conf., pp.69–74, Feb. 1998.

[5] D. Debnath and T. Sasao, “Output phase optimization for AND-OR-
EXOR PLAs with decoders and its application to design of adders,”
IEICE Trans. Inf. & Syst., vol.E88-D, no.7, pp.1492–1500, July
2005.

[6] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[7] E.V. Dubrova, D.M. Miller, and J.C. Muzio, “Upper bounds on
the number of products in AND-OR-XOR expansion of logic func-
tions,” Electron. Lett., vol.31, no.7, pp.541–542, March 1995.

[8] E.V. Dubrova, D.M. Miller, and J.C. Muzio, “AOXMIN-MV: A
heuristic algorithm for AND-OR-XOR minimization,” 4th Int.
Workshop on Applications of the Reed-Muller Expansion in Circuit
Design, pp.37–53, Aug. 1999.

[9] H. Fleisher, J. Giraldi, D.B. Martin, R.L. Phoenix, and M.A. Tavel,
“Simulated annealing as a tool for logic optimization in a CAD en-

vironment,” Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
pp.203–205, Nov. 1985.

[10] M.A. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill, 1965.

[11] S.L. Hurst, D.M. Miller, and J.C. Muzio, Spectral Techniques in
Digital Logic, Academic Press, 1985.

[12] A. Jabir and J. Saul, “Minimization algorithm for three-level mixed
AND-OR-EXOR/AND-OR-EXNOR representation of Boolean
functions,” IEE Proc. Computers and Digital Techniques, vol.149,
no.3, pp.82–96, May 2002.

[13] N. Koda and T. Sasao, “An upper bound on the number of products in
minimum ESOPs,” IFIP WG 10.5 Workshop on Applications of the
Reed-Muller Expansion in Circuit Design, pp.94–101, Aug. 1995.

[14] Monolithic Memories Inc., PAL/PLE DEVICE: Programmable
Logic Array Handbook, Fifth Edition, 1986.

[15] S. Muroga, Logic Design and Switching Theory, John Wiley &
Sons, 1979.

[16] D. Pellerin and M. Holley, Practical Design Using Programmable
Logic, Prentice Hall, 1991.

[17] RICOH, CMOS Electrically Programmable Logic, Series 20, no.85-
02, 1985.

[18] T. Sasao, “EXMIN2: A simplification algorithm for exclusive-OR
sum-of-products expressions for multiple-valued input two-valued
output functions,” IEEE Trans. Comput.-Aided Des. Integrated Cir-
cuits Syst., vol.12, no.5, pp.621–632, May 1993.

[19] T. Sasao, “AND-EXOR expressions and their optimization,” in
Logic Synthesis and Optimization, ed. T. Sasao, Kluwer Academic
Publishers, 1993.

[20] T. Sasao, “A design method for AND-OR-EXOR three-level net-
works,” IEEE/ACM Int. Workshop on Logic Synthesis, pp.8:11–
8:20, May 1995.

[21] T. Sasao, “Representations of logic functions using EXOR opera-
tors,” in Representations of Discrete Functions, eds. T. Sasao and
M. Fujita, Kluwer Academic Publishers, 1996.

[22] K. Shu, H. Yasuura, and S. Yajima, “Optimization of PLDs with
output parity gates,” National Convention, Information Processing
Society of Japan, March 1985.

[23] N. Song and M.A. Perkowski, “Minimization of exclusive sum-of-
products expressions for multiple-valued input, incompletely spec-
ified functions,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol.15, no.4, pp.385–395, April 1996.

[24] Texas Instruments Inc., The TTL Data Book for Design Engineers,
1973.

[25] A. Weinberger, “High-speed programmable logic array adders,”
IBM J. Res. Dev., vol.23, no.2, pp.163–178, March 1979.

Debatosh Debnath received the B.Sc.Eng.
and M.Sc.Eng. degrees from the Bangladesh
University of Engineering and Technology,
Dhaka, Bangladesh, in 1991 and 1993, respec-
tively, and the Ph.D. degree from the Kyushu In-
stitute of Technology, Iizuka, Japan, in 1998. He
held research positions at the Kyushu Institute of
Technology from 1998 to 1999 and at the Uni-
versity of Toronto, Ontario, Canada, from 1999
to 2002. In 2002, he joined the Department of
Computer Science and Engineering at the Oak-

land University, Rochester, Michigan, as an Assistant Professor. His re-
search interests include logic synthesis, design for testability, multiple-
valued logic, and CAD for field-programmable devices. He was a recipient
of the Japan Society for the Promotion of Science Postdoctoral Fellowship.

940
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.5 MAY 2007

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in electronics engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, the IBM T.J. Watson Research Center,
Yorktown Heights, New York, and the Naval
Postgraduate School, Monterey, California. He
is now a Professor of the Department of Com-
puter Science and Electronics at the Kyushu In-
stitute of Technology, Iizuka, Japan. His re-

search areas include logic design and switching theory, representations of
logic functions, and multiple-valued logic. He has published more than
nine books on logic design, including Logic Synthesis and Optimization,
Representation of Discrete Functions, Switching Theory for Logic Synthe-
sis, and Logic Synthesis and Verification, Kluwer Academic Publishers,
1993, 1996, 1999, and 2001, respectively. He has served as Program Chair-
man for the IEEE International Symposium on Multiple-Valued Logic (IS-
MVL) many times. Also, he was the Symposium Chairman of the 28th
ISMVL held in Fukuoka, Japan, in 1998. He received the NIWA Memorial
Award in 1979, Distinctive Contribution Awards from the IEEE Computer
Society MVL-TC for papers presented at ISMVLs in 1986, 1996, 2003 and
2004, and Takeda Techno-Entrepreneurship Award in 2001. He has served
as an Associate Editor of the IEEE Transactions on Computers. He is a
fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

