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PAPER

A Design of AES Encryption Circuit with 128-bit Keys Using
Look-Up Table Ring on FPGA

Hui QIN†, Nonmember, Tsutomu SASAO†a), and Yukihiro IGUCHI††, Members

SUMMARY This paper addresses a pipelined partial rolling (PPR) ar-
chitecture for the AES encryption. The key technique is the PPR ar-
chitecture. With the proposed architecture on the Altera Stratix FPGA,
two PPR implementations achieve 6.45 Gbps throughput and 12.78 Gbps
throughput, respectively. Compared with the unrolling implementation that
achieves a throughput of 22.75 Gbps on the same FPGA, the two PPR im-
plementations improve the memory efficiency (i.e., throughput divided by
the size of memory for core) by 13.4% and 12.3%, respectively, and re-
duce the amount of the memory by 75% and 50%, respectively. Also, the
PPR implementation has a up to 9.83% higher memory efficiency than the
fastest previous FPGA implementation known to date. In terms of resource
efficiency (i.e., throughput divided by the equivalent logic element or slice),
one PPR implementation offers almost the same as the rolling implemen-
tation, and the other PPR implementation offers a medium value between
the rolling implementation and the unrolling implementation that has the
highest resource efficiency. However, the two PPR implementations can
be implemented on the minimum-sized Stratix FPGA while the unrolling
implementation cannot. The PPR architecture fills the gap between un-
rolling and rolling architectures and is suitable for small and medium-sized
FPGAs.
key words: AES encryption, pipelined partial rolling (PPR), FPGA

1. Introduction

The Advanced Encryption Standard (AES) [1] was accepted
as a FIPS (Federal Information Processing Standards) in
Nov. 2001, and became effective on May 26, 2002 by
NIST (National Institute of Standards and Technology) to
replace DES (Data Encryption Standard). With the increas-
ing requirements for secure communications, the AES has
a broad range of applications, including smart cards, cellu-
lar phones, Web servers, automated teller machines (ATMs),
and digital video recorders. Since Nov. 2001, various
AES implementations using ASICs or FPGAs have been
reported. Some focus on the small chip area by using the
rolling architecture whereby the data are iteratively passed
through the round transformations [2]–[4], and others fo-
cus on high throughput by using the unrolling architec-
ture whereby processing multiple blocks of data simulta-
neously. To achieve a high throughput, partition of each
round by inserting pipeline registers is necessary. How-
ever, this will increase the cycles (or stages) and regis-
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Fig. 1 AES encryption with 128-bit key.

ters in the AES round blocks. For example, Saggese et
al. [5] achieved 20.3 Gbps with 50 cycles, while Zambreno
et al. [6] achieved 23.50 Gbps with 30 cycles.

In this paper, we have developed a pipelined partial
rolling (PPR) architecture to achieve a high throughput with
small memory area. It performs partial-rolling in the round
while adopting the pipeline technique. In addition, this ar-
chitecture is well suited to operate in an online key gener-
ation manner. Using the PPR architecture, a fully online
key generated AES encryption processor of 128-bit key as
shown in Fig. 1 can be implemented on the minimum size
Altera Stratix device, but the unrolling implementation is
unable to fit into the same device. Furthermore, the pro-
posed implementation on the Altera Stratix EP1S20F780C5
device increases the memory efficiency up to 13.4% com-
pared with the unrolling implementation on the same device.
It has 9.83% higher memory efficiency than the prior fastest
FPGA implementation [6], and it can reduce the amount of
memory up to 75%. The rest of the paper is organized as
follows: Section 2 explains the AES algorithm. Section 3
presents conventional AES implementation. Section 4 intro-
duces the AES design based on LUT ring. Section 5 presents
the AES implementation using an FPGA. Section 6 shows
the experimental results. And finally, Sect. 7 concludes the
paper.

The preliminary version of this paper was presented at
GLSVLSI’05 [7].

2. AES Algorithm

The AES algorithm is based on arithmetic in a finite Galois
field, GF(28), and is a symmetric block cipher that encrypts
128-bit plain text data with a 128-bit, 192-bit, or 256-bit
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cipher key [1]. The 128-bit plain text data is divided into
16-byte data. These byte data are mapped to a 4×4 matrix
called the State, and all the internal operations of the AES al-
gorithm are performed on the State. The algorithm consists
of four basic transformations that make up a round which
is iterated 10 times for a 128-bit length key, 12 times for a
192-bit key, and 14 times for a 256-bit key.

• SubBytes - Replaces each byte of the data block with
another byte by using an S-box lookup table. The con-
tents of the S-box is the multiplicative inverse in GF
(28), combined with an affine permutation over GF(2).
• ShiftRows - Cyclically shifts i bytes of the state in each

row, where i is the row number.
• MixColumns - Groups 4-bytes of each column in the

state matrix together forming 4-term polynomials and
multiplies the polynomials with a fixed polynomial
mod (x4 + 1).
• AddRoundKey - Adds the round key to the state using

a bit-wise XOR operation.

The round key for each round are generated through the key
expansion process that is described by the pseudo code listed
in the Fig. 2 [1], where Nr is 10, 12 or 14 and Nk is 4, 6, or
8, when the key length is 128, 192 or 256-bit, respectively.

In the key expansion, SubBytes transformation is ap-
plied to each of the four bytes in the SubWord, while the
RotWord cyclically shifts each byte in a word one byte to
the left. The Rcon is a constant word array, and only the
leftmost byte in each word is nonzero [1]. The key expan-
sion generates a total of 4(Nr + 1) 4-byte words (w0, w1,. . . ,
w4(Nr+1)−1). The initial key, which is divided into Nk words,
is used as the initial Nk words (w0, w1, . . . ,wNk−1), and the
rest of the words are generated from the initial key itera-
tively. Each round key has 128 bits, and is formed by con-
catenating four words: Round Key(i) = (w4i, w4i+1, w4i+2,
w4i+3).

In this paper, we focus on the AES encryption using

Fig. 2 Pseudo code for key expansion.

a 128-bit key shown in Fig. 1 which requires 11 rounds
(i.e., logic operations). The first round performs only the
AddRoundKey transformation, the middle 9 rounds per-
form all the four transformations: SubBytes, ShiftRows,
MixColumns and AddRoundKey, and the final round per-
forms three transformations: SubBytes, ShiftRows, and Ad-
dRoundKey, omitting the MixColumns transformation. The
round keys for each round are generated from the original
128-bit input key through the key expansion block. In gen-
eral, two methods exist to generate the round keys. In the
first method, the round keys are stored in a register or mem-
ory, and then used for all incoming plain text data. How-
ever, this method requires a large register or memory for the
round keys, and it needs a preprocessing phase every time
the key is changed. The second method is an online key gen-
eration algorithm, where the round keys are generated con-
currently with the encryption process. Since the online key
generation method allows the block cipher to work at full
speed even if the key is changed, we adopted this method in
this work.

3. Existing AES Architecture

Various architectures exist to realize the AES encryption.
Among them, the rolling architecture and the unrolling ar-
chitecture shown in Fig. 3 (a) and (b) are the two basic ar-
chitectures.

The rolling architecture shown in Fig. 3 (a) uses a
feedback structure where the data are iteratively transformed
by the round functions. This approach occupies small area,
but achieves low throughput. Existing rolling implementa-
tions [2], [3], [6], have the throughput of approximately 1 to
1.4 G-bit/s, and the size of the memory for the core is just
32 K bits.

In the unrolling architecture shown in Fig. 3 (b), the

Fig. 3 Existing AES architectures.
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round blocks are pipelined and the inserted pipeline regis-
ters allow simultaneous operation of all 11 round blocks.
Due to the pipeline, this approach achieves a high through-
put, but requires large area. Existing unrolling implementa-
tions [5], [6], [8], [9], have the throughput of approximately
10 to 23 G-bit/s, and the size of the memory for the core is
up to 320 K bits.

4. Pipelined Partial Rolling (PPR) Architecture

This section describes the AES design with a new type of
memory-based architecture called pipelined partial rolling
(PPR) based on LUT ring [10], [11].

In the AES round, among the four inner transforma-
tions, the SubBytes requires the largest area and latency. It
consists of 16 S-Boxes that is the most complicated func-
tion block in the entire circuit. For the SubBytes, both of
the rolling implementation and the unrolling implementa-
tion use 16 S-Boxes. In the PPR, we use a special mecha-
nism for the ShiftRows and the SubBytes to reduce the num-
ber of S-Boxes and areas for shifters and multiplexers.

Two approaches exist to realize an S-Box, the first one
uses Galois Field operations. In this method, since the direct
calculation of the multiplicative inverse in GF(28) is very ex-
pensive, the inventors of the AES algorithm suggest an algo-
rithm that calculates the multiplicative inverse in GF(28) us-
ing the GF(24) operations [12]. Reference [13] presents one
implementation of such algorithm. In this paper, we called
it combinational S-Box using Galois Field operations. The
other method uses look-up table that is faster but consumes
larger amount of area compared with the former, as the stud-
ies in [14] and [15] indicate. Since the PPR requires the
minimum latency for the S-Box, we use a ROM to realize
the S-Box in the SubBytes. As for the MixColumns, since
the multiplication over GF(28) in MixColumns uses a con-
stant as one operand, and this constant multiplication can be
simply converted into a bit-wise XOR operation, the matrix
multiplication can be replaced by several XOR operations.
Hence, the MixColumns can be realized as XOR operations.
Also, the AddRoundKey operation uses an XOR operation
to add the round key. Thus, we can easily implement the
MixColumns and the AddRoundKey by using bit-wise XOR
operations.

Figure 4 shows the architecture of the PPR. We used
pipeline to increase the throughput. The key expansion
block consists of 10 round key circuits that used to gener-
ate the round key for each round. A round unit consists of
the following components:
Rolling Part: Performs the ShiftRows and the SubBytes
transformations.
128-bit Pipeline Reg.: Stores the states of each round.
MixColumns: Performs the MixColumns using several bit-
wise XOR operations.
128-bit XOR: Performs the AddRoundKey using 128-bit
bit-wise XOR operations.

The rolling part is the most important part in the round
unit. In this paper, we show two designs for the rolling part:

Fig. 4 Architecture of PPR.

Fig. 5 Rolling part: 4SM.

Fig. 6 Rolling part: 8SM.

The 4SM and the 8SM.
The 4SM shown in Fig. 5 consists of a 16-byte cyclic

shifter and four copies of S-Module (SM). The 16-byte
cyclic shifter have 16-byte (128-bit) inputs and 4-byte out-
puts. Let F be the input-to-output mapping function of the
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Table 1 Relationship between the inputs and the outputs of the permutation network in 8SM.

Inputs X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

Outputs X0 X10 X4 X14 X8 X2 X12 X6 X5 X15 X9 X3 X13 X7 X1 X11

Fig. 7 Operations of rolling part: 4SM.

cyclic shifter, then

F(X0, X1, . . . , X15,K) = ( XK(mod16),

X(K+4)(mod16),

X(K+8)(mod16),

X(K+12)(mod16)),

where K is 0, 5, 10 or 15. K is represented by the 4-bit
output signals from the control part, and Xi denotes byte
data. For example,

F(X0, X1, . . . , X15, 5) = (X5, X9, X13, X1).

Each S-Module consists of a 2 K-bit ROM and a 32-bit feed-
back register, where the ROM stores the table for the S-Box,
and the feed-back register stores the outputs of the S-Box.

The 8SM shown in Fig. 6 consists of a 16-byte to 8-
byte selector and eight copies of S-Module. In front of the
selector, the permutation network is used to arrange the in-
put data in the required order. Table 1 shows the permuta-
tion, where both inputs and outputs are 16-byte data. When
the output Sel is 0, the upper 8 bytes are selected. On the
other hand, when the output Sel is 1, the lower 8 bytes are
selected. Each S-Module consists of a 2 K-bit ROM and a
16-bit feed-back register, where the ROM stores the table
for the S-Box, and the feed-back register stores the outputs
of the S-Box. In the round operation, the S-Modules of the
4SM are used four times, while the S-Modules of the 8SM
are used twice.

For the 4SM, we can also adopt the architecture of the
8SM. That is, to use permutation network and selector in-
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stead of the 16-byte cyclic shifter. In our FPGA implemen-
tation, Quartus II 4.1 simulator shows that a 16-byte cyclic
shifter produces higher memory efficiency than the permu-
tation and a selector, while the areas for the two implemen-
tations are almost the same.

Both of the 4SM and the 8SM, the whole circuits of the
rolling parts form the special LUT rings where feedback is
unnecessary [10], [11].

Example 4.1: This part illustrates the operations for the
4SM. Let the hexadecimal representation of the 128-bit
original data be 00 10 20 30 01 11 21 31 02 12 22 32 03
13 23 33. After SubBytes and ShiftRows, the output data
become 63 82 93 c3 7c c9 26 04 77 7d b7 c7 7b ca fd 23.
Figures 7 (a) - (b) show the operations of the 4SM.

In Step 1, the outputs of the control part are 0000, and
then the outputs of the 16-byte cyclic shifter become 00, 01,
02, 03. By using the S-Boxes, the outputs of the ROMs
become 63, 7c, 77, 7b, respectively.

In Step 2, when a positive clock is applied, the out-
puts of the control part become 0101. At the same time, the
previous outputs of ROMs (63, 7c, 77, 7b) are stored in the
registers, and also sent to the output terminals. And then
the outputs of the 16-byte cyclic shifter become 11, 12, 13,
10. By using the S-Boxes, the outputs of the ROMs become
82,c9,7d,ca, respectively.

In Step 3, when a positive clock is applied, the out-
puts of the control part become 1010. At the same time, the
previous outputs of ROMs (82, c9, 7d, ca) are stored in the
registers, and also sent to the output terminals. And then the
outputs of the 16-byte cyclic shifter become 22, 23, 20, 21.
By using the S-Boxes, the outputs of the ROMs become 93,
26, b7, fd, respectively.

In Step 4, when a positive clock is applied, the out-
puts of the control part become 1111. At the same time, the
previous outputs of ROMs (93, 26, b7, fd) are stored in the
registers, and also they are sent to the output terminals. And
then the outputs of the 16-byte cyclic shifter become 33, 30,
31, 32. By using the S-Boxes, the outputs of the ROMs be-
come c3, 04, c7, 23, respectively.

In Step 5, when a positive clock is applied, the out-
puts of the control part become 0000. At the same time, the
previous outputs of ROMs (c3, 04, c7, 23) are stored in the
registers, and also sent to the output terminals. And then the
outputs of the 16-byte cyclic shifter become 00, 01, 02, 03.
In this way, the rolling part implements the SubBytes and
ShiftRows transformations. (End of Example)

Since the round keys are generated on the fly, we di-
vide the Key Expansion Block into 10 round key circuits
while inserting the same number of pipeline registers as the
round circuit as shown in Fig. 4. From Fig. 2, we can ob-
serve that the critical path of the round key circuit consists
of one S-Box and four XOR gates. Since the critical path
of the key expansion is shorter than that of a Rolling Part,
we use combinational S-Box [13] in each round key circuit
to reduce the aera. Figure 8 shows the detailed implemen-
tation of the S-Box using Galois Field operations. First, the

Fig. 8 Combinational S-Box using Galois field operations.

input byte (an element of GF(28)) is mapped to two elements
of GF(24). Next, the multiplicative inverse is calculated us-
ing GF(24) operators. Then the two GF(24) elements are
inversely mapped to one element in GF(28). In the end, the
affine transformation is performed to complete the SubBytes
transformation.

5. FPGA Implementation

We use the Altera Stratix FPGA to implement the AES en-
cryption circuit. The Altera Stratix FPGAs offer special
RAM blocks called M4K that can store 4096 bits. The M4K
can be configured at ratios between 4096×1 to 256×16, and
may have dual-port functionality. The M4Ks are also suit-
able for implementing synchronous ROMs.

As mentioned in Sect. 4, in the round, the MixColumns
and the AddRoundKey can be realized as a network of XOR
gates and are implemented by Logic Elements (LEs) on the
FPGA. In the rolling part, the 16-byte cyclic shifter for the
4SM and selector for the 8SM are implemented by LEs. To
implement S-Boxes, we used the M4K. Each M4K is con-
figured as a dual-port synchronous 256×8-bit words ROM
to implement two separate S-Boxes. The values in the look-
up tables for S-Boxes are loaded into the M4Ks at the con-
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Table 2 Comparison of AES-4SM, AES-8SM, UNROLLING, UNROLL ROM and the published
works.

Design Device LE / Memory Memory Cycle F clk Th. Mem-eff Eq-LE / LE-eff / Design

Slice for key for core (MHz) (Gbps) ( Mbps
K-bit ) Eq-Sli Sli-eff

2 Rule

AES-4SM 1S25 10530 0 80 K-bit 21 49.80 6.37 79.68 15650 0.407 0.13 µm
LEs (20 M4Ks) LEs Mbps/LE

AES-8SM 1S25 10730 0 160 K-bit 21 98.31 12.58 78.65 20970 0.600 0.13 µm
LEs (40 M4Ks) LEs Mbps/LE

UNROLLING 1S25 8220 0 320 K-bit 21 179.95 23.03 71.98 28700 0.803 0.13 µm
LEs (80 M4Ks) LEs Mbps/LE

UNROLL ROM 1S25 7600 80 K-bit 320 K-bit 21 182.48 23.36 72.99 33200 0.704 0.13 µm
LEs (20 M4Ks) (80 M4Ks) LEs Mbps/LE

AES-4SM 1S20 10645 0 80 K-bit 21 50.41 6.45 80.66 15765 0.409 0.13 µm
LEs (20 M4Ks) LEs Mbps/LE

AES-8SM 1S20 10538 0 160 K-bit 21 99.84 12.78 79.87 20778 0.615 0.13 µm
LEs (40 M4Ks) LEs Mbps/LE

UNROLLING 1S20 8515 0 320 K-bit 21 177.75 22.75 71.10 28995 0.785 0.13 µm
LEs (80 M4Ks) LEs Mbps/LE

UNROLL ROM 1S20 —— oversize 0.13 µm
AES-4SM 1S10 10220 0 80 K-bit 21 48.24 6.18 77.19 15340 0.403 0.13 µm

LEs (20 M4Ks) LEs Mbps/LE
AES-8SM 1S10 10237 0 160 K-bit 21 96.10 12.30 76.88 20477 0.601 0.13 µm

LEs (40 M4Ks) LEs Mbps/LE
UNROLLING 1S10 —— 0 oversize 0.13 µm
UNROLL ROM 1S10 —— oversize 0.13 µm

Standaert et al. XCV3 2784 80 K-bit 320 K-bit 21 11.77 36.78 15584 0.378 0.18 µm
[8](unrolling) 200E8 Slices (20 BRAMs) (80 BRAMs) Slices Mbps/Slice

Saggese et al. XVE 5810 80 K-bit 320 K-bit 50 20.30 63.44 18610 0.545 0.18 µm
[5](unrolling) 2000 Slices (20 BRAMs) (80 BRAMs) Slices Mbps/Slice

UF10-PP3B [6] XC2V 5142 80 K-bit 320 K-bit 30 23.50 73.44 17942 0.655 0.12 /
(unrolling) 4000 Slices (20 BRAMs) (80 BRAMs) Slices Mbps/Slice 0.15 µm
UF1-PP0B [6] XC2V 387 8 K-bit 32 K-bit 10 1.41 44.06 1667 0.423 0.12 /
(rolling) 4000 Slices (2 BRAMs) (8 BRAMs) Slices Mbps/Slice 0.15 µm
Helion [2] Stratix 1023 8 K-bit 32 K-bit 10 1.40 43.75 3583 0.391 0.13 µm
(rolling) -C5 LEs (2 M4Ks) (8 M4Ks) LEs Mbps/LE
1S10: Altera Stratix EP1S10F780C5;1S20: Altera Stratix EP1S20F780C5; 1S25: Altera Stratix EP1S25F780C5
LE: Contains one 4-input look-up tables; Slice: Contains two 4-input look-up tables; BRAM: Block Selected RAM (4 K-bit)
Eq-LE: All equivalent LEs where one M4K is equivalent to 256 LEs; Eq-Sli: All equivalent slices where one BRAM is equivalent to 128 slices
LE-eff: Throughput/Eq-LE; Sli-eff: Throughput/Eq-Sli

figuration time. Since an M4K implements two separate S-
Boxes, 8 copies of the M4K are sufficient for each SubBytes
that contains 16 S-Boxes. As for the key expansion block,
each round key circuit consists of 6 XOR gates and 4 com-
binational S-Boxes that are implemented by LEs, where the
combinational S-box is realized by an average of 45 LEs for
the EP1S20F780C5 device. Note that the number of LEs for
the combinational S-box would be slightly different for the
different devices.

We also designed the unrolling implementation with
the same FPGA for comparison. In this design, the Sub-
Bytes was implemented by M4Ks, the MixColumns and
the AddRoundKey were implemented by LEs, and the
ShiftRows was simply realized by hardwiring. To realize
the S-Box of the key expansion block in the unrolling im-
plementation, we use both the look up table method where
two S-Boxes were implemented by one M4K, and the Ga-
lois Field operations method where the combinational S-box
was realized by LEs.

6. Performance and Comparisons

In this section, we evaluate the performance of the AES-
4SM and the AES-8SM, and compare with the unrolling im-
plementations called UNROLLING, UNROLL ROM (de-

signed by us) and other published works.

6.1 Various Implementations

The AES-4SM is implemented with rolling part 4SM,
while the AES-8SM is implemented with rolling part 8SM.
Both the UNROLLING and the UNROLL ROM are im-
plemented with unrolling architecture. The former adopts
the combinational S-Boxes in the key expansion block but
adopts ROMs for the S-Boxes in the round circuit, and the
latter adopts ROMs for the S-Boxes in both the key expan-
sion block and the round circuit. To compare the perfor-
mance of different architectures, we designed both the pro-
posed implementations and the unrolling implementations
on the same FPGA. For each implementation, first we de-
scribed the circuit by Verilog HDL, and then used Quartus II
4.1 for synthesis, place & route and timing analysis. Finally,
we used the Quartus II 4.1 simulator to test the logical op-
eration and to do the worst-case timing analysis for the de-
sign in the target FPGA with the test vectors available from
CSRC (computer security resource ceneter) of NIST [16].
The maximum clock rate (F clk) was obtained by the Quar-
tus II 4.1 simulator.

In Table 2, the upper twelve rows show the results of
our implementations AES-4SM, AES-8SM, UNROLLING
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and UNROLL ROM on three Altera Stratix devices, while
the lower five rows show the previous results done by other
groups. The column “Device” denotes the FPGA used. The
column “LE / Slice” denotes the number of LEs utilization
of Altera FPGA or the number of occupied slices of Xilinx
FPGA. The column “Memory for key” denotes the amount
of memory utilized for the key expansion block, and “Mem-
ory for core” denotes the amount of memory utilized for the
core, where one M4K is equivalent to 4096 bits. The column
“Cycle” denotes the number of clock cycles for the process
of the whole AES rounds. The column “Th.” denotes the
maximum throughput calculated by:

Th. = 128 · F clk .

The column “Mem-eff” shows the memory efficiency cal-
culated by:

Mem-eff =
Throughput (Mbps)

Memory for core (K bits)
. (1)

6.2 Memory Efficiency

In the Altera Stratix Device family [17], EP1S10F780C5 is
the minimum-sized device, containing 10570 LEs and 60
M4Ks. EP1S20F780C5 is the medium-sized device, con-
taining 18460 LEs and 82 M4Ks. EP1S25F780C5 is the
large-sized device, containing 25660 LEs and 138 M4Ks.

On EP1S25F780C5 (the large-sized device), all of our
designs can be implemented. The UNROLL ROM has a
slightly higher throughput than the UNROLLING. On this
device, the UNROLL ROM uses 80 K-bits more memory
than the UNROLLING, however, the UNROLL ROM uses
just 620 fewer LEs than the UNROLLING. Since the mem-
ory efficiency only considers the memory for the core, the
UNROLL ROM has a slightly higher memory efficiency
than the UNROLLING, but has still lower memory effi-
ciency than both the AES-4SM and the AES-8SM.

On EP1S20F780C5 (the medium-sized device), the
AES-4SM achieves a throughput of 6.45 Gbps by using
20 M4Ks, and the AES-8SM achieves a throughput of
12.78 Gbps by using 40 M4Ks. Compared with the UN-
ROLLING that achieves a throughput of 22.75 Gbps using
80 M4Ks, the AES-4SM and the AES-8SM improve the
memory efficiency by 13.4% and 12.3%, respectively, and
reduce the amount of the memory by 75% and 50%, respec-
tively. This device is too small for the UNROLL ROM be-
cause both of the memory for key and the memory for core
requires 100 copies of the M4K, which exceeds the maxi-
mum number of the M4Ks of the EP1S20F780C5.

On EP1S10F780C5 (the minimum-sized device), both
of the AES-4SM and the AES-8SM can be implemented
where 96% of LEs are utilized. However, this device is too
small for both the UNROLL ROM and the UNROLLING
due to the limitation of the number of M4Ks.

Helion [2] designed the rolling implementation on Al-
tera Stratix FPGA as shown in the last row of Table 2. Since
the LEs and memory used by Helion is less than that of the

EP1S10F780C5, we can conjecture that this design fits into
the same device. Although our proposed implementations
on the EP1S10F780C5 achieve lower throughputs than the
implementations on other two devices, compared with He-
lion that achieves 1.4 Gbps, the AES-4SM and the AES-
8SM increase the throughput by 4.41 times and 8.79 times,
respectively, and improve the memory efficiency by 13.4%
and 12.3%, respectively.

The upper part of the Table 2 shows that the AES-
4SM always has the highest memory efficiency, and the
AES-8SM has a slightly lower memory efficiency than that
of the AES-4SM where the implemented devices are dif-
ferent. Also, only the AES-4SM, the AES-8SM and the
rolling implementation [2] fit into the smallest Strtix device.
Hence, the proposed implementations are also suitable for
the smaller FPGA implementation. In addition, the AES-
4SM and the AES-8SM fill the gap between the rolling im-
plementation and the unrolling implementation.

Direct comparison among various FPGA implementa-
tions of the AES algorithms is difficult, since FPGA tar-
get devices are usually different. However, many AES im-
plementations provide the maximum throughputs and the
amount of the memory utilized for the core. Thus, we can
compare the memory efficiency defined in (1).

Compared with the published unrolling implementa-
tions signified with “(unrolling)” in the column “Design”,
the AES-4SM and the AES-8SM on the EP1S20F780C5
have 9.83% and 8.76% higher memory efficiencies than the
fastest implementation (UF10-PP3B). Note that the number
of cycles for UF10-PP3B is 30, while the number of cy-
cles for our proposed implementations is 21. Besides, the
amounts of the memory utilized for the core of the AES-
4SM and the AES-8SM are reduced by 75% and 50%, re-
spectively.

Compared with the published rolling implementations
signified with “(rolling)” in the column “Design”, both the
throughputs and the memory efficiencies of the proposed
implementations are much higher than the fastest rolling im-
plementation (UF1-PP0B).

Figure 9 illustrates the relation of Memory for core and
Throughput in Table 2. The gradient of the line shows the

Fig. 9 An illustration of the memory efficiency in Table 2.
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memory efficiency of the fastest design UF1-PP0B [6]. Both
the AES-4SM and the AES-8SM have a higher memory ef-
ficiency than others.

6.3 Resource Efficiency

Here, we consider the efficiency of the utilized resource
considering both LEs or slices and the block RAMs, i.e.,
the relation between the throughput with the utilized re-
source. Since the FPGA companies do not disclose the
actual area for LEs or slices and the block RAMs, the ex-
act evaluation of the efficiency of the utilized resource is
difficult. Among the publications on the AES, the authors
of [5] and [18] compare the efficiency of utilized resource
(both slice and BRAM) where one BRAM is equivalent to
128 slices. Although Altera FPGA is different from Xilinx
FPGA, both the LE and the slice consist of 4-input look up
tables (LUTs), and both the M4K and the BRAM can be
used to form the dual-port 256 × 8-bit RAM that is adopted
in the AES design. Thus, we assume that one BRAM is
equivalent to 128 slices, and one M4K is equivalent to 256
LEs, since the number of LUTs in a slice is twice of that in
a LE.

In Table 2, the column Eq-LE and Eq-Sli denote the
number of the equivalent LEs and the number of the equiva-
lent Slices, respectively, where one M4K is replaced by 256
LEs and one BRAM is replaced by 128 slices. In the col-
umn “LE-eff / Sli-eff

2 ”, LE-eff and Sli-eff show the resource
efficiency of Altera FPGA and Xilinx FPGA, respectively.
They are calculated by:

LE-eff =
Throughput (Mbps)

Eq-LE (LE)
,

Sli-eff =
Throughput (Mbps)

Eq-Sli (slice)
.

Since one slice is equivalent to two LEs with re-
gards the number of LUTs, Sli-eff is divided by two as
shown in Table 2. In this regards, the UNROLLING on
the EP1S25F780C5 (large-sized FPGA) has the highest re-
source efficiency. Although the AES-8SM and the AES-
4SM are less efficient than the highest resource efficiency,
both of them can be implemented on the EP1S10F780C5
(minimum-sized FPGA) while the UNROLLING cannot.

6.4 Features of PPR

Both of the AES-4SM and the AES-8SM have much higher
throughput than software implementations. An AES rolling
implementation achieves 1.538 Gbps on a 3.2 GHz Pen-
tium4 processor [19] and a 640 Mbps on a 1 GHz embedded
processor [20].

Table 3 compares the features of the three different ar-
chitectures: unrolling, PPR, and rolling. In the columns
“Memory efficiency” and “Resource efficiency”, the values
of Helion [2] are set to be 1. We can see that the PPR archi-
tecture offers a high memory efficiency, and the AES-8SM

Table 3 Comparison of the different architectures.

Architecture Memory Through- Memory Resource
area put efficiency efficiency

unrolling Large High 0.84∼1.68 0.97∼2.05
PPR(AES-4SM) Small Medium 1.76∼1.84 1.03∼1.05
PPR(AES-8SM) Medium High 1.76∼1.84 1.54∼1.57
rolling Small Low 1 1∼1.08

offers a medium resource efficiency, but the AES-4SM of-
fers the same resource efficiency as rolling architecture.

7. Conclusions

In this paper, we presented the pipelined partial rolling
(PPR) architecture for an AES encryption processor. We
implemented two different designs: AES-4SM and AES-
8SM on three different-sized Altera Stratix FPGAs. On the
medium-sized FPGA, the AES-4SM achieves a throughput
of 6.45 Gbps by using 20 M4Ks, and the AES-8SM achieves
a throughput of 12.78 Gbps by using 40 M4Ks. Compared
with the unrolling implementation that achieves a through-
put of 22.75 Gbps by using 80 M4Ks on the same FPGA,
the AES-4SM and the AES-8SM improve the memory ef-
ficiency by 13.4% and 12.3%, respectively, and reduce the
amount of the memory by 75% and 50%, respectively. Com-
pared with the existing FPGA designs, the proposed im-
plementations have a higher memory efficiency than all the
prior implementations known to the authors. Although the
AES-8SM offers a medium resource efficiency and the AES-
4SM offers almost the same resource efficiency as rolling
implementation, both of them can be implemented on the
minimum-sized FPGA while the unrolling implementation
cannot. The PPR architecture fills the gap between un-
rolling and rolling architectures and is suitable for small and
medium-sized FPGAs.
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