IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.12 DECEMBER 2006

3471

| PAPER Special Section on VLSI Design and CAD Algorithms

A PC-Based Logic Simulator Using a Look-Up Table Cascade

Emulator

Hiroki NAKAHARA ™, Student Member, Tsutomu SASAO'?, and Munehiro MATSUURA ", Members

SUMMARY This paper represents a cycle-based logic simulation
method using an LUT cascade emulator, where an LUT cascade consists
of multiple-output LUTSs (cells) connected in series. The LUT cascade
emulator is an architecture that emulates LUT cascades. It has a control
part, a memory for logic, and registers. It connects the memory to reg-
isters through a programmable interconnection circuit, and evaluates the
given circuit stored in the memory. The LUT cascade emulator runs on
an ordinary PC. This paper also compares the method with a Levelized
Compiled Code (LCC) simulator and a simulator using a Quasi-Reduced
Multi-valued Decision Diagram (QRMDD). Our simulator is 3.5 to 10.6
times faster than the LCC, and 1.1 to 3.9 times faster than the one using
a QRMDD. The simulation setup time is 2.0 to 9.8 times shorter than the
LCC. The necessary amount of memory is 1/1.8 to 1/5.5 of the one using a
QRMDD.

key words: LUT cascade, bdd_for_cf, functional decomposition

1. Introduction

With the increase of the integration of LSIs, the time for the
verification of the design increases. Thus, high-speed logic
simulators are needed.

Logic simulators can be roughly divided into two
types: event-driven simulators and cycle-based simulators.
In an event-driven simulator, only the outputs of the gates
whose input signals change are evaluated. On the other
hand, in a cycle-based logic simulator, the operation order
of gates are determined statically beforehand, and all the
outputs of the gates are evaluated for each clock cycle. Al-
though the cycle-based logic simulator does not perform the
timing verification, it is often faster than the event-driven
simulator.

An LCC [1] is a kind of a cycle-based logic simula-
tor using a general-purpose CPU. An LCC generates a pro-
gram code for each gate of a logic circuit, and evaluates the
circuit in a topological order from the inputs towards the
outputs. In this paper, we will present a cycle-based logic
simulator using an LUT cascade emulator. An LUT cascade
emulator [2] consists of a control part, memories, and reg-
isters. Each register is connected to a programmable inter-
connection circuit, and the LUT cascade emulator evaluates
the logic circuit stored in the memory. Murgai-Hirose-Fujita

Manuscript received March 8, 2006.
Final manuscript received June 12, 2006.

"The authors are with the Department of Computer Science
and Electronics, Kyushu Institute of Technology, lizuka-shi, 820-
8502 Japan.

a) E-mail: nakahara@ariesO1.cse.kyutech.ac.jp
b) E-mail: sasao@cse.kyutech.ac.jp
¢) E-mail: matsuura@cse.kyutech.ac.jp

DOI: 10.1093/ietfec/e89—a.12.3471

[10] also developed a logic simulator using large memories.
Their method first converts a given circuit into a random
logic network of single-output LUTS, then stores them in
the memory, and finally evaluates the circuit by an event-
driven logic simulator implemented by a hardware acceler-
ator. In our method, we first convert the given circuit into a
cascade rather than random logic, so the control part is sim-
pler than Murgai-Hirose-Fujita’s method. Also, our method
uses multiple-output LUTs rather than single-output LUTs.
In this paper, we consider a software-based logic simulation
system where the LUT cascade emulator is simulated on a
PC. Compared with the hardware-based logic emulator, a
logic simulator using a standard PC is much cheaper, and
can be enhanced with the improvement of the performance
of PCs. Our simulator outperforms commercial logic simu-
lators [13].
This paper is an extended version of [13].

2. LUT Cascade Emulator

Figure 1 shows a model of a sequential circuit, where X de-
notes inputs, Z denotes outputs, ¥ denotes the inputs to flip-
flops, Y’ denotes the outputs of flip-flops, and |Y| denotes the
number of state variables. We first introduce an LUT cas-
cade [3] that realizes the combinational part of a sequential
circuit, then introduce the LUT cascade emulator that emu-
lates the LUT cascade.

2.1 LUT Cascade

An LUT cascade is shown in Fig. 2, where multiple-output
LUTs (cells) are connected in series to realize a multiple-
output function. The wires connecting adjacent cells are
called rails. Also, each cells may have external outputs in
addition to the rail outputs. In this paper, X; denotes the ex-
ternal inputs to the i-th cell; Y] denotes the state inputs to
the i-th cell; Z; denotes the external outputs of the i-th cell;

X Combinatioanl
Circuit

Fig.1 A model for a sequential circuit.

Copyright © 2006 The Institute of Electronics, Information and Communication Engineers



3472

Tt Ry L Ryl
1 2 3

(Z1Y1) (Z2Y2) (43Y3)
Fig.2  LUT cascade.

Y; denotes the state outputs of the i-th cell; R;_; denotes the
rail inputs to the i-th cell; and R; denotes the rail outputs
from the i-th cell. We can obtain an LUT cascade by apply-
ing functional decompositions repeatedly to the BDD that
represents the multiple-output function [4].

Definition 2.1: Let X = (x1, x2,...,x,) be the input vari-
ables, Y = Y1,Y2,-..,Yym) be the output variables, and
f = ( fl(f), fz(f), e, fm(}?)) be the corresponding output
functions. The characteristic function of the multiple-

output function is )Z()?, Y) = /\(yi = f,-()?)).

The characteristic function of an n-input m-output func-
tion is a two-valued logic function with (n + m) inputs. It
has input variables x; (i = 1,2,...,n), and output vari-
ables y; for output f;. Let B = {0,1}, @ € B", F =
(F1(@), /@), ..., fu(@) € B", and b € B". Then, the char-
acteristic function satisfies the relation:

L. > [ 1 (when b= F@)
X@, )_{ 0 (otherwise)

Definition 2.2: A support variable of a function f is a
variable on which f actually depends.

Definition 2.3: [5] The BDD_for_CF of a multiple-output
function f_): (f1» f25 - -+ » fn) 1s the ROBDD [9] for the char-
acteristic function ¥. In this case, we assume that the root
node is in the top of the BDD, and the variable y; is below
the support variable of f;, where y; is the variable represent-
ing f;.

Definition 2.4: The width of the BDD_for_CF at height
k is the number of edges crossing the section of the graph
between x; and x;.1, where the edges incident to the same
nodes are counted as one. Also, in counting the width of
the BDD_for_CF, we ignore the edges that incident to the
constant 0 node.

Let X; and X, be sets of input variables, Y| and Y,
be sets of output variables, (X, Y, Xz, ¥») be the variable
ordering of a BDD _for_CF for the multiple-output function
F=(fi, ..., fn), and W be the width of the BDD_for_CF
at the height (X1, Y;) in Fig. 3. By applying functional de-
composition to ﬁ we obtain the network in Fig. 4, where the
number of lines connecting two blocks is ¢ = [log, W1 [4].

Theorem 2.1: [5] Let t,,,,, be the maximum width of the
BDD _for_CF that represents an n-input logic function f It

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.12 DECEMBER 2006

Fig.3 BDD_for_.CF.

— ?;Yl/ lz(longW

Xl:Hﬁ

| G [T
P

Fig.4 Functional decomposition.

Memory for
|~ Interconnection

l ‘l\ Memory for Page
Address

Progammable
Interconnection
Network

State Register

Fig.5 LUT cascade emulator.

Control Network

Memory

Input Register

u = [log, thmax] < k — 1, then f can be realized by a circuit
shown in Fig. 4, where |X;| = k. By applying functional
decompositions s — 1 times, we have the cascade having the
structure of Fig. 2.

2.2 LUT Cascade Emulator

Figure 5 shows an LUT cascade emulator for a sequential
circuit.

An LUT cascade emulator stores the cell data of an
LUT cascade in the Memory for Logic. The address of
cell data is calculated from inputs, state variables, and rail
outputs of the preceding cell. The LUT cascade emulator
reads the cell outputs from the memory for logic, and send
them to the State Register and the Output Register. The
Input Register stores the values of the primary inputs; the
MAR (Memory Address Register) stores the address of the
memory; the MBR (Memory Buffer Register) stores the out-
puts of the memory; the Programmable Interconnection
Network connects the input register, the state register, and
the MBR to the MAR; the Memory for Interconnection
stores data for the interconnections; Memory for Page Ad-
dress stores data for the page address; and the Control Net-



NAKAHARA et al.: A PC-BASED LOGIC SIMULATOR USING A LOOK-UP TABLE CASCADE EMULATOR

To programmable
select Interconnection
Network

From MBR

S_Clock
Fig.6  Double rank flip-flop.

work generates necessary signals to obtain functional val-
ues.

To emulate a sequential circuit, the LUT cascade em-
ulator stores state variables and output variables in the reg-
isters. Figure 6 shows the Double-Rank Flip-Flop for the
state register and the output register, where L; and L, are
D-latches. Set the select signals to high when all the cells in
a cascade are evaluated, and send the values into L latches.
When all the cascades are evaluated, the values of the state
variables are sent to L, latches. This can be done by adding
a pulse to S_Clock.

3. Synthesis of the LUT Cascade Emulator

The data for a BDD_for_CF can be too large to be stored
in a memory of the computer. Even if the BDD_for_CF is
stored in a memory of the computer, it can be too large to
be realized by an LUT cascade. Also, constructing a single
BDD_for_CF for all the outputs is inefficient, since the opti-
mization of a large BDD_for_CF is time consuming. In this
paper, we first partition the given circuit into groups, and
then construct a BDD_for_CF for each group.

Previous approach [13] partitions the output functions
into groups so that the total number of cells is minimized.
The method [13] uses a simple heuristic method to partition
the outputs quickly. However, when the BDD_for_CF rep-
resenting a single output function is excessively large, this
method fails.

In this paper, we partition the circuit rather than the
outputs. Although we have to introduce connection signals
between groups, we can represent the circuits that are too
large for the previous method [13].

3.1 Graph Representation of a Circuit

To partition the circuit, we represent the given circuit by a
directed-graph. We replace logic modules with nodes, and
interconnections with edges. Also, we divide feedback lines
into feedback inputs and feedback outputs, and replace them
with edges.

Definition 3.5: A primary input node denotes a primary
input or a feedback input. A primary output node denotes
a primary output or a feedback output. A logic module node
denotes a logic module.

Example 3.1: Figure 8 illustrates a graph representing the
circuit in Fig.7. 1In Fig.8, xo, x1, X2, x3,and z’l are pri-
mary input nodes, and zpand z; are primary output nodes.

3473

X0O
X10

xX20

X30

Fig.7 A example for a circuit.

Fig.8 A graph representing Fig. 7.

aop, ay, az,as,and a4 are logic module nodes.

Definition 3.6: Let A be a set of logic module nodes. The
input nodes for A are the nodes that have incident edges
to A, denoted by In(A). Similarly, the output nodes for A
are the nodes that have incidented edges from A, denoted by
Out(A).

3.2 Partition of a Circuit

We formulate the partition problem for the given circuit as
follows:

Problem 3.1: Suppose that the given circuit is represent
by a graph. Let A be the set of the logic module nodes in
the graph. Then, partition the set A into subsets A; (j =
1,2,...,9) as follows:

g
1 AINA;=¢ (i # ) UAj = A.
=1

2. Aj can be realized b)]/ an LUT cascade.

3. Node(A;j) < ThNode, where ThNode denotes the max-
imum number of nodes for a group, and Node(A ) de-
notes the number of nodes in the BDD_for_CF that rep-
resents A ;.

Although several partitioning algorithms (e.g. by liner
programming, or by dynamic programming) have been re-
ported [18]-[20], they require long computation time. In
this paper, we trade the partition time and the quality of the
partitioned circuits.

Algorithm 3.1: (Partition the Circuit into Groups and
Construct BDD_for_CFs) Let A be the set of the logic mod-
ule nodes that represent the given circuit, g be the number
of block in the partition, X be the set of the primary input



3474
XIX2X3X4  X5X6 X7y'T X8X9
Ly, 73
—» s rs
1 || 2 || 3 4
byi z1

Fig.9 Example of LUT cascade.

nodes, A, be the set of nodes under selection, B be the set
of nodes after selection, C be the set of candidate nodes,
and ThNode be the maximum number of nodes for each
BDD_for_CF.

1: B—X,C « Out(X),g < 0, Ay « ¢.

2: while(C # ¢){

3:  Selecta; € C such that [In(Ay U aj)| + |Out(A, U a;)|
1S minimum.

4:  Construct the BDD _for_CF that represents A, U a;.
5:  if(Node(A, U a;) < ThNode && (A, U a; can be
realized by a cascade)){
6: A, <Ay Uaj, C «— CUOut(a)) - aj.
7. }else{
8: B— BU{A,}.
9: ge—g+1.
10: Ay « aj, C < Out(a;).
11: )}
12: }

13: Terminate.

Algorithm 3.1 finds a logic module node that mini-
mizes the total number of inputs and outputs nodes (line 3).
Then, it constructs the BDD_for_CF, and checks whether the
number of nodes in BDD _for_CF is less than the ThNode or
not (line 5). Also, it checks whether the group can be real-
ized by a cascade or not (line 5). Algorithm 3.1 partitions
the given circuit quickly, since it searches for the nodes of
the circuit only once.

3.3 Memory Packing

By Algorithm 3.1, we represent a given multiple-output
function by a set of BDD_for_CFs. Then, we construct the
LUT cascades for them, and then store the LUT data into
the memory of the LUT cascade emulator.

Example 3.2: Figure 9 shows an LUT cascade consist-
ing of 4-input cells. Figure 10(a) illustrates the memory
map of cell data, where the memory for logic has 6-bit
address inputs, and each word consists of four bits. The
dark areas in the figure are unused, and P; denotes the page
number. (End of Example)

In Example 3.2, each cell data is stored in a separate
page of the memory. The data of a cell must be stored in
the same page, and must be read simultaneously. If there
are any extra space in the same page, then multiple cell data
can be stored in the same page. This method to reduce the
memory area is memory-packing [6].

Example 3.3: In Fig.10(a), by storing the cell data rs
and z; to Page 1, we have the memory map in Fig. 10(b),
where a half of the memory is enough to store all the

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.12 DECEMBER 2006

(@) (b)
Fig.10  Example of memory-packing.

data. (End of Example)

4. Logic Simulation on an LUT Cascade Emulator
4.1 Generation of the Execution Code for Simulation

Figure 11 shows the logic simulation system using an LUT
cascade emulator. First, it partitions the Verilog-VHDL
netlist-code describing the given circuit, and constructs
BDD_for_CFs by Algorithm 3.1. Then, it reduces the num-
ber of nodes of BDDs by optimizing variable orders [7].
Next, it generates LUT cascades from BDDs using func-
tional decompositions described in Chapter 2, and it maps
them into the memory of the LUT cascade emulator. Also,
it generates the C code that describes the control circuit of
the LUT cascade emulator. Next, it complies the C code
into the execution code for simulation of the LUT cascade
emulator. And, finally the simulator on a PC evaluates the
outputs of the given circuit by using the memory of the LUT
cascade emulator.

4.2 Program Code for the LUT Cascade Emulator

This system generates the program code that describes the
following operations:

Step 1 Set the input register, and initialize the state register.
Set the input values to the input register. Also, initialize
to values of the state register.
Step 2 Evaluate each cell.
Step 2.1 Simulate the programmable interconnection net-
work.
Generate the address of the memory for logic from
the values of the input register, the state register,
the MBR, and the page address.
Step 2.2 Read the memory for logic.
Read the content of the memory for logic using
the address generated in Step 2.1.

Step 2.3 Distribute the output values of the memory for
logic.
Send the values read in Step 2.2 to the output reg-
ister and to the state register.

Step 3 Perform the state transition.
Update the output values of the state register by using
S_Clock.

Sending each memory output to each register usually



NAKAHARA et al.: A PC-BASED LOGIC SIMULATOR USING A LOOK-UP TABLE CASCADE EMULATOR

Cascade Realization
BDD and Memory Mdppmg " mem Input l’eclor S
Generation -
v * bdd LUT Cascade
* vhd .

Emulator
C Code

— - l
Compllatlon
Generation Output Vectors

Fig.11  The logic simulation system using LUT cascade emulator.

consumes CPU time. Fortunately, the memory outputs are
stored in the order of primary outputs, state outputs, and
rail outputs. For a 32-bit processor, we can evaluate up to
32 outputs at a time. To obtain required outputs, we shift
the memory outputs covered by a mask, and assign into a
32-bit variable. In this way, we can evaluate the multiple
output simultaneously. Also, there is an additional merit for
performing the state transition. Let |Y| be the number of
state variables of the given logic function, then the necessary

number of evaluations for the state transition is [%] for a

32-bit machine.

Since cascades have many fewer signal lines than the
original circuit, the compilation time for cascades are much
shorter than that of the conventional LCC method.

4.3 Analysis of Simulation Time

When an LUT cascade emulator is implemented on a dedi-
cated hardware [2], the evaluation time is proportional to the
number of cells. However, when an LUT cascade emulator
is implemented on a standard PC, we need extra time, since
the inputs and outputs of a cell must be evaluated sequen-
tially.

To do high-speed simulation for an LUT cascade emu-
lator on a PC, we consider two objects:

a. Reduction of the number of cells.
This can be done by increasing the number of inputs
of each cell. However, the increase of the number of
inputs of each cell also increases the evaluation time
per cell, which will be explained later.

b. Reduction of the number of cell inputs.
This decreases the evaluation time per cells, but in-
creases the number of cells.

To find the best strategy, we did the following exper-
iments. We implemented 10 MCNC benchmark functions
[8] on the LUT cascade emulator. By changing the max-
imum number of inputs for cells, we obtained the average
number of cell inputs, the number of cells, and the execu-
tion time of the LUT cascade emulator. Figure 12 shows
the experimental results, where the horizontal axis denotes
the maximum number of cell inputs; 0 denotes the lower
bound on the maximum number of inputs of cells, that is
[log, umax1 + 1; the vertical axis denotes the ratios of the
number of cells, the number of the average cell inputs, and
simulation time. We set 1.00 to the ratios when the number
of cell inputs is [log, tmax ] + 1.

Figure 12 shows that the simulation time increases with

3475
3.5 ] ~% Number of Cells
Zz 30 - B— Number of Cell inputs £l
= 8 . . . 15|
2w 9 ~ A&~ Simulation time 5
== g I
- e = 25 =
=0 ® =
3 =
OT g 20 a PSRN
E _"E ;§ 15 F ° g aak
v g g /A/‘/A
2 5 5 10  Bo-A
EZz »n ..
= L Kooy
z 05 KoKy
00 L L L

Maximum number of inputs of a cell

Fig.12  Relation between the maximum number of cell inputs and simu-
lation time.

the number of cell inputs. The reason for this will be ana-
lyzed in Sect.5.3. Therefore, our strategy is to reduce the
number of cell inputs in the LUT cascade emulator.

5. Experimental Results

We implemented Algorithm 3.1 and the simulation sys-
tem described in Sect. 4.1 in the C programming language.
Then, we compared our method with other simulation meth-
ods with respect to the simulation time, the simulation setup
time, and the size of memories.

5.1 The Benchmark Functions

Table 1 shows the benchmark functions [15], [16] used for
simulation. Name denotes the name of the benchmark func-
tion; In denotes the number of primary inputs; Out denotes
the number of primary outputs; FF denotes the number of
flip-flops; and Gate denotes the number of gates.

5.2 Comparison with LCC

We implemented the LCC simulator in the C programming
language. Table 2 compares our method with the LCC.
Name denotes the name of benchmark function; Cas de-
notes the number of LUT cascades; Cell denotes the to-
tal number of cells; ASM denotes the number of instruc-
tions in the assembly code; Code denotes the code image
size (kilo bytes); E.in denotes the average number of exter-
nal inputs to cells; P.out denotes the total number of exter-
nal output(s); and S.out denotes the total number of state
output(s). Sim denotes the evaluation time (sec). In order
to obtain the raw simulation time, we generated one mil-
lion random test vectors, and obtained the time excluding
the time for reading and writing vectors. Sefup denotes
the setup time (sec) for the simulation. Setup of LCC in-
cludes the time for the C-code generation and the compi-
lation, while Setup of the LUT cascade emulator includes
the time for partition the circuit, BDD generation, LUT cas-
cade synthesis, memory mapping, C-code generation, and
the compilation. Literals denotes the total number of literals



3476

in expressions of the C-code generated by the LCC. Ratios
denote that of the simulation setup time and that of the sim-
ulation execution time (LCC/LUT cascade emulator). To
produce the executable code for LCC, we used gcc compiler
with optimization option -O3. Also, we generated program
codes for LUT cascade emulator, and compiled them with
the same conditions as LCC. In the experiments, we used an
IBM PC/AT compatible machine, Pentium4 Xeon 2.8 GHz,
L1 Data Cache: 8 KB, L1 Instruction Cache: 12 uops, L2
Cache: 512 KB, Memory: 4 GByte, and OS: Redhad (Linux
7.3).

Table 2 shows that the LUT cascade emulator is 3—-10
times faster than the LCC. Also, the setup for the LUT cas-
cade emulator is 2-9 times faster than the LCC. Since the
size of C-code for b17, bS8, and b22 were too large, gcc
could not optimize the codes with the option. Although we
could simulate these benchmarks when we removed the op-
timize option for gcc, the simulation times were too long.
Thus, we excluded these data from Table 2. The code image
sizes for the LCC are larger, since the LCC converts all the
gates and signals into the C-code. On the other hand, the
code image size for the LUT cascade emulator is smaller,
since the LUT cascade emulator partition the given circuit
into the memory for logic, and only the C-code that emu-
lates the control part is generated. Although the LUT cas-
cade emulator requires extra memory, they can be stored it
in the memory of our PC.

To analyze the difference of the simulation time, we
compare the estimated values with the experimental values.
The number of operations in the LUT cascade emulator is
estimated as follows:

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.12 DECEMBER 2006

+Cell + P.out + S .out + Rail,

(D

where, Rail = Cell — Cas. The first term of expression (1)
denotes the setup time of all the external inputs of the cells;
the second term denotes the access time to the memory for
logic; the third term denotes the setup time for the output
register; the fourth term denotes the setup time for the state
register; and the last term denotes the setup time for the rail
inputs. In Fig. 13, the right vertical axis denotes the exper-
imental value SIM.Cas (sec), and the left vertical axis de-
notes the estimated number of operations EST.Cas. Also,
we conjecture that Literals is proportional to the simulation
time for LCC. In Fig. 14, the right vertical axis denotes the
experimental value SIM.LCC (sec), and the left vertical axis
denotes the estimated number of literals EST.LCC = Liter-
als. Figures 13 and 14 show that the SIM.Cas and SIM.LCC
can be estimated from EST.Cas and EST.LCC, respectively.

In Figs. 13 and 14, we can see that SIM.Cas is smaller
than SIM.LCC, and also EST.Cas (number of operations)
is smaller than EST.LCC (number of literals). To analyze
these results, we converted the C-codes of the LUT cascade
emulator and the LCC into the assembly-instructions. Fig-
ure 15 compares the numbers of assembly-instructions and
the estimated values. In Fig. 15, the vertical axis denotes
the number of instructions. The number of the assembly-
instructions for both methods are larger than the numbers of
C instructions. Especially, that of the LCC increased. This is
because the LCC compiler generates extra codes to evaluate
negative literals and logic gates, and to produce the output

60000 500
1 450
EST.Cas = E.in X Cell 50000 - 1 400
—G- EST.Cas
1 350 »»
40000 - o]
Table1 The benchmark functions. 5 SIM.Cas | 300 i
Name In [Out| FF Gate Description g 30000 F 1 250 3
wb_dma |216[215| 521 3389 | DMA Bridge IP Core S 1200
mem._ctrl | 115|152 | 1051 | 11440 | Memory Controller 20000 - 1 150 E
usb_funct | 114 | 121 | 1704 | 12808 | USB Function Core
bl4 32| 54| 245] 10098 | Viper processor (subset) 10000 - 1 100
bl5 36| 70| 449 8922 | 80386 processor (subset) 150
bl7 37| 9711415 32326 | Three copies of bl5
bl8 36| 2313320114621 | Two copies bl4 and Two of bl7 0 0
b20 32| 22| 490| 20226 | A copy of bl4 and a modified g T 8 I v & ® =2 = d
version of b14 s 5 £ 2 2 2 2 =2 =2 =
b21 32| 221 490[ 20571 [Two copies of bl4 s 8 9
b22 32| 22| 735| 29951 | A copy of bl4 and two modified z E 2
version of b14 =
Fig.13  Simulation time for LUT cascade emulator.
Table2  Comparison with the LCC.
Name LUT cascade emulator LCC Ratios
Cas | Cell | Ein | Pout | S.out | ASM | Code | Setup | Sim [ Literals | ASM | Code | Setup | Sim | Setup | Sim
[kbyte] | [sec] [sec] [kbyte] | [sec] [sec]
wb_dma 12| 581 | 32| 215| 521 | 12876 80 222 | 143 13114 | 35005 173 459 | 61.3 20| 4.2
mem ctrl | 109 | 1745 | 3.5 | 152 | 1051 | 38560 208 | 136.6 | 35.9 41189 | 105076 489 | 429.0 | 2349 31] 65
usb_funct | 47 | 1429 | 4.1 | 121 | 1704 | 37635 213 | 138.8 | 449 79667 | 151404 554 | 744.9 | 267.8 531 59
bl4 41 11081 | 2.8 54| 245 17895 98 323 | 120 51355 | 76045 374 | 250.6 | 131.5 7.7 {109
bl5 49 1 1379 | 3.5 70 | 449 | 34288 179 | 105.7 | 46.1 67375 | 104150 432 | 486.5 | 165.4 46| 35
bl7 121 | 4147 | 3.9 97 | 1415 | 83993 334 | 2494 | 234.2 — — — — — — —
bl8 273 | 7386 | 4.7 23 | 3320 | 143459 564 | 1034.1 | 444.7 — — — — — — —
b20 70 {2009 | 3.0 22 | 490 | 36012 183 | 121.0| 80.2 90775 | 135002 651 | 982.8 | 2544 81| 3.2
b21 79 | 2167 | 3.1 22 | 490 | 39033 198 | 1399 | 98.9 | 106469 | 174149 859 | 1372.2 | 329.3 98| 33
b22 121 | 2953 | 3.2 22| 735 | 53002 270 | 179.0 | 153.6 — — — — — — | —




NAKAHARA et al.: A PC-BASED LOGIC SIMULATOR USING A LOOK-UP TABLE CASCADE EMULATOR

120000 350
100000 | 7 300
80000 | 120 Z

) =

@) 1 200 =

= 60000 | a

e {150 O

= 40000 - 3

/ —&- EST.LCC | 100=
/
20000 |-
& —A—sIM.LcC | 90
0 Il Il Il 0
g T &8 T v § 37
= °| E = = = =
|
£ 5 4
=
Fig.14  Simulation time for LCC.
200000 —| —e@- ASM.Cas --©- EST.Cas
180000 |

= —4— ASM.LCC —~— EST.LCC

S 160000 |

=2

E 140000 - Pa

£ 120000 | 7\

= L / \

= 100000 | A/A

S 80000 f

2 60000 | .

-

E 40000 | b— o

20000 | Moy ©
0 © I I
s = 5 < n o~ 0 O = A
£ 5 5553 5 3 3 3
o g I
2 3

Fig.15  The assembly-codes and the estimated values.

signals. In the LCC, it’s operands frequently move between
registers and the memory. For the gate with fan-outs, the
LCC stores the output values of the gate into a variable tem-
porarily, and uses it as the input of two or more gates. On the
other hand, the LUT cascade emulator uses only the rail val-
ues stored in a single register variable. Therefore, only the
input register, the output register, the memory for logic, and
the connections for each group require memory references.
Experimental results show that the simulator based on an
LUT cascade emulator is 3—10 times faster than the LCC.
One reason for this is the difference of the representations:
the cascade has many fewer signals than the random logic
network. Another reason is the CPU architecture of the PC.
The access time of the data in the main memory is about
200 times longer than one in the L1 cache. So, the CPU
time heavily depends on the frequency of cache misses. In
the case of the LCC simulator, the circuit data and control
are mixed, and the instruction data is too large to be stored
in the data cache. On the other hand, in the case of an LUT
cascade emulator, the cascade data and control data are sep-
arated. Control data is in the instruction cache, while the
cascade data is in the data cache. Thus, we can expect fewer
cache misses in the LUT cascade emulator.

3477
600 1200
A
500 1 —©= Code Image Size| , /\} | 1000
. \
400 - —2— Setup Time // \ 1 800

Code Image Size[kbyte]
g
g
[s9s]owury, dnjog

200 1 400
100 1 200
0 0

wb_dma
mem_ctrl
usb_funct

Fig.16  The code image size for LUT cascade emulator and the simula-
tion setup time.

1000 1600
< %00 r —G= Code Image Size 4 1400
Z %0y { 12002
2 700 I | —& Setup Time e
]

E,E) 600 1 10002
gﬁn 500 - -4 800 E
< L

g 40 4 600 =
= 300 | &
g 4 400 &
2 200 f

Q 100 4 200

o

b14
b15
b20
b21

wb_dma
mem_ctrl
usb_funct

Fig.17  The code image size for LCC and the simulation setup time.

Figures 16 and 17 show the relation between the sim-
ulation setup time and the code image size. In these fig-
ures, the right vertical axis denotes the simulation setup
time (sec), and the left vertical axis denotes the code im-
age size (kilo bytes). These figures show that the code im-
age sizes affects the simulation setup time. The code image
size for the LUT cascade emulator is smaller than that of the
LCC. Therefore, the LUT cascade emulator is faster than
the LCC with respect to the simulation setup time. Note
that, in the LUT cascade emulator, we need data for logic in
addition to the code.

5.3 Comparison with the QRMDD

In this part, we compare with an MDD-based logic simula-
tor. As for the definitions on MDD (Multi-valued Decision
Diagram), refer [14],[21]. Let (Xi, X5,..., X)) be the in-
put variables. When all X; (i = 1,2,...,u) appear in this
order in all paths of an MDD (k), the MDD (k) is a QR-
MDD (k) (Quasi-Reduced Multi-valued Decision Diagram)
with k bits. The length of an arbitrary path in a QRMDD (k)
is equal to u, the number of input variables. Note that, a
QRMDD usually has redundant nodes. By combining the



3478

binary nodes of a BDD into a multi-valued node of 2¥ in-
puts, we obtain a QRMDD (k) [14].

We can generate a code to evaluate the a QRMDD:
Store a QRMDD in a table, and use a generic program to
evaluate the QRMDD [11]. For example, a table for a QR-
MDD (2) is obtained from a BDD in Fig. 5.4. Also, Exam-
ple 5.5 shows the pseudo-code for evaluating a QRMDD (3).

Example 5.4: From a BDD (Fig. 18(a)), by combining
the nodes into multi-valued nodes, we have an MDD
(Fig. 18(b)). From the MDD (Fig. 18(b)), we have a QR-
MDD (2) (Fig. 18(c)). From the QRMDD (2) (Fig. 18(c)),
we have a table for QRMDD (2) (Fig. 18(d)).

Example 5.5: (Pseudo-code to evaluate QRMDD (3))

. ptr « root_index; i < 0;

. node_input «— {x;1, xp, x3};

. ptr « table[ptr + node_input];

Lie—i+ 1

. if (i < the length of the path for QRMDD (3)) then
goto 2.

6. Terminate.

DN W=

The code to evaluate a QRMDD (k) is quite similar to
the code to evaluate an LUT cascade emulator. Also, the
procedures for pre-computing the circuit beforehand are al-
most same. The difference between them is a data structure
for the function. The QRMDD (k)-based method represents
the circuit by multiple QRMDDs (k), and stores them to the
table. On the other hand, the LUT cascade emulator repre-
sents it by multiple LUT cascades, and stores them to the
memory for logic, using memory packing.

Table 3 compares the LUT cascade emulator with the
QRMDD (k). Name, Cell, Code, Setup, and Sim are the

F=x1x2x3x4

(@

Fig.18 BDD for F = xjx2x3x4 (a), MDD for F (b), QRMDD(2) for
F (c), Table for QRMDD (2) of F (d).

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.12 DECEMBER 2006

same as Table 2. Rail denotes the average number of rails
for the LUT cascade emulator; Mem denotes the amount
of memory (kilo bytes); Path denotes the total path length
for each QRMDD (k); Width denotes the average widths for
QRMDDs (k); and Table denotes the total memory size of
tables (kilo bytes). The environment for the experiment is
the same as the case of the LCC. Also for each benchmark,
the LUT cascade and the QRMDD (k) are generated from
the same BDDs. The setup time for the QRMDD (k) in-
cludes the time for partition the circuit, BDD generation,
QRMDD (k) generation, table generation, C-code genera-
tion, and the compilation. Ratios denote that of the simula-
tion setup time, that of the simulation execution time, and
that of the memory size (QRMDD (k)/LUT cascade emula-
tor). Since the simulation time for the QRMDD (k) is mini-
mum when k = 3, we set to k = 3.

Table 3 shows that the LUT cascade emulator is 1.1-
3.9 times faster than the QRMDD (3)-based simulator. The
setup for the LUT cascade emulator is also faster than that
of the QRMDD (3). The memory size for QRMDD (3) is
1.8-5.5 times larger than that of the LUT cascade emulator.

To evaluate the memory size, we compare an estimated
memory size with an actual memory size. Let k; be the num-
ber of external inputs of i-th cell, y; be the number of rail in-
puts, and ¢ be the number of cells. Note that, 1 denotes the
number of rail inputs to the first cell, so up = 0. Let M¢,s be
the size of the memory for logic in the LUT cascade emula-
tor. Then, we have

ki+ kot ke+pte-
Mcys = 27 #0ﬂ1+22”]ﬂ2+"'+2( s e

By replacing u;(j = 0,1,...,¢) with f1, the average of ;,

and k;j(j = 1,2,...,c) with k, the average of k;, we have the
following approximation:

Meas = 2 e )

Figure 19 illustrates a node for a QRMDD (k), and
Fig. 20 illustrates nodes with respect to X;. Let p be the path
length, w;(j = 0,1,..., p) be the width of the QRMDD (k)
with respect to X;. Note that, wy denotes the width on a root
node, and wy = 1. As shown in Fig. 20, one node for a QR-
MDD (k) can be represented by the table storing 2* pointers
to the next nodes. Let a be the number of bits for the pointer,
then the memory size for the table representing a node in a
QRMDD (k) is 2¥a.

Table3  Comparison with the QRMDD (3).
Name LUT cascade emulator QRMDD (3) Ratios
Cell | Rail | Code Mem Setup Sim | Path | Width | Code Table Setup Sim | Setup | Sim | Mem
[kbyte] | [Kbyte] [sec] [sec] [kbyte] | [Kbyte] [sec] [sec]

wb_dma 581 4.6 80 417 22.2 14.3 622 39.5 92 769 25.8 15.6 1.2 1.1 1.8
mem ctrl | 1745 5.6 208 1838 136.6 359 | 2163 80.8 278 5521 158.4 | 139.5 1.2 ] 39 3.0
usb_funct | 1429 | 4.7 213 1337 138.8 449 | 1970 48.6 248 2297 159.4 | 105.9 1.1 24 2.2
bl4 1081 54 98 615 32.3 12.0 999 69.0 126 2157 36.8 20.1 1.1 1.7 3.5
bl5 1831 5.8 179 975 105.7 46.1 | 2224 77.2 249 5370 123.8 | 130.5 1.2 ] 28 5.5
bl7 4147 | 4.6 334 2404 249.4 | 234.2 | 4930 44.4 428 6845 389.9 | 565.7 1.3 ] 24 2.8
bl8 7386 | 4.8 564 6203 | 1034.8 | 444.7 | 8631 70.3 564 18697 | 1209.1 | 999.0 12| 22 3.1
b20 2009 | 5.2 183 1006 121.0 80.2 | 2049 57.7 240 3699 131.8 | 112.7 1.1 ] 27 14
b21 2167 | 54 198 1253 139.9 98.9 | 2276 63.1 265 4489 1534 | 1614 1.1 2.8 1.6
b22 2953 5.2 270 1868 179.9 | 153.6 | 3223 63.6 366 6415 192.7 | 326.7 1.1 32 2.1




NAKAHARA et al.: A PC-BASED LOGIC SIMULATOR USING A LOOK-UP TABLE CASCADE EMULATOR

Fig.19 A table for one node.

)

=

Fig.20 A node with respect to X ;.
20000. 0 N
18000.0 _E]-EstMem
D L
= 16000.0 #— EstQTable
i 14000.0
g 12000.0 [ |*°  Pack_Mem
2 10000.0 [ | —®— NonPack Mem
5 8000.0 -
E 6000.0
S 4000.0 -
2000.0 - -
00 1 1 1 1 1 1
« j— ~—
= T 5 T LoEc =g 58
= °| a = = = = = = =
'§| E 2
E 3

Fig.21  Comparison of memory size.

Let Morupp be a size of table fora QRMDD (k). Then,
we have Morypp = 2kq Zle w;. Let @ be the average of

wi(j = 0,1,...,p). Then, we have following approxima-
tion:
Morupp = 2*apw 3
When a = 32, the experimental results show that

M ormpD 1s almost the same as actual size of the table. How-
ever, Mcg, is larger than the actual size of the memory for
logic. To investigate this fact, we obtained the size of mem-
ory for logic without memory packing. Figure 21 compares
MQRMDD, Mg, and the sizes of memory for logic with
and without memory packing. The vertical axis denotes the
memory size (kilo byte). NonPack_Mem denotes the size
of memory for logic without memory packing; Pack_Mem
denotes the size of memory for logic with memory pack-
ing; EstMem denotes the estimated size Mcas. EstQTable
denotes the estimated size MQRMDD. Figure 21 shows Pack
is 1.9 to 2.1 times smaller than NonPack_Mem. Also, Non-
Pack_Mem is almost equal to EstMem. Another reason for
the difference of the memory sizes is due to the difference
of @ and z. When we generate an LUT cascade, we select
functional decomposition that minimizes i using a dynamic

3479
700.0
= 600.0
i —OG= Pack_Sim
@ 500.0
§ —#A— NonPack_Sim
= 400.0
g
= 300.0 |
=
S 200.0
£
9 4000 +
—e —
00 | 1 1 1 1 1 1
— N
£ T 8 2T 22 2 8 5 9§
= 9 i e 2 &2 =2 a2 2o =
|
g £ 3
g 3
Fig.22  Influence of memory packing on simulation time.

programming [6], while to construct a QRMDD (3), we do
not optimize the size of decompositions. Therefore, i is
smaller than @. From Eqgs. (2) and (3), these differences af-
fected the memory size.

Both methods perform logic simulation by accessing
the data stored in the memory. Thus, the simulation time is
affected by the time for accessing memory, the number of
memory accesses, and the time for handling the read data.
The memory access time heavily depends on the frequency
of cache misses. When a cache miss occurs, the CPU ac-
cesses the main memory and reads the data. The CPU man-
ages the main memory per page. First, it convert a virtual
address into a physical address using a special cache called
TLB (Translation Lookaside Buffer), next it accesses the
main memory at a high speed and reads the data [17]. There-
fore, the size of data stored in a memory affects the memory
access time. Figure 22 shows an influence of memory pack-
ing on simulation time. In Fig.22, Pack_Sim denotes the
simulation time (sec) with memory packing; NonPack_Sim
denotes the simulation time (sec) without memory packing.
Since smaller memory tends to have fewer cache misses,
Pack_Sim is faster than NonPack_Sim. To predict the ratio of
simulation time, we define the ratio of simulation time for
LUT cascade emulator and QRMDD (k)-based simulator as
follows:

aPath + ,BMQRMDD

EST _ratio =
Ao = T Cell + BMegs

“4)

where Path denotes the path length, Cell denotes the num-
ber of cells, M, denotes the size of memory for the LUT
cascade emulator, and Morypp denotes the size of table
for the QRMDD (k). Figure 23 compares SIM _ratio with
EST ratio, where

. Simulation time for QRMDD (3)-based simulator
SIM_ratio = )

Simulation time for LUT cascade emulator

The vertical axis denotes the ratio of the simulation time. In
this figure, we set @« = 100 and 8 = 1. Figure 23 shows
that EST_ratio has the same tendency as SIM_ratio except
for mem_ctrl. In mem_ctrl, many of adjacent cells are stored
in the same page of the memory for logic. Since adjacent



3480
4.50
4.00 - 1
3.50 J
3.00 ]
2 250
; 4
= 2.00
1.50 |
1.00 | 4 —G- SIM_ratio i
0.50 —A—EST_ratio 1
0. 00 | | | | | | | | |
< o ~—
=T T 8 T w2 5 38
= °| E = = = = = = =
|
g § 4
E B
Fig.23  Estimated value and experimental value.

cells are read continuously, the miss rate of the cache for
mem_ctrl was low, and the simulation time is short, and
SIM _ratio is high. We can reduce the simulation time, if we
perform memory packing so that adjacent cells are stored in
the same page of the memory.

The simulation setup time for both methods are almost
same, since the difference of the code image size are also
almost the same.

6. Conclusion and Comments

In this paper, we showed a cycle-based logic simulator using
the LUT cascade emulator running on a standard PC. This
method first converts the circuit into LUT cascades. Then,
it stores the LUT data in the memory of the LUT cascade
emulator. Next, it generates the program code for the con-
trol circuit of the LUT cascade emulator. This paper also
compares the method with a LCC simulator and a simulator
using a QRMDD. Our simulator is 3.5 to 10.6 times faster
than the LCC, and 1.1 to 3.9 times faster than the QRMDD-
based one. The simulation setup is 2.0 to 9.8 times faster
than the LCC. The amount of memory is 1/1.8 to 1/5.5 of
the QRMDD-based simulator. The tricks of our fast simula-
tion are:

1. It replaces many gates into a small number of multi-
input multi-output cells. This reduces the number of
memory references.

2. It generates the program code that uses both instruction
cache and data cache efficiently.

3. It performs memory packing that reduces the cache
misses.

The proposed method is a kind of a cycle-based simulator.
Note that, special primitives, such as tri-state buffer, are not
implemented in the current version.

One of the future projects is to develop a efficient
mixed simulator using cycle-based simulation and event-
driven simulation.

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.12 DECEMBER 2006

Acknowledgments

This research is partly supported by Japan Society for
the Promotion of Science (JSPS), MEXT, and Kitakyushu

Innovative Cluster.

Discussions with Prof. Iguchi and

Dr. Nagayama were quite useful.

References

(1]

(2]

(3]

(4]

(51

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Sys-
tems Testing and Testable Design, Rev. Print ed., Wiley-IEEE Press,
1994.

H. Nakahara, T. Sasao, and M. Matsuura, “A design algorithm for
sequential circuit using LUT ring,” IEICE Trans. Fundamentals,
vol.LE88-A, no.12, pp.3342-3350, Dec. 2005.

T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of
multiple-output function for reconfigurable hardware,” IWLS-2001,
pp-225-300, Lake Tahoe, CA, June 2001.

T. Sasao and M. Matsuura, “A method to decompose multiple-output
logic functions,” Proc. Design Automation Conference, pp.428—433,
San Diego, CA, USA, June 2004.

P. Ashar and S. Malik, “Fast functional simulation using branching
programs,” ICCAD’95, pp.408—412, Nov. 1995.

T. Sasao, M. Kusano, and M. Matsuura, “Optimization methods in
look-up table rings,” IWLS-2004, pp.431-437, Temecula, Califor-
nia, USA, June 2004.

R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” ICCAD’93, pp.42-47, 1993.

S. Yang, Logic synthesis and optimization benchmark user guide
version 3.0, MCNC, Jan. 1991.

R.E. Bryant, “Graph-based algorithms for boolean function manip-
ulation,” IEEE Trans. Comput., vol.C-35, no.8, pp.677-691, Aug.
1986.

R. Murgai, F. Hirose, and M. Fujita, “Logic synthesis for a single
large look-up table,” ICCD1995, pp.415-424, Oct. 1995.

P.C. McGeer, K.L. McMillan, A. Saldanha, A.L. Sangiovanni-
Vincentelli, and P. Scaglia, “Fast discrete function evaluation using
decision diagrams,” ICCAD’95, pp.402—407, Nov. 1995.

R.K. Brayton, “The future of logic synthesis and verification,” in
Logic Synthesis and Verification, ed. S. Hassoun and T. Sasao,
Kluwer Academic Publishers, 2001.

H. Nakahara, T. Sasao, and M. Matsuura, “A fast logic simulator us-
ing an LUT cascade emulator,” ASPDAC 2006, pp.466—465, Yoko-
hama, Jan. 2006.

S. Nagayama and T. Sasao, “On the optimization of heterogeneous
MDDs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol.24, no.11, pp.1645-1659, Nov. 2005.

S. Davidson, “Characteristics of the ITC’99 benchmark circuits,”
ITC’99, p.1125, Atlantic City, NJ, Sept. 1999.

opencores.org: http://www.opencores.org/

J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quan-
titative Approach, Morgan Kaufmann Publishers, 1990.

A.R. Habayeb, “System decomposition, partitioning, and integration
for microelectronics,” IEEE Trans. Syst. Sci. Cybern., vol.SSC-4,
no.2, pp.164—172, July 1968.

C.H. Haspel, “The automtic packaging of computer circuitry,” 1965
IEE International Conv. Rec., vol.13, Part 3, pp.4-20, 1965.

B.W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol.49, pp.291-307, 1970.
T. Kam, T. Villa, R.K. Brayton, and A.L. Sangiovanni Vincen-
telli, “Multi-valued decision diagrams: Theory and applications,”
Multiple-Valued Logic, vol.4, no.1-2, pp.9-62, 1998.



NAKAHARA et al.: A PC-BASED LOGIC SIMULATOR USING A LOOK-UP TABLE CASCADE EMULATOR
3481

Hiroki Nakahara was born on September
9, 1980 in Fukuoka Japan, and received B.E. and
M.E. degrees from Kyushu Institute of Technol-
ogy, lizuka, Japan in 2003 and 2005, respec-
tively. He is now a doctoral student of Kyushu
Institute of Technology. His research interest in-
cludes logic synthesis, reconfigurable devices,
and high-level synthesis.

Tsutomu Sasao  received the B.E., M.E., and
Ph.D. degrees in electronics engineering from
Osaka University, Osaka, Japan, in 1972, 1974,
and 1977, respectively. He has held faculty/
research positions at Osaka University, Japan,
the IBM T.J. Watson Research Center, Yorktown
Heights, New York, and the Naval Postgraduate
School, Monterey, California. He is now a Pro-
fessor of the Department of Computer Science
and Electronics at the Kyushu Institute of Tech-
nology, lizuka, Japan. His research areas in-
clude logic design and switching theory, representations of logic functions,
and multiple-valued logic. He has published more than nine books on logic
design, including Logic Synthesis and Optimization, Representation of Dis-
crete Functions, Switching Theory for Logic Synthesis, and Logic Synthe-
sis and Verification, Kluwer Academic Publishers, 1993, 1996, 1999, and
2001, respectively. He has served as Program Chairman for the IEEE In-
ternational Symposium on Multiple-Valued Logic (ISMVL) many times.
Also, he was the Symposium Chairman of the 28th ISMVL held in Fuku-
oka, Japan, in 1998. He received the NIWA Memorial Award in 1979, Dis-
tinctive Contribution Awards from the IEEE Computer Society MVL-TC
for papers presented at ISMVLs in 1986, 1996, 2003 and 2004, and Takeda
Techno-Entrepreneurship Award in 2001. He has served as an Associate
Editor of the IEEE Transactions on Computers. He is a fellow of the IEEE.

Munehiro Matsuura was born on 1965 in
Kitakyushu City, Japan. He studied at the Kyu-
shu Institute of Technology from 1983 to 1989.
He received the B.E. degree in Natural Sciences
from the University of the Air, in Japan, 2003.
He has been working as a Technical Assistant at
the Kyushu Institute of Technology since 1991.
He has implemented several logic design algo-
rithms under the direction of Professor Tsutomu
Sasao. His interests include decision diagrams
and exclusive-OR based circuit design.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


