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Efficient Computation of Canonical Form under Variable
Permutation and Negation for Boolean Matching
in Large Libraries

Debatosh DEBNATH†a), Nonmember and Tsutomu SASAO††b), Member

SUMMARY This paper presents an efficient technique for solving a
Boolean matching problem in cell-library binding, where the number of
cells in the library is large. As a basis of the Boolean matching, we use
the notion NP-representative (NPR): two functions have the same NPR
if one can be obtained from the other by a permutation and/or comple-
mentation(s) of the variables. By using a table look-up and a tree-based
breadth-first search strategy, our method quickly computes the NPR for a
given function. Boolean matching of the given function against the whole
library is determined by checking the presence of its NPR in a hash table,
which stores NPRs for all the library functions and their complements. The
effectiveness of our method is demonstrated through experimental results,
which show that it is more than two orders of magnitude faster than the
Hinsberger-Kolla’s algorithm.
key words: logic synthesis, Boolean matching, cell-library binding, tech-
nology mapping, canonical form

1. Introduction

Determining whether a circuit is functionally equivalent to
another under a permutation of its inputs, complementation
of its one or more inputs, and/or inversion of its output is an
important problem in logic synthesis, and Boolean match-
ing technique is used to solve it. Algorithms for Boolean
matching have applications in cell-library binding where it
is necessary to repeatedly check if some part of a multiple-
level representation of a Boolean function can be realized by
any of the cells from a given library [9], in logic verification
where correspondence of the inputs of two circuits are un-
known [18], [30], and in table look-up based logic synthesis
[7]. In this paper, we consider Boolean matching problem
for cell-library binding. An exhaustive method for Boolean
matching is computationally expensive even for functions
with only few variables, because the time complexity of
such an algorithm for an n-variable function is O(n!22n).

Boolean matching phase is a time consuming steps in
cell library binding. Because of their importance in syn-
thesizing cost effective circuits, Boolean matching problems
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received much attention and many algorithms have been de-
veloped to efficiently solve them [2]. Signatures, which are
computed from some properties of Boolean functions, are
extensively used in Boolean matching [2]. An equality in
the signatures is a necessary condition for Boolean match-
ing of two functions; although it is not the sufficient condi-
tion, signature-based algorithms have successfully demon-
strated their effectiveness. Some of the signature-based
algorithms are efficient for performing pair-wise Boolean
matching [18], [22], [29], [30]. However, to match a func-
tion against a library they often require to perform pair-wise
matchings of the function with all the library cells. There-
fore, Boolean matching techniques based on them are un-
suitable for handling libraries with large number of cells.
There are other signature-based algorithms that are success-
fully used with cell libraries; however, they can handle li-
braries with only modest size [6], [20], [27]. Moreover, due
to the lack of sufficient information in the signatures, algo-
rithms based on them in many cases are unable to conclude
a Boolean match. Thus, an exhaustive search is necessary
to obtain a conclusive result. Some other Boolean matching
algorithms consider only some restricted form of Boolean
matching [10], [14], [25], [26].

There are other categories of Boolean matching algo-
rithms that are based on the computation of some canoni-
cal form for Boolean functions [4], [5], [8], [12], [31]. Two
functions match if their canonical forms are the same. The
Boolean matching technique that we consider in this pa-
per falls under this category. Burch and Long introduced a
canonical form for matching under complementation and a
semi-canonical form for matching under permutation of the
variables [4]. These two forms can be combined to check
Boolean matching under permutation and complementation
of variables. However, a large number of forms for each
cells are required when using the method in cell library
binding. Ciric and Sechen [5], Debnath and Sasao [8], and
Wu et al. [31] also proposed canonical forms for efficient
Boolean matching. However, these techniques are applica-
ble for Boolean matching under permutation of the variables
only. Hinsberger and Kolla introduced a canonical form for
solving the general Boolean matching problem that we are
considering in this paper [12]. It can handle libraries with
large number of cells under permutation and complemen-
tation of the variables as well as inversion of the function;
however, the method requires considerable computation.
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In this paper, we present an efficient technique for
computing a canonical form for Boolean functions. The
canonical form — which we refer to as NP-representative
(NPR) — remains unchanged under permutation and com-
plementation of the variables. The set of functions that can
be made identical under permutation and complementation
of the variables form an NP-equivalence class [11], [13],
[23]. In an NP-equivalence class, the function that has the
smallest value in the binary representation is the NPR of the
class, and every NP-equivalence class has a unique NPR.
Thus, if the NPRs for the functions represented by the two
circuits are equal, they are functionally equivalent under the
permutation and complementation of inputs. It should be
noted that our canonical form is similar to that of Hinsberger
and Kolla [12]. For efficient computation of NPRs we use
precomputed NP-transformation tables (NPTTs), which are
used to quickly generate any functions in an NP-equivalence
class. To make the search even more efficient, our method
combines an NPTT with a search tree for each variables and
performs breadth-first searches.

Although NPRs can identify functional equivalence of
two circuits under permutation and complementation of in-
puts, they are unable to directly ascertain the functional
equivalence if it involves determining whether the output of
one circuit is also complemented. Thus, to handle the out-
put complementation we use the following strategy. Let f
and g be the Boolean functions represented by two circuits
F and G, respectively. To check if F and G are function-
ally equivalent under permutation and complementation of
inputs of G as well as possible complementation of its out-
put, we compute the NPRs for f , g, and ḡ. If the NPRs for f
and g are equal, G can be made functionally equivalent to F
by permutation and complementation of inputs of G; how-
ever, if the NPRs for f and ḡ are equal, complementation of
the output of G is also required in addition to permutation
and complementation of its inputs to make F and G func-
tionally equivalent. In the case of a linear function [24], f
and g can be equivalent under the complementation of the
input. At the same time, f and g can be equivalent under the
complementation of the output.

For using our method in cell library binding the library
requires to be preprocessed. A set of personalized modules
can be obtained from each library cells by bridging some of
its inputs and/or setting some of its inputs to constant values
[12]. In the preprocessing phase we generate library func-
tions, which are the collection of functions represented by
the library cells and by the personalized modules obtained
from the library cells.

For Boolean matching of cell libraries we precompute
the NPRs for the library functions and their complements.
When we require to find a Boolean match of a given function
against the whole library, we compute its NPR and check
whether the same NPR is present in the precomputed NPRs
for the library functions. An affirmative answer indicates
a Boolean matching with a cell in the library. For efficient
equivalence checking of NPRs we use a hash table to store
the NPRs for the library functions.

Based on the above discussions, our Boolean matching
technique for library binding can be summarized as:

• Build the search tree for each variable (n = 3, 4, 5, 6,
and 7).
• Generate the library functions; for each of them, com-

pute two NPRs — one for it and the other for its com-
plement — and store them in a hash table.
• Compute the NPR for the function to be matched

against the library.
• Check the hash table for the presence of the NPR;

a matching is found if the NPR is in the table.

We will refer to the first two of the above steps as the
setup phase and the last two steps as the matching phase.

Usually Boolean matching for libraries with large num-
ber of cells is computationally expensive. However, an in-
crease in the number of the cells in a library often helps op-
timize the area of the implementation [16], [19], [26]. Inclu-
sion of complex cells to the library also improves other cost
metrics of the resulting circuit. For example, for a set of 10
benchmark circuits, Tiwari et al. showed that by increasing
the number of cells in a library from 33 to 396 reduces the
power consumption of the mapped circuits by about 20 per-
cent [28, p.266]. Kantabutra also presented strong statistical
evidence in support of using complex cells [15]. However,
inclusion of complex cells results in a large library. Tradi-
tionally, technology libraries are small. For example, Benini
et al. used an industrial library containing 75 cells with up to
five inputs [3], and lib2 library — which is extensively used
by the research community — consists of only 27 cells with
up to six inputs [32].

Since pair-wise matchings are unnecessary, the com-
putational complexity of our Boolean matching technique
is independent of the number of cells in the library, and it
can efficiently handle libraries with extremely large num-
ber of cells. The number of cells is constrained only by
the available memory resources. This feature is important
in table look-up based logic synthesis [11], where matching
against a library with more than one million cells is nec-
essary [7]. Moreover, our method is independent of any
cell architecture and any functional properties. However,
functional properties can be used with our method as filters
for quickly detecting the functions that cannot be matched
against a library [6], [18], [20], [21], [25], [27]. Experimen-
tal results and comparison with another method demonstrate
that the proposed technique is highly effective.

The remainder of the paper is organized as follows:
Section 2 formally introduces the terminology. Section 3
develops the techniques for computing the NPR, which is
the basis of our Boolean matching technique. Section 4 re-
ports experimental results and compares our technique with
another method. Section 5 presents conclusions.

2. Definitions and Terminology

Definition 1: Let the minterm expansion of an n-variable
function f (x1, x2, . . . , xn) be m0 · x̄1 x̄2 · · · x̄n∨m1 · x̄1 x̄2 · · · xn∨
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· · ·∨m2n−1 ·x1x2 · · · xn,where m0,m1, . . . ,m2n−1 ∈ {0, 1}. Let
the 2n bit binary number m0m1 · · ·m2n−1, which is obtained
by the concatenation of m0,m1, . . . ,m2n−1 in this order, be
the binary representation of f . To denote a binary number,
usually a subscripted 2 is used after it.

Example 1: Consider the three-variable function f (x1, x2,
x3) = x̄1x2x3 ∨ x1 x̄2 x̄3. The binary representation of f is
000110002.

Definition 2: Two functions f and g are NP-equivalent if
g can be obtained from f by a permutation of the variables
and/or complementation of one or more variables [11], [13],
[23]. NP-equivalent functions form an NP-equivalence
class of functions.

Example 2: Consider the four functions: f1(x1, x2, x3) =
x̄1 x̄2 x̄3 ∨ x1x2x3, f2(x1, x2, x3) = x̄1 x̄2x3 ∨ x1x2 x̄3,
f3(x1, x2, x3) = x̄1x2 x̄3 ∨ x1 x̄2x3, and f4(x1, x2, x3) =
x̄1x2x3 ∨ x1 x̄2 x̄3. Since f2(x1, x2, x̄3) = x̄1 x̄2 x̄3 ∨ x1x2x3 =

f1(x1, x2, x3), f1 and f2 are NP-equivalent. Similarly, we
can show that f3 and f4 are also NP-equivalent to f1. There-
fore, the functions f1, f2, f3, and f4 belong to the same NP-
equivalence class.

Definition 3: The function that has the smallest value in
the binary representation among the functions of an NP-
equivalence class is the NP-representative (NPR) of that
class.

Example 3: From Example 2, all the functions of an NP-
equivalence class are x̄1 x̄2 x̄3 ∨ x1x2x3, x̄1 x̄2x3 ∨ x1x2 x̄3,
x̄1x2 x̄3 ∨ x1 x̄2x3, and x̄1x2x3 ∨ x1 x̄2 x̄3. In the binary repre-
sentation: x̄1 x̄2 x̄3∨ x1x2x3 = 100000012, x̄1 x̄2x3∨ x1x2 x̄3 =

010000102, x̄1x2 x̄3 ∨ x1 x̄2x3 = 001001002, and x̄1x2x3 ∨
x1 x̄2 x̄3 = 000110002. Since 000110002 < 001001002 <
010000102 < 100000012, the NP-representative of the
class is x̄1x2x3 ∨ x1 x̄2 x̄3.

Variables of an n-variable function can be permuted in
n! ways and complemented in 2n ways; thus the total num-
ber of possible combinations are n!2n. However, for many
functions some of these combinations generate the same
function. Therefore, for an n-variable function there are at
most n!2n NP-equivalents. Among them, our objective is to
quickly find the NP-equivalent that has the smallest value in
the binary representation.

3. Computing NP-Representative

In this section, we show a method to compute NP-
representative (NPR) by using three-variable functions and
discuss how the technique can be extended to functions with
more variables.

3.1 Binary Representations under Permutation and Com-
plementation of Variables

Binary representations of a given function under different

permutation and complementation of variables can be eas-
ily generated if the function is represented as the minterm
expansion. For example, let

f (x1, x2, x3) = m0 x̄1 x̄2 x̄3 ∨ m1 x̄1 x̄2x3 ∨
m2 x̄1x2 x̄3 ∨ m3 x̄1x2x3 ∨
m4x1 x̄2 x̄3 ∨ m5x1 x̄2x3 ∨
m6x1x2 x̄3 ∨ m7x1x2x3 (1)

be the minterm expansion of a three-variable function,
where m0,m1, . . . ,m7 ∈ {0, 1}. The permutation of the vari-
ables in Eq. (1) is (x1, x2, x3). When the permutation of the
variables is (x3, x2, x1), we have

f (x3, x2, x1) = m0 x̄3 x̄2 x̄1 ∨ m1 x̄3 x̄2x1 ∨
m2 x̄3x2 x̄1 ∨ m3 x̄3x2x1 ∨
m4x3 x̄2 x̄1 ∨ m5x3 x̄2x1 ∨
m6x3x2 x̄1 ∨ m7x3x2x1

= m0 x̄1 x̄2 x̄3 ∨ m4 x̄1 x̄2x3 ∨
m2 x̄1x2 x̄3 ∨ m6 x̄1x2x3 ∨
m1x1 x̄2 x̄3 ∨ m5x1 x̄2x3 ∨
m3x1x2 x̄3 ∨ m7x1x2x3. (2)

From Eqs. (1) and (2), the binary representations of f (x1,
x2, x3) and f (x3, x2, x1) can be written as m0m1m2m3m4m5

m6m7 and m0m4m2m6m1m5m3m7, respectively.
When variables are complemented, the binary repre-

sentation can also be generated in a similar manner. For
example, by replacing x1 by x̄1 in Eq. (2), we have

f (x3, x2, x̄1) = m0x1 x̄2 x̄3 ∨ m4x1 x̄2x3 ∨
m2x1x2 x̄3 ∨ m6x1x2x3 ∨
m1 x̄1 x̄2 x̄3 ∨ m5 x̄1 x̄2x3 ∨
m3 x̄1x2 x̄3 ∨ m7 x̄1x2x3

= m1 x̄1 x̄2 x̄3 ∨ m5 x̄1 x̄2x3 ∨
m3 x̄1x2 x̄3 ∨ m7 x̄1x2x3 ∨
m0x1 x̄2 x̄3 ∨ m4x1 x̄2x3 ∨
m2x1x2 x̄3 ∨ m6x1x2x3,

which gives m1m5m3m7m0m4m2m6 as the binary repre-
sentation of f (x3, x2, x̄1). Several randomly chosen NP-
equivalents of f (x1, x2, x3) are shown in Fig. 1, where the
binary representations are written vertically; in the subse-
quent discussions, binary representations will often be dis-
played in this way.

3.2 Basic Idea

Figure 1 shows four of the NP-equivalents of f (x1, x2, x3).
There are at most 48 (= 3!23) NP-equivalents of a three-
variable function. Our objective in computing the NPR is to
find the NP-equivalent that has the smallest value in the bi-
nary representation. Thus, we can generate NP-equivalents
with other permutations and complementations of the vari-
ables, and take the function that has the smallest value in the
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binary representation as the NPR.
An observation to the minterms of the first and second

columns of Fig. 1 shows that all the minterms of f (x1, x2, x3)
move to new positions in f (x1, x̄3, x2). For example, the first
minterm, m0, of f (x1, x2, x3) becomes the second minterm
of f (x1, x̄3, x2). Therefore, each time we want to change the
permutation and complementation of the variables of an n-
variable function, we must compute the new positions for
all the 2n minterms. Since an n-variable function has at
most n!2n NP-equivalents, to compute the NPR for an n-
variable function we must compute n!22n new positions for
the minterms, i.e., the time complexity of the algorithm is
O(n!22n). As a result the method requires significant amount
of computation time even for functions with as few as three
variables.

3.3 NP-Transformation Table (NPTT)

Figure 1 shows that the new positions of the minterms are
fixed for each of the permutation and complementation of
the variables. Therefore, our strategy is to compute the new
positions of the minterms for all the permutation and com-
plementation of the variables only once and to use them re-
peatedly for computing NPRs; this method is much faster
than the method presented in Sect. 3.2, because repeated
computation of the new positions for the minterms is un-
necessary. Figure 2 shows a table of all such new positions
of the minterms for three-variable function; it is similar to
Fig. 1 except column headings are removed and mi is re-
placed by i (0 ≤ i ≤ 7). We will refer to such a table as
NP-transformation table (NPTT). Although column head-
ings are removed from Fig. 2 for ease of showing the whole
table, they are required by our algorithm.

The NPTT for an n-variable function has 2n rows and
n!2n columns, i.e., it has n!22n entries (Fig. 2). Table 1
shows the maximum number of NP-equivalents in an NP-
equivalence class and the size of NPTTs for different num-
ber of variables. Since the size of the NPTTs grow exponen-

f (x1, x2, x3) f (x1, x̄3, x2) f (x̄3, x2, x̄1) f (x̄2, x̄1, x3)
m0 m2 m5 m6
m1 m0 m1 m7
m2 m3 m7 m2
m3 m1 m3 m3
m4 m6 m4 m4
m5 m4 m0 m5
m6 m7 m6 m0
m7 m5 m2 m1

Fig. 1 Four of the NP-equivalents of a three-variable function
f (x1, x2, x3).

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
1 1 2 2 4 4 0 0 3 3 5 5 0 0 3 3 6 6 1 1 2 2 7 7 0 0 5 5 6 6 1 1 4 4 7 7 2 2 4 4 7 7 3 3 5 5 6 6
2 4 1 4 1 2 3 5 0 5 0 3 3 6 0 6 0 3 2 7 1 7 1 2 5 6 0 6 0 5 4 7 1 7 1 4 4 7 2 7 2 4 5 6 3 6 3 5
3 5 3 6 5 6 2 4 2 7 4 7 1 4 1 7 4 7 0 5 0 6 5 6 1 2 1 7 2 7 0 3 0 6 3 6 0 3 0 5 3 5 1 2 1 4 2 4
4 2 4 1 2 1 5 3 5 0 3 0 6 3 6 0 3 0 7 2 7 1 2 1 6 5 6 0 5 0 7 4 7 1 4 1 7 4 7 2 4 2 6 5 6 3 5 3
5 3 6 3 6 5 4 2 7 2 7 4 4 1 7 1 7 4 5 0 6 0 6 5 2 1 7 1 7 2 3 0 6 0 6 3 3 0 5 0 5 3 2 1 4 1 4 2
6 6 5 5 3 3 7 7 4 4 2 2 7 7 4 4 1 1 6 6 5 5 0 0 7 7 2 2 1 1 6 6 3 3 0 0 5 5 3 3 0 0 4 4 2 2 1 1
7 7 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0

Fig. 2 NP-transformation table (NPTT) for three variables.

tially, they can be practically used for functions with up to
seven variables, which is the upper bound on the variables
for which our Boolean matching technique can be applica-
ble. It should be noted that the maximum number of inputs
to the cells in many cell libraries is less than seven. For
example, lib2 library from MCNC has cells with up to six
inputs [32].

3.4 Breadth-First Search by Using NPTT

The straightforward method for computing NPR by using
NPTT that we presented in Sect. 3.3 first generates all the
n!2n NP-equivalents from a given n-variable function, and
then chooses one with the smallest value in the binary rep-
resentation as the NPR. Since we are interested only in
the function that has the smallest value in the binary rep-
resentation, we may avoid generating many of the NP-
equivalents. Each columns of the NPTT corresponds to an
NP-equivalent, and we use a breadth-first search technique
to early detect the columns that cannot lead to the NPR. In
this method, the row at the top of the NPTT is used at first to
generate the first minterms of all the NP-equivalents, where
the first minterm is the left most minterm in the binary repre-
sentation. After generating the first minterms corresponding
to all the columns of the NPTT, we apply the following:

(a) if the minterms have both 0 and 1 values, we only keep
the columns that generate minterms with only 0 value
and discard other columns, and

(b) if all the minterms have either 0 or 1 values, we keep
all the columns.

Since NPR has the smallest value in the binary repre-
sentation among all the NP-equivalents, step (a) effectively
discards some of the columns that cannot lead to the NPR.
We then use second row of the NPTT for generating the
second minterms correspond to the columns that we kept
in steps (a) and (b), and apply steps (a) and (b) on the sec-

Table 1 Maximum number of NP-equivalents and size of NPTTs for
different number of variables.

Number of Maximum number Size of
variables of NP-equivalents NPTTs

3 48 384
4 384 6144
5 3840 122880
6 46080 2949120
7 645120 82575360
8 10321920 2.64 × 109
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Fig. 3 Partitioning NPTT for three variables.

Fig. 4 Breadth-first search tree combined with partial NPTT for three variables.

Fig. 5 Tree search for three-variable function 110010102.

ond minterms for possibly discarding some of the remain-
ing columns from consideration. We continue this process
until the bottom row of the NPTT is considered. At this
point search terminates, and any of the remaining columns
can generate an NPR. It should be noted that the breadth-
first search technique is difficult to apply if we cannot store
NPTT.

3.5 Combining NPTT with a Breadth-First Search Tree

Although the breadth-first search by using NPTT can reduce
the search space quickly, by combining a search tree with
the NPTT we can make the search even more efficient. In
Sect. 3.4, NPTT is used row by row for computing NPR.
The breadth-first search by using NPTT in Fig. 2 requires
first to check all the 48 elements on the first row. An ob-
servation to Fig. 2 shows that there are 8 distinct elements
on the first row. Therefore, we can partition these elements

in to 8 groups and perform 8 checks — instead of 48 — to
determine any columns that cannot lead to NPR; in this case
also we use the breadth-first search strategy that are used in
steps (a) and (b) of Sect. 3.4; but the number of checks here
is only 8. Partitioning of NPTTs in Fig. 2 is shown in Fig. 3.

Figure 2 also shows that each of these groups can be
partitioned in to 3 subgroups, which in turn can be again par-
titioned in to 2 subgroups (Fig. 3). These lead to a breadth-
first search tree shown in Fig. 4, where the branches of the
tree are labeled with the elements of the first three rows of
the NPTT. Figure 4 shows that the top three rows of Fig. 2
form the search tree, while the bottom five rows stay the
same. Therefore, the search for an NPR starts at the root
of the search tree; after reaching the bottom of the tree the
search continues from the fourth row of the NPTT until its
bottom row is considered.

The breadth-first search tree for an n-variable function
can be constructed in a similar manner. The root node of the
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search tree has 2n children; the number of children for each
of the nodes in the subsequent levels has n, n − 1, . . . , 3, and
2 children.

Figure 5 shows an example to find the NPR for three-
variable function 110010102, i.e., m2 = m3 = m5 = m7 = 0
and m0 = m1 = m4 = m6 = 1. At the top level of the tree,
we discard branches for m0, m1, m4, and m6, because these
minterms have a value 1. We are only interested to find the
function with the smallest binary representation. Thus, the
paths for m2, m3, m5, and m7 are selected. In the next level,
in a similar manner, we select only six branches. We con-
tinue this process until we reach the leaves of the tree. The
branches that we traverse to find the NPR are shown in thick
lines or small rectangles in Fig. 5. The number of branches
left at different levels of the tree are 4, 6, 4, 4, 4, 2, 2, 2. Only
two paths lead to the NPR which is 000110112. In this way,
we need to search only a small portion of the tree to find the
NPR.

4. Experimental Results

We implemented the proposed Boolean matching technique
for functions with up to seven variables on a Sun Fire 280R
Server. The program requires about 140 megabytes mem-
ory, of which about 85 megabytes are used to store the
NP-transformation tables (NPTTs); the data structure of the
breadth-first search trees and the code of the program use
the remaining 55 megabytes. If the program is used for
functions with up to six variables, it needs only about five
megabytes memory. It should be noted that additional mem-
ory is required to store NP-representatives (NPRs) for the
library functions and their associated hash tables; however,
this memory requirement is relatively lower as every byte of
memory can hold up to eight bits of the binary representa-
tion of NPRs. During setup phase, the program constructs
the breadth-first search trees; it takes about 0.50 seconds.

To demonstrate the effectiveness of our technique,
we conducted an experiment by using 5,000,000 pseudo-
random functions with three to seven variables and tried to
match them against a cell library, which is represented by
50,000 randomly generated library functions. Table 2 sum-
marizes the average Boolean matching time in microsec-
onds, which is the time required to match a function against
the entire library whose cells generate 50,000 library func-
tions. We note that no two functions in the library are NP-
equivalent, and Boolean matching time of our algorithm is
almost independent of whether or not a matching is found.
Our experiments show that Boolean matching time remains

Table 2 Average time for Boolean matching.

Number of Time
variables (microseconds)

3 9.81
4 15.74
5 26.02
6 39.13
7 147.61

the same even when drastic changes are made in the compo-
sition of the library.

Hinsberger and Kolla reported Boolean matching time
for their Template technology mapping system in [12].
From multiple-level networks of NOR gates, Template gen-
erates all possible single-output cluster functions [9] with
six and fewer variables [17]. It then tries to find a Boolean
match for each of the cluster functions against the lib2 li-
brary from the MCNC. In library binding of a set of 18
benchmark functions by using lib2 — which consists of 27
cells — Template checks total 113,188 Boolean matchings
in 9,141 seconds on an HP 735/125, i.e., on the average
12.38 matching attempts per second.

Since experimental results for both the systems are un-
available in the same format, a comparison of the speed
performance of our Boolean matching technique with that
of the Template is not straightforward. We consider that a
Sun Fire 280R Server (900-MHz UltraSPARC-III proces-
sor) is about eight times faster than an HP 735/125 (usually
125-MHz PA-7150 RISC processor). Thus, if all the clus-
ter functions generated by Template depends on four, five,
and six variables, our method is about 600, 400, and 250
times, respectively, faster than Template. The actual speed-
up would be in between these numbers. It should be noted
that the comparison is made when Template uses a library
with only 27 cells and our method uses a library with 50,000
cells.

5. Conclusions and Comments

Fast algorithms for Boolean matching can significantly
speed-up the cell library binding process, and Boolean
matching for cell library binding where the library contains
large number of cells can considerably improve the qual-
ity of the solutions. We used the notion NP-representative
(NPR) which is unique for any NP-equivalence classes, and
presented a table look-up based breadth-first search algo-
rithm to quickly compute it; we used NPRs to efficiently
check the functional equivalence of a given circuit against
a large library under permutation and complementation of
inputs and complementation of output. The method is more
than two orders of magnitude faster than Hinsberger-Kolla’s
algorithm [12].

Our technique is practical for functions with up to
seven variables. This number is sufficiently large to work
with many cell libraries, such as an industrial library re-
ported by Benini et al. that contains cells with up to five
inputs [3] and lib2 library that consists of cells with up to
six inputs and that is extensively used by the research com-
munity [32]. Recently, Abdollahi and Pedram presented
a Boolean matching method that uses functional proper-
ties and can handle functions with more variables than our
method does [1]. However, our method is independent of
functional properties and has a comparable speed perfor-
mance to work with many practical cell libraries. Although
the memory usage of our method is relatively higher than
most other Boolean matching algorithms, we believe its su-
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perior speed performance and the ability to handle large li-
braries would outweigh any considerations for its memory
requirement.
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