
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006
3443

PAPER Special Section on VLSI Design and CAD Algorithms

Efficient Computation of Canonical Form under Variable
Permutation and Negation for Boolean Matching
in Large Libraries

Debatosh DEBNATH†a), Nonmember and Tsutomu SASAO††b), Member

SUMMARY This paper presents an efficient technique for solving a
Boolean matching problem in cell-library binding, where the number of
cells in the library is large. As a basis of the Boolean matching, we use
the notion NP-representative (NPR): two functions have the same NPR
if one can be obtained from the other by a permutation and/or comple-
mentation(s) of the variables. By using a table look-up and a tree-based
breadth-first search strategy, our method quickly computes the NPR for a
given function. Boolean matching of the given function against the whole
library is determined by checking the presence of its NPR in a hash table,
which stores NPRs for all the library functions and their complements. The
effectiveness of our method is demonstrated through experimental results,
which show that it is more than two orders of magnitude faster than the
Hinsberger-Kolla’s algorithm.
key words: logic synthesis, Boolean matching, cell-library binding, tech-
nology mapping, canonical form

1. Introduction

Determining whether a circuit is functionally equivalent to
another under a permutation of its inputs, complementation
of its one or more inputs, and/or inversion of its output is an
important problem in logic synthesis, and Boolean match-
ing technique is used to solve it. Algorithms for Boolean
matching have applications in cell-library binding where it
is necessary to repeatedly check if some part of a multiple-
level representation of a Boolean function can be realized by
any of the cells from a given library [9], in logic verification
where correspondence of the inputs of two circuits are un-
known [18], [30], and in table look-up based logic synthesis
[7]. In this paper, we consider Boolean matching problem
for cell-library binding. An exhaustive method for Boolean
matching is computationally expensive even for functions
with only few variables, because the time complexity of
such an algorithm for an n-variable function is O(n!22n).

Boolean matching phase is a time consuming steps in
cell library binding. Because of their importance in syn-
thesizing cost effective circuits, Boolean matching problems

Manuscript received March 15, 2006.
Final manuscript received July 12, 2006.
†The author is with the Department of Computer Science

and Engineering, Oakland University, Rochester, Michigan 48309,
U.S.A.
††The author is with the Department of Computer Science and

Electronics, Kyushu Institute of Technology, Iizuka-shi, 820-8502
Japan.

a) E-mail: debnath@oakland.edu
b) E-mail: sasao@cse.kyutech.ac.jp

DOI: 10.1093/ietfec/e89–a.12.3443

received much attention and many algorithms have been de-
veloped to efficiently solve them [2]. Signatures, which are
computed from some properties of Boolean functions, are
extensively used in Boolean matching [2]. An equality in
the signatures is a necessary condition for Boolean match-
ing of two functions; although it is not the sufficient condi-
tion, signature-based algorithms have successfully demon-
strated their effectiveness. Some of the signature-based
algorithms are efficient for performing pair-wise Boolean
matching [18], [22], [29], [30]. However, to match a func-
tion against a library they often require to perform pair-wise
matchings of the function with all the library cells. There-
fore, Boolean matching techniques based on them are un-
suitable for handling libraries with large number of cells.
There are other signature-based algorithms that are success-
fully used with cell libraries; however, they can handle li-
braries with only modest size [6], [20], [27]. Moreover, due
to the lack of sufficient information in the signatures, algo-
rithms based on them in many cases are unable to conclude
a Boolean match. Thus, an exhaustive search is necessary
to obtain a conclusive result. Some other Boolean matching
algorithms consider only some restricted form of Boolean
matching [10], [14], [25], [26].

There are other categories of Boolean matching algo-
rithms that are based on the computation of some canoni-
cal form for Boolean functions [4], [5], [8], [12], [31]. Two
functions match if their canonical forms are the same. The
Boolean matching technique that we consider in this pa-
per falls under this category. Burch and Long introduced a
canonical form for matching under complementation and a
semi-canonical form for matching under permutation of the
variables [4]. These two forms can be combined to check
Boolean matching under permutation and complementation
of variables. However, a large number of forms for each
cells are required when using the method in cell library
binding. Ciric and Sechen [5], Debnath and Sasao [8], and
Wu et al. [31] also proposed canonical forms for efficient
Boolean matching. However, these techniques are applica-
ble for Boolean matching under permutation of the variables
only. Hinsberger and Kolla introduced a canonical form for
solving the general Boolean matching problem that we are
considering in this paper [12]. It can handle libraries with
large number of cells under permutation and complemen-
tation of the variables as well as inversion of the function;
however, the method requires considerable computation.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

3444
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

In this paper, we present an efficient technique for
computing a canonical form for Boolean functions. The
canonical form — which we refer to as NP-representative
(NPR) — remains unchanged under permutation and com-
plementation of the variables. The set of functions that can
be made identical under permutation and complementation
of the variables form an NP-equivalence class [11], [13],
[23]. In an NP-equivalence class, the function that has the
smallest value in the binary representation is the NPR of the
class, and every NP-equivalence class has a unique NPR.
Thus, if the NPRs for the functions represented by the two
circuits are equal, they are functionally equivalent under the
permutation and complementation of inputs. It should be
noted that our canonical form is similar to that of Hinsberger
and Kolla [12]. For efficient computation of NPRs we use
precomputed NP-transformation tables (NPTTs), which are
used to quickly generate any functions in an NP-equivalence
class. To make the search even more efficient, our method
combines an NPTT with a search tree for each variables and
performs breadth-first searches.

Although NPRs can identify functional equivalence of
two circuits under permutation and complementation of in-
puts, they are unable to directly ascertain the functional
equivalence if it involves determining whether the output of
one circuit is also complemented. Thus, to handle the out-
put complementation we use the following strategy. Let f
and g be the Boolean functions represented by two circuits
F and G, respectively. To check if F and G are function-
ally equivalent under permutation and complementation of
inputs of G as well as possible complementation of its out-
put, we compute the NPRs for f , g, and ḡ. If the NPRs for f
and g are equal, G can be made functionally equivalent to F
by permutation and complementation of inputs of G; how-
ever, if the NPRs for f and ḡ are equal, complementation of
the output of G is also required in addition to permutation
and complementation of its inputs to make F and G func-
tionally equivalent. In the case of a linear function [24], f
and g can be equivalent under the complementation of the
input. At the same time, f and g can be equivalent under the
complementation of the output.

For using our method in cell library binding the library
requires to be preprocessed. A set of personalized modules
can be obtained from each library cells by bridging some of
its inputs and/or setting some of its inputs to constant values
[12]. In the preprocessing phase we generate library func-
tions, which are the collection of functions represented by
the library cells and by the personalized modules obtained
from the library cells.

For Boolean matching of cell libraries we precompute
the NPRs for the library functions and their complements.
When we require to find a Boolean match of a given function
against the whole library, we compute its NPR and check
whether the same NPR is present in the precomputed NPRs
for the library functions. An affirmative answer indicates
a Boolean matching with a cell in the library. For efficient
equivalence checking of NPRs we use a hash table to store
the NPRs for the library functions.

Based on the above discussions, our Boolean matching
technique for library binding can be summarized as:

• Build the search tree for each variable (n = 3, 4, 5, 6,
and 7).
• Generate the library functions; for each of them, com-

pute two NPRs — one for it and the other for its com-
plement — and store them in a hash table.
• Compute the NPR for the function to be matched

against the library.
• Check the hash table for the presence of the NPR;

a matching is found if the NPR is in the table.

We will refer to the first two of the above steps as the
setup phase and the last two steps as the matching phase.

Usually Boolean matching for libraries with large num-
ber of cells is computationally expensive. However, an in-
crease in the number of the cells in a library often helps op-
timize the area of the implementation [16], [19], [26]. Inclu-
sion of complex cells to the library also improves other cost
metrics of the resulting circuit. For example, for a set of 10
benchmark circuits, Tiwari et al. showed that by increasing
the number of cells in a library from 33 to 396 reduces the
power consumption of the mapped circuits by about 20 per-
cent [28, p.266]. Kantabutra also presented strong statistical
evidence in support of using complex cells [15]. However,
inclusion of complex cells results in a large library. Tradi-
tionally, technology libraries are small. For example, Benini
et al. used an industrial library containing 75 cells with up to
five inputs [3], and lib2 library — which is extensively used
by the research community — consists of only 27 cells with
up to six inputs [32].

Since pair-wise matchings are unnecessary, the com-
putational complexity of our Boolean matching technique
is independent of the number of cells in the library, and it
can efficiently handle libraries with extremely large num-
ber of cells. The number of cells is constrained only by
the available memory resources. This feature is important
in table look-up based logic synthesis [11], where matching
against a library with more than one million cells is nec-
essary [7]. Moreover, our method is independent of any
cell architecture and any functional properties. However,
functional properties can be used with our method as filters
for quickly detecting the functions that cannot be matched
against a library [6], [18], [20], [21], [25], [27]. Experimen-
tal results and comparison with another method demonstrate
that the proposed technique is highly effective.

The remainder of the paper is organized as follows:
Section 2 formally introduces the terminology. Section 3
develops the techniques for computing the NPR, which is
the basis of our Boolean matching technique. Section 4 re-
ports experimental results and compares our technique with
another method. Section 5 presents conclusions.

2. Definitions and Terminology

Definition 1: Let the minterm expansion of an n-variable
function f (x1, x2, . . . , xn) be m0 · x̄1 x̄2 · · · x̄n∨m1 · x̄1 x̄2 · · · xn∨

DEBNATH and SASAO: CANONICAL FORM FOR BOOLEAN MATCHING IN LARGE LIBRARIES
3445

· · ·∨m2n−1 ·x1x2 · · · xn,where m0,m1, . . . ,m2n−1 ∈ {0, 1}. Let
the 2n bit binary number m0m1 · · ·m2n−1, which is obtained
by the concatenation of m0,m1, . . . ,m2n−1 in this order, be
the binary representation of f . To denote a binary number,
usually a subscripted 2 is used after it.

Example 1: Consider the three-variable function f (x1, x2,
x3) = x̄1x2x3 ∨ x1 x̄2 x̄3. The binary representation of f is
000110002.

Definition 2: Two functions f and g are NP-equivalent if
g can be obtained from f by a permutation of the variables
and/or complementation of one or more variables [11], [13],
[23]. NP-equivalent functions form an NP-equivalence
class of functions.

Example 2: Consider the four functions: f1(x1, x2, x3) =
x̄1 x̄2 x̄3 ∨ x1x2x3, f2(x1, x2, x3) = x̄1 x̄2x3 ∨ x1x2 x̄3,
f3(x1, x2, x3) = x̄1x2 x̄3 ∨ x1 x̄2x3, and f4(x1, x2, x3) =
x̄1x2x3 ∨ x1 x̄2 x̄3. Since f2(x1, x2, x̄3) = x̄1 x̄2 x̄3 ∨ x1x2x3 =

f1(x1, x2, x3), f1 and f2 are NP-equivalent. Similarly, we
can show that f3 and f4 are also NP-equivalent to f1. There-
fore, the functions f1, f2, f3, and f4 belong to the same NP-
equivalence class.

Definition 3: The function that has the smallest value in
the binary representation among the functions of an NP-
equivalence class is the NP-representative (NPR) of that
class.

Example 3: From Example 2, all the functions of an NP-
equivalence class are x̄1 x̄2 x̄3 ∨ x1x2x3, x̄1 x̄2x3 ∨ x1x2 x̄3,
x̄1x2 x̄3 ∨ x1 x̄2x3, and x̄1x2x3 ∨ x1 x̄2 x̄3. In the binary repre-
sentation: x̄1 x̄2 x̄3∨ x1x2x3 = 100000012, x̄1 x̄2x3∨ x1x2 x̄3 =

010000102, x̄1x2 x̄3 ∨ x1 x̄2x3 = 001001002, and x̄1x2x3 ∨
x1 x̄2 x̄3 = 000110002. Since 000110002 < 001001002 <
010000102 < 100000012, the NP-representative of the
class is x̄1x2x3 ∨ x1 x̄2 x̄3.

Variables of an n-variable function can be permuted in
n! ways and complemented in 2n ways; thus the total num-
ber of possible combinations are n!2n. However, for many
functions some of these combinations generate the same
function. Therefore, for an n-variable function there are at
most n!2n NP-equivalents. Among them, our objective is to
quickly find the NP-equivalent that has the smallest value in
the binary representation.

3. Computing NP-Representative

In this section, we show a method to compute NP-
representative (NPR) by using three-variable functions and
discuss how the technique can be extended to functions with
more variables.

3.1 Binary Representations under Permutation and Com-
plementation of Variables

Binary representations of a given function under different

permutation and complementation of variables can be eas-
ily generated if the function is represented as the minterm
expansion. For example, let

f (x1, x2, x3) = m0 x̄1 x̄2 x̄3 ∨ m1 x̄1 x̄2x3 ∨
m2 x̄1x2 x̄3 ∨ m3 x̄1x2x3 ∨
m4x1 x̄2 x̄3 ∨ m5x1 x̄2x3 ∨
m6x1x2 x̄3 ∨ m7x1x2x3 (1)

be the minterm expansion of a three-variable function,
where m0,m1, . . . ,m7 ∈ {0, 1}. The permutation of the vari-
ables in Eq. (1) is (x1, x2, x3). When the permutation of the
variables is (x3, x2, x1), we have

f (x3, x2, x1) = m0 x̄3 x̄2 x̄1 ∨ m1 x̄3 x̄2x1 ∨
m2 x̄3x2 x̄1 ∨ m3 x̄3x2x1 ∨
m4x3 x̄2 x̄1 ∨ m5x3 x̄2x1 ∨
m6x3x2 x̄1 ∨ m7x3x2x1

= m0 x̄1 x̄2 x̄3 ∨ m4 x̄1 x̄2x3 ∨
m2 x̄1x2 x̄3 ∨ m6 x̄1x2x3 ∨
m1x1 x̄2 x̄3 ∨ m5x1 x̄2x3 ∨
m3x1x2 x̄3 ∨ m7x1x2x3. (2)

From Eqs. (1) and (2), the binary representations of f (x1,
x2, x3) and f (x3, x2, x1) can be written as m0m1m2m3m4m5

m6m7 and m0m4m2m6m1m5m3m7, respectively.
When variables are complemented, the binary repre-

sentation can also be generated in a similar manner. For
example, by replacing x1 by x̄1 in Eq. (2), we have

f (x3, x2, x̄1) = m0x1 x̄2 x̄3 ∨ m4x1 x̄2x3 ∨
m2x1x2 x̄3 ∨ m6x1x2x3 ∨
m1 x̄1 x̄2 x̄3 ∨ m5 x̄1 x̄2x3 ∨
m3 x̄1x2 x̄3 ∨ m7 x̄1x2x3

= m1 x̄1 x̄2 x̄3 ∨ m5 x̄1 x̄2x3 ∨
m3 x̄1x2 x̄3 ∨ m7 x̄1x2x3 ∨
m0x1 x̄2 x̄3 ∨ m4x1 x̄2x3 ∨
m2x1x2 x̄3 ∨ m6x1x2x3,

which gives m1m5m3m7m0m4m2m6 as the binary repre-
sentation of f (x3, x2, x̄1). Several randomly chosen NP-
equivalents of f (x1, x2, x3) are shown in Fig. 1, where the
binary representations are written vertically; in the subse-
quent discussions, binary representations will often be dis-
played in this way.

3.2 Basic Idea

Figure 1 shows four of the NP-equivalents of f (x1, x2, x3).
There are at most 48 (= 3!23) NP-equivalents of a three-
variable function. Our objective in computing the NPR is to
find the NP-equivalent that has the smallest value in the bi-
nary representation. Thus, we can generate NP-equivalents
with other permutations and complementations of the vari-
ables, and take the function that has the smallest value in the

3446
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

binary representation as the NPR.
An observation to the minterms of the first and second

columns of Fig. 1 shows that all the minterms of f (x1, x2, x3)
move to new positions in f (x1, x̄3, x2). For example, the first
minterm, m0, of f (x1, x2, x3) becomes the second minterm
of f (x1, x̄3, x2). Therefore, each time we want to change the
permutation and complementation of the variables of an n-
variable function, we must compute the new positions for
all the 2n minterms. Since an n-variable function has at
most n!2n NP-equivalents, to compute the NPR for an n-
variable function we must compute n!22n new positions for
the minterms, i.e., the time complexity of the algorithm is
O(n!22n). As a result the method requires significant amount
of computation time even for functions with as few as three
variables.

3.3 NP-Transformation Table (NPTT)

Figure 1 shows that the new positions of the minterms are
fixed for each of the permutation and complementation of
the variables. Therefore, our strategy is to compute the new
positions of the minterms for all the permutation and com-
plementation of the variables only once and to use them re-
peatedly for computing NPRs; this method is much faster
than the method presented in Sect. 3.2, because repeated
computation of the new positions for the minterms is un-
necessary. Figure 2 shows a table of all such new positions
of the minterms for three-variable function; it is similar to
Fig. 1 except column headings are removed and mi is re-
placed by i (0 ≤ i ≤ 7). We will refer to such a table as
NP-transformation table (NPTT). Although column head-
ings are removed from Fig. 2 for ease of showing the whole
table, they are required by our algorithm.

The NPTT for an n-variable function has 2n rows and
n!2n columns, i.e., it has n!22n entries (Fig. 2). Table 1
shows the maximum number of NP-equivalents in an NP-
equivalence class and the size of NPTTs for different num-
ber of variables. Since the size of the NPTTs grow exponen-

f (x1, x2, x3) f (x1, x̄3, x2) f (x̄3, x2, x̄1) f (x̄2, x̄1, x3)
m0 m2 m5 m6
m1 m0 m1 m7
m2 m3 m7 m2
m3 m1 m3 m3
m4 m6 m4 m4
m5 m4 m0 m5
m6 m7 m6 m0
m7 m5 m2 m1

Fig. 1 Four of the NP-equivalents of a three-variable function
f (x1, x2, x3).

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
1 1 2 2 4 4 0 0 3 3 5 5 0 0 3 3 6 6 1 1 2 2 7 7 0 0 5 5 6 6 1 1 4 4 7 7 2 2 4 4 7 7 3 3 5 5 6 6
2 4 1 4 1 2 3 5 0 5 0 3 3 6 0 6 0 3 2 7 1 7 1 2 5 6 0 6 0 5 4 7 1 7 1 4 4 7 2 7 2 4 5 6 3 6 3 5
3 5 3 6 5 6 2 4 2 7 4 7 1 4 1 7 4 7 0 5 0 6 5 6 1 2 1 7 2 7 0 3 0 6 3 6 0 3 0 5 3 5 1 2 1 4 2 4
4 2 4 1 2 1 5 3 5 0 3 0 6 3 6 0 3 0 7 2 7 1 2 1 6 5 6 0 5 0 7 4 7 1 4 1 7 4 7 2 4 2 6 5 6 3 5 3
5 3 6 3 6 5 4 2 7 2 7 4 4 1 7 1 7 4 5 0 6 0 6 5 2 1 7 1 7 2 3 0 6 0 6 3 3 0 5 0 5 3 2 1 4 1 4 2
6 6 5 5 3 3 7 7 4 4 2 2 7 7 4 4 1 1 6 6 5 5 0 0 7 7 2 2 1 1 6 6 3 3 0 0 5 5 3 3 0 0 4 4 2 2 1 1
7 7 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0

Fig. 2 NP-transformation table (NPTT) for three variables.

tially, they can be practically used for functions with up to
seven variables, which is the upper bound on the variables
for which our Boolean matching technique can be applica-
ble. It should be noted that the maximum number of inputs
to the cells in many cell libraries is less than seven. For
example, lib2 library from MCNC has cells with up to six
inputs [32].

3.4 Breadth-First Search by Using NPTT

The straightforward method for computing NPR by using
NPTT that we presented in Sect. 3.3 first generates all the
n!2n NP-equivalents from a given n-variable function, and
then chooses one with the smallest value in the binary rep-
resentation as the NPR. Since we are interested only in
the function that has the smallest value in the binary rep-
resentation, we may avoid generating many of the NP-
equivalents. Each columns of the NPTT corresponds to an
NP-equivalent, and we use a breadth-first search technique
to early detect the columns that cannot lead to the NPR. In
this method, the row at the top of the NPTT is used at first to
generate the first minterms of all the NP-equivalents, where
the first minterm is the left most minterm in the binary repre-
sentation. After generating the first minterms corresponding
to all the columns of the NPTT, we apply the following:

(a) if the minterms have both 0 and 1 values, we only keep
the columns that generate minterms with only 0 value
and discard other columns, and

(b) if all the minterms have either 0 or 1 values, we keep
all the columns.

Since NPR has the smallest value in the binary repre-
sentation among all the NP-equivalents, step (a) effectively
discards some of the columns that cannot lead to the NPR.
We then use second row of the NPTT for generating the
second minterms correspond to the columns that we kept
in steps (a) and (b), and apply steps (a) and (b) on the sec-

Table 1 Maximum number of NP-equivalents and size of NPTTs for
different number of variables.

Number of Maximum number Size of
variables of NP-equivalents NPTTs

3 48 384
4 384 6144
5 3840 122880
6 46080 2949120
7 645120 82575360
8 10321920 2.64 × 109

DEBNATH and SASAO: CANONICAL FORM FOR BOOLEAN MATCHING IN LARGE LIBRARIES
3447

Fig. 3 Partitioning NPTT for three variables.

Fig. 4 Breadth-first search tree combined with partial NPTT for three variables.

Fig. 5 Tree search for three-variable function 110010102.

ond minterms for possibly discarding some of the remain-
ing columns from consideration. We continue this process
until the bottom row of the NPTT is considered. At this
point search terminates, and any of the remaining columns
can generate an NPR. It should be noted that the breadth-
first search technique is difficult to apply if we cannot store
NPTT.

3.5 Combining NPTT with a Breadth-First Search Tree

Although the breadth-first search by using NPTT can reduce
the search space quickly, by combining a search tree with
the NPTT we can make the search even more efficient. In
Sect. 3.4, NPTT is used row by row for computing NPR.
The breadth-first search by using NPTT in Fig. 2 requires
first to check all the 48 elements on the first row. An ob-
servation to Fig. 2 shows that there are 8 distinct elements
on the first row. Therefore, we can partition these elements

in to 8 groups and perform 8 checks — instead of 48 — to
determine any columns that cannot lead to NPR; in this case
also we use the breadth-first search strategy that are used in
steps (a) and (b) of Sect. 3.4; but the number of checks here
is only 8. Partitioning of NPTTs in Fig. 2 is shown in Fig. 3.

Figure 2 also shows that each of these groups can be
partitioned in to 3 subgroups, which in turn can be again par-
titioned in to 2 subgroups (Fig. 3). These lead to a breadth-
first search tree shown in Fig. 4, where the branches of the
tree are labeled with the elements of the first three rows of
the NPTT. Figure 4 shows that the top three rows of Fig. 2
form the search tree, while the bottom five rows stay the
same. Therefore, the search for an NPR starts at the root
of the search tree; after reaching the bottom of the tree the
search continues from the fourth row of the NPTT until its
bottom row is considered.

The breadth-first search tree for an n-variable function
can be constructed in a similar manner. The root node of the

3448
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

search tree has 2n children; the number of children for each
of the nodes in the subsequent levels has n, n − 1, . . . , 3, and
2 children.

Figure 5 shows an example to find the NPR for three-
variable function 110010102, i.e., m2 = m3 = m5 = m7 = 0
and m0 = m1 = m4 = m6 = 1. At the top level of the tree,
we discard branches for m0, m1, m4, and m6, because these
minterms have a value 1. We are only interested to find the
function with the smallest binary representation. Thus, the
paths for m2, m3, m5, and m7 are selected. In the next level,
in a similar manner, we select only six branches. We con-
tinue this process until we reach the leaves of the tree. The
branches that we traverse to find the NPR are shown in thick
lines or small rectangles in Fig. 5. The number of branches
left at different levels of the tree are 4, 6, 4, 4, 4, 2, 2, 2. Only
two paths lead to the NPR which is 000110112. In this way,
we need to search only a small portion of the tree to find the
NPR.

4. Experimental Results

We implemented the proposed Boolean matching technique
for functions with up to seven variables on a Sun Fire 280R
Server. The program requires about 140 megabytes mem-
ory, of which about 85 megabytes are used to store the
NP-transformation tables (NPTTs); the data structure of the
breadth-first search trees and the code of the program use
the remaining 55 megabytes. If the program is used for
functions with up to six variables, it needs only about five
megabytes memory. It should be noted that additional mem-
ory is required to store NP-representatives (NPRs) for the
library functions and their associated hash tables; however,
this memory requirement is relatively lower as every byte of
memory can hold up to eight bits of the binary representa-
tion of NPRs. During setup phase, the program constructs
the breadth-first search trees; it takes about 0.50 seconds.

To demonstrate the effectiveness of our technique,
we conducted an experiment by using 5,000,000 pseudo-
random functions with three to seven variables and tried to
match them against a cell library, which is represented by
50,000 randomly generated library functions. Table 2 sum-
marizes the average Boolean matching time in microsec-
onds, which is the time required to match a function against
the entire library whose cells generate 50,000 library func-
tions. We note that no two functions in the library are NP-
equivalent, and Boolean matching time of our algorithm is
almost independent of whether or not a matching is found.
Our experiments show that Boolean matching time remains

Table 2 Average time for Boolean matching.

Number of Time
variables (microseconds)

3 9.81
4 15.74
5 26.02
6 39.13
7 147.61

the same even when drastic changes are made in the compo-
sition of the library.

Hinsberger and Kolla reported Boolean matching time
for their Template technology mapping system in [12].
From multiple-level networks of NOR gates, Template gen-
erates all possible single-output cluster functions [9] with
six and fewer variables [17]. It then tries to find a Boolean
match for each of the cluster functions against the lib2 li-
brary from the MCNC. In library binding of a set of 18
benchmark functions by using lib2 — which consists of 27
cells — Template checks total 113,188 Boolean matchings
in 9,141 seconds on an HP 735/125, i.e., on the average
12.38 matching attempts per second.

Since experimental results for both the systems are un-
available in the same format, a comparison of the speed
performance of our Boolean matching technique with that
of the Template is not straightforward. We consider that a
Sun Fire 280R Server (900-MHz UltraSPARC-III proces-
sor) is about eight times faster than an HP 735/125 (usually
125-MHz PA-7150 RISC processor). Thus, if all the clus-
ter functions generated by Template depends on four, five,
and six variables, our method is about 600, 400, and 250
times, respectively, faster than Template. The actual speed-
up would be in between these numbers. It should be noted
that the comparison is made when Template uses a library
with only 27 cells and our method uses a library with 50,000
cells.

5. Conclusions and Comments

Fast algorithms for Boolean matching can significantly
speed-up the cell library binding process, and Boolean
matching for cell library binding where the library contains
large number of cells can considerably improve the qual-
ity of the solutions. We used the notion NP-representative
(NPR) which is unique for any NP-equivalence classes, and
presented a table look-up based breadth-first search algo-
rithm to quickly compute it; we used NPRs to efficiently
check the functional equivalence of a given circuit against
a large library under permutation and complementation of
inputs and complementation of output. The method is more
than two orders of magnitude faster than Hinsberger-Kolla’s
algorithm [12].

Our technique is practical for functions with up to
seven variables. This number is sufficiently large to work
with many cell libraries, such as an industrial library re-
ported by Benini et al. that contains cells with up to five
inputs [3] and lib2 library that consists of cells with up to
six inputs and that is extensively used by the research com-
munity [32]. Recently, Abdollahi and Pedram presented
a Boolean matching method that uses functional proper-
ties and can handle functions with more variables than our
method does [1]. However, our method is independent of
functional properties and has a comparable speed perfor-
mance to work with many practical cell libraries. Although
the memory usage of our method is relatively higher than
most other Boolean matching algorithms, we believe its su-

DEBNATH and SASAO: CANONICAL FORM FOR BOOLEAN MATCHING IN LARGE LIBRARIES
3449

perior speed performance and the ability to handle large li-
braries would outweigh any considerations for its memory
requirement.

Acknowledgments

We thank Professor Reiner Kolla for interesting discussions
about Boolean matching in Template system. This work was
supported in part by the Japan Society for the Promotion of
Science and in part by the Ministry of Education, Science,
Culture, and Sports of Japan.

References

[1] A. Abdollahi and M. Pedram, “A new canonical form for fast
Boolean matching in logic synthesis and verification,” Proc.
ACM/IEEE 42nd Design Automation Conf., pp.379–384, June
2005.

[2] L. Benini and G. De Micheli, “A survey of Boolean matching tech-
niques for library binding,” ACM Trans. Des. Autom. Electron.
Syst., vol.2, no.3, pp.193–226, July 1997.

[3] L. Benini, P. Vuillod, and G. De Micheli, “Iterative remapping for
logic circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol.17, no.10, pp.948–964, Oct. 1998.

[4] J.R. Burch and D.E. Long, “Efficient Boolean function matching,”
Proc. ACM/IEEE Int. Conf. on Computer-Aided Design, pp.408–
411, Nov. 1992.

[5] J. Ciric and C. Sechen, “Efficient canonical form for Boolean match-
ing of complex functions in large libraries,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.22, no.5, pp.535–544, May
2003.

[6] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transforms for large Boolean functions with applications
to technology mapping,” Form. Methods Syst. Des., vol.10, no.2,
pp.137–148, April 1997.

[7] D. Debnath and T. Sasao, “A heuristic algorithm to design AND-OR-
EXOR three-level networks,” Proc. Asia and South Pacific Design
Automation Conf., pp.69–74, Feb. 1998.

[8] D. Debnath and T. Sasao, “Fast Boolean matching under permuta-
tion by efficient computation of canonical form,” IEICE Trans. Fun-
damentals, vol.E87-A, no.12, pp.3134–3140, Dec. 2004.

[9] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[10] S. Ercolani and G. De Micheli, “Technology mapping for electrically
programmable gate arrays,” Proc. ACM/IEEE Design Automation
Conf., pp.234–239, June 1991.

[11] M.A. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill, 1965.

[12] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,”
Proc. ACM/IEEE Design Automation Conf., pp.206–211, June
1998.

[13] S.L. Hurst, D.M. Miller, and J.C. Muzio, Spectral Techniques in
Digital Logic, Academic Press, 1985.

[14] M. Hütter and M. Scheppler, “Memory efficient and fast Boolean
matching for large functions using rectangle representation,”
ACM/IEEE Int. Workshop on Logic Synthesis, pp.164–171, May
2003.

[15] V. Kantabutra, “Two new directions in low-power digital CMOS
VLSI design,” in Low-Voltage/Low-Power Integrated Circuits and
Systems, ed. E. Sánchez-Sinencio and A.G. Andreou, IEEE Press,
1999.

[16] K. Keutzer, K. Kolwicz, and M. Lega, “Impact of library size on
the quality of automated synthesis,” Proc. ACM/IEEE Int. Conf. on
Computer-Aided Design, pp.120–123, Nov. 1987.

[17] R. Kolla, Personal communication, June 2003.

[18] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching using bi-
nary decision diagrams with applications to logic synthesis and veri-
fication,” Proc. IEEE Int. Conf. on Computer Design, pp.452–458,
Oct. 1992.

[19] C. Liem and M. Lefebvre, “Performance directed technology map-
ping using constructive matching,” ACM/IEEE Int. Workshop on
Logic Synthesis, vol.3, 1991.

[20] F. Mailhot and G. De Micheli, “Algorithms for technology map-
ping based on binary decision diagrams and on Boolean operations,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.12, no.5,
pp.599–620, May 1993.

[21] Y. Matsunaga, “A new algorithm for Boolean matching utilizing
structural information,” IEICE Trans. Inf. & Syst., vol.E78-D, no.3,
pp.219–223, March 1995.

[22] J. Mohnke and S. Malik, “Permutation and phase independent
Boolean comparison,” Proc. IEEE European Conf. on Design Au-
tomation, pp.86–92, Feb. 1993.

[23] S. Muroga, Logic Design and Switching Theory, John Wiley &
Sons, 1979.

[24] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[25] U. Schlichtmann, F. Brglez, and M. Hermann, “Characterization of
Boolean functions for rapid matching in EPGA technology map-
ping,” Proc. ACM/IEEE Design Automation Conf., pp.374–379,
June 1992.

[26] U. Schlichtmann, F. Brglez, and P. Schneider, “Efficient Boolean
matching based on unique variable ordering,” ACM/IEEE Int. Work-
shop on Logic Synthesis, pp.3b:1–3b:13, May 1993.

[27] E. Schubert and W. Rosenstiel, “Combined spectral techniques
for Boolean matching,” Proc. ACM Int. Symposium on Field-
Programmable Gate Arrays, pp.38–43, Feb. 1996.

[28] V. Tiwari, P. Ashar, and S. Malik, “Technology mapping for low
power in logic synthesis,” Integr. VLSI J., vol.20, no.3, pp.243–268,
July 1996.

[29] C. Tsai and M. Marek-Sadowska, “Boolean functions classification
via fixed polarity Reed-Muller forms,” IEEE Trans. Comput., vol.46,
no.2, pp.173–186, Feb. 1997.

[30] K.-H. Wang, T. Hwang, and C. Chen, “Exploiting communication
complexity for Boolean matching,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol.15, no.10, pp.1249–1256, Oct. 1996.

[31] Q. Wu, C.Y.R. Chen, and J.M. Acken, “Efficient Boolean match-
ing algorithm for cell libraries,” Proc. IEEE Int. Conf. on Computer
Design, pp.36–39, Oct. 1994.

[32] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
(Version 3.0), Technical Report, Microelectronics Center of North
Carolina (MCNC), Jan. 1991.

Debatosh Debnath received the B.Sc.Eng.
and M.Sc.Eng. degrees from the Bangladesh
University of Engineering and Technology,
Dhaka, Bangladesh, in 1991 and 1993, respec-
tively, and the Ph.D. degree from the Kyushu In-
stitute of Technology, Iizuka, Japan, in 1998. He
held research positions at the Kyushu Institute of
Technology from 1998 to 1999 and at the Uni-
versity of Toronto, Ontario, Canada, from 1999
to 2002. In 2002, he joined the Department of
Computer Science and Engineering at the Oak-

land University, Rochester, Michigan, as an Assistant Professor. His re-
search interests include logic synthesis, design for testability, multiple-
valued logic, and CAD for field-programmable devices. He was a recipient
of the Japan Society for the Promotion of Science Postdoctoral Fellowship.

3450
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in electronics engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, the IBM T.J. Watson Research Center,
Yorktown Heights, New York, and the Naval
Postgraduate School, Monterey, California. He
is now a Professor of the Department of Com-
puter Science and Electronics at the Kyushu In-
stitute of Technology, Iizuka, Japan. His re-

search areas include logic design and switching theory, representations of
logic functions, and multiple-valued logic. He has published more than
nine books on logic design, including Logic Synthesis and Optimization,
Representation of Discrete Functions, Switching Theory for Logic Synthe-
sis, and Logic Synthesis and Verification, Kluwer Academic Publishers,
1993, 1996, 1999, and 2001, respectively. He has served as Program Chair-
man for the IEEE International Symposium on Multiple-Valued Logic (IS-
MVL) many times. Also, he was the Symposium Chairman of the 28th
ISMVL held in Fukuoka, Japan, in 1998. He received the NIWA Memorial
Award in 1979, Distinctive Contribution Awards from the IEEE Computer
Society MVL-TC for papers presented at ISMVLs in 1986, 1996, 2003 and
2004, and Takeda Techno-Entrepreneurship Award in 2001. He has served
as an Associate Editor of the IEEE Transactions on Computers. He is a
fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

