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SUMMARY This paper shows a design method for a sequential circuit
by using a Look-Up Table (LUT) ring. The method consists of two steps:
The first step partitions the outputs into groups. The second step realizes
them by LUT cascades, and allocates the cells of the cascades into the
memory. The system automatically finds a fast implementation by max-
imally utilizing available memory. With the presented algorithm, we can
easily design sequential circuits satisfying given specifications. The paper
also compares the LUT ring with logic simulator to realize sequential cir-
cuits: the LUT ring is 25 to 237 times faster than a logic simulator that uses
the same amount of memory.
key words: reconfigurable architecture, LUT cascade, BDD for CF, func-
tional decomposition

1. Introduction

The design of an LSI requires long time, since the number
of transistors in an LSI is often greater than 107. In addi-
tion, the LSI design have deep-submicron (DSM) effects,
such as cross-talk noise and inductive effects that require
electro-magnetic design. To solve these problems, regular
and reconfigurable architectures have been considered. Reg-
ular architectures have repeated structures, hence the over-
all structure at the global level is uniform. Such a structure
is more predictable in its delays. A repeated pattern can
be hand-designed and extensively analyzed to avoid internal
DSM problems, since its scale is relatively small and needs
to be designed only once [3]. Reconfigurable architectures
is rewritable, and can reduce the hardware development time
drastically.

Memory is the most important device that is regular
and reconfigurable. We present a Look-Up Table (LUT)
Ring that consists of memories are reconfigurable. An LUT
ring consists of memories, a control circuit, registers and a
programmable interconnection network. It sequentially em-
ulates an LUT cascade that represents the state transition
functions and the output functions. The LUT ring is faster
than the logic simulator, since the number of memory refer-
ences can be reduced.

The outline of the design method for a sequential cir-
cuit by using the LUT ring is as follows:
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1. Represent the state transition functions and the out-
put functions by multiple Binary Decision Diagrams
[4] (BDDs).

2. Transform these BDDs into a set of LUT cascades.
3. Allocate the LUT data into the memory of the LUT

ring.

We show a memory packing method that efficiently allocates
the LUT data into the memory of the LUT ring. Also, we
show a method to represent BDDs by partitioning the out-
puts into several groups. The design of a fast LUT ring for
a given size of memory is quite complex. It is similar to
the case of an ordinary LSI design, where logic design and
physical design interact. In our design method, the param-
eters given by the user are the total amount of memory and
the number of memory inputs and outputs: the optimiza-
tion for speed is automatically done. It derives a high-speed
sequential circuit by maximally utilizing memories on the
LUT ring.

We also compare the LUT ring with other methods to
realize sequential circuits. The rest of the paper is organized
as follows: Sect. 2 introduces representation of logic func-
tions. Section 3 shows the architectures of LUT cascades
and LUT rings. Section 4 shows design algorithms for an
LUT ring. Section 5 shows experimental results. Finally,
Sect. 6 concludes the paper.

This paper builds on the previous publications [7],
[10], [12].

2. Representation of Logic Functions

Various methods exist to represent multiple-output logic
functions. Among them, MTBDD [5] (multi-terminal
BDD), BDD for ECFN [9] (BDD for encoded character-
istic function for non-zero outputs), and BDD for CF [2]
(BDD for characteristic function) are suitable for the design
of LUT cascades and LUT rings. In [8], the evaluation time
and the amount of memory of these decision diagrams are
analyzed. They have the following features:

• MTBDD: The width tends to be too large to realize
LUT cascades.
• BDD for ECFN: The width is smaller than the corre-

sponding MTBDD, but its evaluation time is propor-
tional to the number of outputs.
• BDD for CF: The width is smaller than the corre-

sponding MTBDD, and many outputs can be evaluated
efficiently.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Functional decomposition with intermediate outputs.

Therefore, in this paper, we use a BDD for CF to represent
a multiple-output logic function.

Definition 2.1: Let �X = (x1, x2, . . . , xn) be the input vari-
ables, �Y = (y1, y2, . . . , ym) be the output variables, and
�f = ( f1(�X), f2(�X), . . . , fm(�X)) be a multiple-output function.
The characteristic function of a multiple-output function

is �χ(�X, �Y) =
m∧

i=1

(yi ≡ fi(�X)).

The characteristic function of an n-input m-output func-
tion is a two-valued logic function with (n + m) inputs. It
has input variables xi (i = 1, 2, . . . , n), and output vari-
ables y j for output f j. Let B = {0, 1}, �a ∈ Bn, �F =

( f1(�a), f2(�a), . . . , fm(�a)) ∈ Bm, and �b ∈ Bm. Then, the char-
acteristic function satisfies the relation

�χ(�a, �b) =

{
1 (when �b = �F(�a))
0 (otherwise)

Definition 2.2: A support variable of a function f is a
variable on which f actually depends.

Definition 2.3: [2] The BDD for CF of a multiple-output
function �f = ( f1, f2, . . . , fm) is the ROBDD for the charac-
teristic function �χ. In this case, we assume that the root node
is in the top of the BDD, and the variable yi is below the sup-
port variable of fi, where yi is the variable representing fi.

Definition 2.4: The width of the BDD for CF at height
k is the number of edges crossing the section of the graph
between xk and xk+1, where the edges incident to the same
nodes are counted as one. Also, in counting the width of
the BDD for CF, we ignore the edges which indicate the
constant 0 node.

Let X1, and X2 be sets of input variables, Y1, and Y2

be sets of output variables, (X1, Y1, X2, Y2) be the variable
ordering of a BDD for CF for the multiple-output function
�f = ( f1, f2, . . . , fm), and W be the width of the BDD for CF
at the height (X1, Y1). By applying functional decomposi-
tion to �f , we can obtain the network in Fig. 1, where the
number of lines connecting two blocks is t = �log2 W� [11].

Theorem 2.1: [8] Let µmax be the maximum width of the
BDD for CF that represents an n-input logic function �f . If
u = �log2 µmax� ≤ k − 1, then �f can be realized by a cascade
of k-input LUTs as shown in Fig. 2. By applying functional
decompositions s − 1 times, we have the circuit having the
structure of Fig. 2.

Fig. 2 LUT cascade.

3. LUT Cascade and LUT Ring

3.1 LUT Cascade

An LUT Cascade is shown in Fig. 2, where multiple-output
LUTs (cells) are connected in series to realize a multiple-
output function. The wires connecting adjacent cells are
called rails. The wiring delay is small since the wires be-
tween cells are limited to between the adjacent cells. Also,
each cells may have external outputs in addition to the rail
outputs. In this paper, ki denotes the number of inputs to
the i-th cell; ui denotes the number of rail outputs of the i-
th cell, i.e., the number of signal lines between i-th cell and
(i+1)-th cell; |Yi| denotes the number of the external outputs
of the i-th cell, i.e., the outputs that are connected to the pri-
mary output terminals; s denotes the number of levels; and r
denotes the number of LUT cascades. Note that, the number
of levels is equal to the number of cells in a cascade.

3.2 LUT Ring for Sequential Circuit

Although the LUT cascade has excellent features, it can only
realize limited combinational circuits once the parameters,
such as the number of cell inputs, the number of cells, and
the number of rail outputs are fixed.

In this paper, we present an LUT Ring in Fig. 3 that
realizes a wide range of sequential circuits. It sequentially
emulates an LUT cascade that realizes the combinational
part of the sequential circuit, and produces state variables,
and external outputs. Although it is slower than the LUT
cascade, it has much more flexibility. In the LUT ring, the
numbers of rails, inputs and outputs of cells, and the num-
ber of cells are flexible. When the LUT ring has enough
memory, it can emulates many cascades by storing multiple
LUT cascades. Also, the LUT ring has a faster realization by
maximally utilizing the available memory. To make the cir-
cuit faster, we can consider an LUT ring with multiple units.
However, for simplicity, in this paper, we will consider only
the LUT ring with a single unit.

In the LUT ring for a sequential circuit, all the data
for the cells are stored in the Memory for Logic. Figure 4
illustrates that the LUT cascade with three cells is emulated
by the LUT ring.

The Input Register stores the values of the primary
inputs; the Feedback Register stores the values of the state
variables; the Output Register stores the values of external
outputs; the MAR (Memory Address Register) stores the
address of the memory; the MBR (Memory Buffer Regis-



3344
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.12 DECEMBER 2005

Fig. 3 LUT ring for sequential circuit.

(a) LUT cascade. (b) LUT ring.

Fig. 4 LUT ring which realizes the LUT cascade (a).

Fig. 5 Double-Rank Flip-Flop.

ter) stores the outputs of the memory; the Programmable
Interconnection Network connects the Input register, the
Feedback register, and the MAR, also it connects the MBR
and the MAR; the Memory for Interconnection stores data
for the interconnections; and the Control Network gener-
ates necessary signals to obtain functional values.

The control network produces signal to move data
between the memory, programmable interconnection net-
works, and registers. The memory for interconnection stores
the information on connections among cells. After evaluat-
ing each cascades, the outputs for external outputs are sent
to the output register, and the outputs for state variables are
sent to the feedback register. When the evaluation of all the
cascades are finished, the values of the feedback register are
sent to the programmable interconnection network, and the
values of the output register are sent to the primary outputs.

To emulate the sequential circuit, the LUT ring uses
two types of clock pulses: C Clock to evaluate each cell of
the LUT cascade, and S Clock for state transitions. These
clocks are produced by the control network. Figure 5 shows
the Double-Rank Filp-Flop for the feedback register and
the output register. Note that, L1 and L2 are D-latches. Set
the select signals to high when all the cells in a cascade are
evaluated, and send the values into L1 latches. When all the

cascades are evaluated, the values of the state variables are
sent to L2 latches. This can be done by adding a pulse to
S Clock. When the memory for logic and the memory for
interconnection are implemented by rewritable memories,
the LUT ring is reconfigurable. Also, we can reduce the
amount of memory by memory-packing. Although Map-
ping Memory which stores the mapping information for the
programmable interconnection network is needed for mem-
ory packing, we can ignore the cost of it, since the area is
small compared with the memory for logic.

4. Design of a Sequential Circuit by an LUT Ring

In this section, we present an efficient method to map a se-
quential circuit into the memory of the LUT ring. We as-
sume that the given sequential circuit consists of the combi-
national part and feedback flip-flops.

4.1 Synthesis Flow

Figure 6 illustrates the synthesis flow for a sequential circuit
on the LUT ring.

First, partition the outputs of the combinational part
into groups, and realize them by a set of LUT cascades.
Since the combinational part of a sequential circuit usually
has many inputs and outputs, a direct implementation by a
single memory is usually impractical. In Sect. 4.2, we will
adopt a strategy to realize many short cascades rather than
to realize a single long cascade.

Second, reduce the number of levels by using cells
with more inputs, when an enough memory is available. In
Sect. 4.3, we will show an algorithm to reduce the number
of levels using available memory.

4.2 Partition of the Outputs

Partitioning the outputs into groups after constructing a
large single BDD for CF is inefficient, since the number of
nodes of the BDD for CF is so large that the optimization of
the BDD for CF is very time consuming. When the number
of outputs is large, we partition the outputs into groups, and
realize a cascade for each of them. The BDD for CF for
all the outputs can be too large to be stored in the memory.
Even if the BDD for CF is stored in a memory of the com-
puter, it can be too large to be realized by an LUT cascade.
Also, constructing a single BDD for CF for all the outputs
is inefficient, since the optimization of a larger BDD for CF
is time consuming.

In this paper, we use the strategy to start with many
groups, and increase the number of outputs in each group.
We partition the outputs into groups that minimizes the to-
tal number of cells in the cascades. For many practical
functions, with the increase of the number of outputs for
a BDD for CF, the width and the number of nodes increase
rapidly. Thus, we partition the outputs into groups of equal
number of outputs. In this case, we have to determine the
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Fig. 6 Synthesis flow.

number of outputs for each groups. Trying all the possi-
bility is impractical due to the excessive computation time.
Therefore, in this paper, we find a reasonable number of out-
puts in each group by a heuristic method. We start with the
partition, where each group consists of only one output, and
we search for the optimal partition the outputs by increasing
the number of outputs in groups. The amount of computa-
tion for variable ordering to optimize each BDD for CF is
small, since the number of outputs for each BDD for CF is
small.

We will define Cost Function for the Total Number
of Cells of all the cascades, which will be used for partition-
ing the outputs.

Definition 4.1: (Cost Function for the Total Number of
Cells)
Suppose that the output functions are partitioned into r
groups, and each group is represented by a BDD for CF. Let
w be the number of outputs in the memory for logic, ni be
the number of inputs for the i-th BDD for CF, and S um ui

be the sum of widths of all the levels in i-th BDD for CFs.
Define EC that estimates the total number of cells in cas-
cades as follows:

EC =

r∑
i=1

ni − ū · r

(w + 1) − ū
, (1)

where ū =

r∑
i=1

�log2 S um ui�
r∑

i=1

ni

denotes the average of

the logarithms of the sum of widths of all the levels in
BDD for CFs.

Theorem 4.1: EC approximates a lower bound on the to-
tal number of cells in the LUT cascades that realize given
multiple-output function.
(Proof) Partition the outputs into r groups, and represent
them by a set of BDD for CFs. Let k be the maximum num-
ber of inputs for a cell, ni be the number of variables in the

i-th BDD for CF, si be the number of cells for the i-th group,
ûi be the average number of rails for the i-th group, and w
be the number of memory outputs. From the method of the
cascade realization, we have:

ni + ûi(si − 1) ≤ sik (i = 1, 2, . . . , r) (2)

Since, we cannot obtain ûi directly, we approximate it by ū,
the average value of the logarithms for the sum of widths in
all the levels of all the BDD for CFs. Then, by summing (2)
from 1 to r, we have the following relation:

r∑
i=1

ni + ū
r∑

i=1

(si − 1) ≤
r∑

i=1

si · k (3)

The conditions that the given multi-output function is real-
ized by an LUT cascade are:
(�log2 width of BDD�) ≤ (the number of inputs for a cell −1)
and (�log2 width of BDD�) ≤ (the number ofmemory out-
puts)
By setting k = w + 1, and Cs =

∑r
i=1 si to (3), we have

EC ≤ Cs. (Q.E.D.)

In order to construct as small BDD for CFs as possi-
ble, we partition the outputs so that each group has a small
number of support variables.

Definition 4.2: Let F = { f1, f2, . . . , fm} be the set of the
outputs functions, G ⊆ F, and fi ∈ F − G. Then, the simi-
larity of the output fi with G is defined as follows:

S imilarity(i,G, F) = |S up( fi) ∩ S up(G)|, (4)

where S up(F) denotes the set of support variables of F.

Algorithm 4.1: (Partition the Outputs and Construct
BDD for CFs)

Figure 7 shows the pseudo-code to partition outputs
and to construct BDD for CFs.

The 14th to 23th lines of Algorithm 4.1 increase
the number of outputs g in groups G, and generate the
BDD for CF that represents G. The 16th to 20th lines make
the G from the outputs functions F. The 8th line checks
whether it keeps partition or not.

4.3 Realization of Cascades and Memory Packing

By Algorithm 4.1, partition the given multiple-output func-
tion into groups, and represented them by BDD for CFs.

First, we realize the LUT cascades for the given
BDD for CFs with the cells having a specified number of
inputs. Next, we will allocate the LUT data into the memory
of the LUT ring. In the previous method, to find the faster
implementation, the user has to design repeatedly by chang-
ing parameters. This is because, the functional decomposi-
tion and memory packing interact, and the estimation of the
necessary amount of memory is difficult.

In the proposed method in this paper, to find the fastest
implementation, the user need not specify the number of in-
puts to cells: the system finds it.
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Fig. 7 Pseudo-code for Algorithm 4.1.

Fig. 8 Three different LUT cascades.

4.3.1 Principle to Reduce the Number of Cells

The next example illustrates the idea to reduce the number
of cells by increasing the number of inputs to cells.

Example 4.1: Figure 8 shows three different LUT cas-
cades for MCNC’89 benchmark function Life (9-input 1-
output). It also shows the numbers of cells, and the amount
of memory. For simplicity, in this example, we assume that
the numbers of inputs of cells in each cascade are the same.
We assume that the maximal amount of memory available is
256 bits. When the number of inputs of cell is four, we have
the LUT cascade consisting of five cells (Case 1); when the
number of inputs of cells is five, we have the LUT cascade
consisting of three cells (Case 2); and, when the number of
input of cells is six, we have the LUT cascade consisting of

Fig. 9 Example of LUT cascade.

Fig. 10 Memory map of cell data.

Fig. 11 Principle of memory packing.

two cells (Case 3). (End of Example)

By using this idea, we can find a set of LUT cascades
with the minimum number of cells. Actually, we reduce the
number of cells by increasing the number of inputs to cells
while the memory is available. Note that the reduction of
cells will reduce the evaluation time.

Next, we will introduce the memory packing that effi-
ciently pack the LUT data into the memory for logic.

4.3.2 Memory Packing

In an LUT ring, all the data of the cells is stored in the
memory for logic. In this case, we can reduce the necessary
amount of memory by memory packing. The next example
illustrates the idea.

Example 4.2: Figure 9 shows the LUT cascade for Life (9-
input 1-output) that appeared in Example 4.1, where 5-input
cells are used. Figure 10 shows the memory map of cell
data, where the memory has 7-bit address inputs, and each
word consists of four bits. (D4,D3,D2,D1) denotes the out-
puts of the memory. The dark parts in the figure are un-
used. In Fig. 10, only data for a single cell is stored in each
page. By moving the cell data in Page 3 to the D1 part of
Page 1, we can reduce the necessary amount of memory by
half (Fig. 11). (End of Example)

4.3.3 Lower Bound on the Size of Memory

The upper bound on the number of cells of LUT cas-
cades (Theorem 4.4) is obtained from the available amount
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of memory and BDD for CF produced in Algorithm 4.1.
This bound limits the number of LUT cascades to consider.
To derive an upper bound on the number of cells in LUT cas-
cades, we first need to derive a lower bound on the number
of cells of LUT cascades.

Theorem 4.2: (Lower Bound on the Number of Cells of an
LUT Cascade) [8]

Suppose that an n-variable logic function is realized by
the cascade shown in Fig. 2. Let s be the number of cells in
the cascade, and let k be the maximum number of inputs of
cells in the cascade. Then, we have the following relation:⌈

n + u − 2
k − 1

⌉
≤ s, (5)

where u = max{ui}, and ui ≤ �log2 µmax�. When n ≤ k, �f
can be realized by one cell.

(Proof) From the method of cascade realization, we have
the relation:

n +
s−1∑
i=1

ui ≤ sk. (6)

Since 1 ≤ ui ≤ u, we have n+ s− 2+ u ≤ sk. Thus, as for s,
we have � n−2+u

k−1 � ≤ s. (Q.E.D.)

Suppose that �f cannot be represented as �f (�X1, �X2) =
g(h(�X1), �X2), then 2 ≤ ui, because the column multiplici-
ties of non-trivial decomposition of �f are greater than two.
Therefore, we have the relation:

s−1∑
i=1

ui ≥ 2(s − 1). (7)

From (6) and (7), we have the following:

Theorem 4.3: Let �f (�X) be an n-input function, and cannot
be represented as �f = �g(�h(�X1), �X2), where (�X1, �X2) is a par-
tition of X. Let s be the number of k-input cells to realize
�f (�X). Then, we have the following relation:⌈

n − 2
k − 2

⌉
≤ s. (8)

We can estimate the number of cells of the LUT cas-
cade by using (8). From this theorem, we can derive an
upper bound on the number of cells of LUT cascades.

Theorem 4.4: (Upper Bound on the Number of Inputs of a
Cell)

Let k be the maximum number of inputs of cells in a
cascade. Let n be the number of inputs of the BDD, L [bit]
be the total amount of memory available, and w be the num-
ber output bits of the memory. Then, we have

2k

k − 2
≤ L
w(n − 2)

, (9)

where n ≥ k.

(Proof) The upper bound on the size of memory L is given
by L = ws · 2k, where k denotes the maximum number
of the inputs to a cell, and s denotes the number of cells.
By applying the above equation to expression (8), we have

2k

k−2 ≤ L
w(n−2) . (Q.E.D.)

From (9), we can obtain an upper bound of the number
of inputs of a cell.

4.4 Cascade Realization with the Minimum Number of
Cells under the Limitation of Memory

The evaluation time of an LUT ring is proportional to the
total number of cells in the cascades. Thus, to minimize the
evaluation time, we can formulate the design problem of an
LUT ring as follows:

Problem 4.1: Suppose that the given multiple-output func-
tion �f = ( f1(�X), f2(�X), . . . , fm(�X)) is represented by r
BDD for CFs (bddc f1, bddc f2, . . . , bddc fr). Let ki be the
number of inputs of cells in the cascade for bddc fi, and let
Ncell(i, ki) be the number of cells obtained by cascade real-
ization of bddc fi. When the cascade realization of bddc fi is
impossible, Ncell(i, ki) = ∞. Then, find the number of in-
puts of cells of each LUT cascade that satisfies the following
conditions:

1.
r∑

i=1

Ncell(i, ki) is the minimum.

2. (The amount of memory obtained by memory packing)
≤ (The amount of available memory for an LUT ring)

To solve this problem, we use the dynamic program-
ming. Dynamic programming is a technique to find an opti-
mum solution, and finds the optimum solution of the par-
tial problem step by step based on the optimal solutions
obtained in the previous step. A partial problem is to ob-

tain the minimum
i∑

j=1

Ncell( j, k j) of LUT cascades that re-

alizes bddc f j ( j = 1, 2, . . . , i). We solve the optimal solution
for a partial problem by using evaluation function ηi(ki). It
shows the necessary number of cells to map the cascades for
(bddc f1, bddc f2, . . . , bddc fi) by using cells with at most ki

inputs.

Definition 4.3:

ηi(ki) =



kmax

min
k′=3

[Ncell(i, ki) + ηi−1(k′)],
for 2 ≤ i ≤ r

Ncell(i, ki), for i = 1

(10)

kmax is obtained by (9). When the values of evaluation
function are the same, we choose ki that requires the smaller
amount of memory by memory packing.

For the given amount of memory, the next algorithm finds
the number of inputs of cells of the LUT cascade for bddc fi
that has the minimum number of cells.
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Fig. 12 Pseudo-code for Algorithm 4.2.

Algorithm 4.2: (Find the Optimal Number of Cell Inputs
of Each LUT Cascade)
Figure 12 shows the pseudo-code to find the optimal number
of cell inputs by dynamic programming.

To obtain the initial solution, the 7th to 11th lines com-
pute the number of cells of first LUT cascade. The 15th to
25th lines compute (10).

Example 4.1: The outputs of benchmark function s27 (8-
input 4-output) is partitioned into two groups by Algo-
rithm 4.1, and realized by two LUT cascades (Cascade1,
Cascade2) shown in Figs. 13 and 14. We are going to allo-
cate these cell data into the memory (64 × 6 = 384 [bit]).
Step 1-1. From (9), we have kmax = 6.
Step 1-2. From (10), we have the evaluation function η1 for
Cascade1:

η1(3) = Ncell(1, 3) = 4
η1(4) = Ncell(1, 4) = 2
η1(5) = Ncell(1, 5) = 2
η1(6) = Ncell(1, 6) = 1

Step 2-1. From (9), we have kmax = 5.
Step 2-2. Figure 15 shows the memory map for LUT cas-
cades after memory packing. Note that Ncell(2, 5) = 3.
From (10), we have the evaluation function η2 of Cascade2:

η2(5) = min[Ncell(2, 5) + η1(3),Ncell(2, 5) + η1(4),

Ncell(2, 5) + η1(5),Ncell(2, 5) + η1(6)]

= min{3 + 4, 3 + 2, 3 + 2,∞}
= 5

Step 3. The evaluation function η2(kopt) takes its minimum

Fig. 13 Cascades for f1 of s27.

Fig. 14 Cascade for f2, f3, f4 of s27.

Fig. 15 Memory map for s27.

when kopt = 5. Note that η2(5) = 5 when k1 is four or
five. We select four, since the case of four requires smaller
amount of memory. Thus, the number of inputs for cells in
the LUT cascades that minimizes the total number of cells
is four, and five. (End of Example)

5. Experimental Results

5.1 Design of LUT Rings for ISCAS’89 Benchmark Func-
tions

We implemented Algorithms 4.1 and 4.2 in the C program-
ming language, and designed LUT rings for selected IS-
CAS’89 benchmark functions [14]. Table 1 compares three
cases: the memory limitation of 1 Mega bits (1 Mbit), the
memory limitation of 8 Mega bits (8 Mbit), and the mem-
ory limitation of 48 Mega bits (48 Mbit). Name denotes
the name of a benchmark function; In denotes the number
of inputs; Out denotes the number of outputs; FF denotes
the number of flip-flops; r denotes the number of LUT cas-
cades; s denotes the number of levels; and Mem denotes the
amount of memory (Mega Bits). We used an IBM PC/AT
compatible machine using a Pentium4 Xeon 2.8GHz (L1
Cache:32 kilo Byte, L2 Cache:512 kilo Byte) processor with
4GByte of memory. We used gcc compiler with the optimize
option -O2 on a Redhad (Linux 7.3) operating system.
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Table 1 Parameters for LUT rings to realize ISCAS’89 benchmark func-
tions.

Name In Out FF r 1 Mbit 8 Mbit 48 Mbit
(64k×16 bit) (256k×32 bit) (1M×48 bit)
s Mem s Mem s Mem

[Mbit] [Mbit] [Mbit]
s420 18 1 16 1 4 0.500 3 2.000 2 48.000
s510 19 7 6 2 3 0.251 3 0.251 3 0.750
s641 36 23 19 3 10 1.000 7 4.750 6 12.000
s713 36 23 19 3 9 0.755 7 4.000 7 6.000
s838 34 1 32 3 11 1.000 10 2.000 7 48.000
s1196 13 13 19 3 7 0.438 5 3.000 4 24.000
s1423 17 5 74 9 52 1.000 34 7.125 28 48.000
s5378 35 49 164 22 — — 83 7.625 65 48.000
s9234 36 39 211 62 — — 153 7.968 98 45.750

s13207 62 152 638 79 — — 283 7.945 208 47.683

Table 2 Comparison of LUT ring with other methods.

Direct Mem+ LCC LUT ring
Name In Out FF Mux Mem time Mem time

[Mbit] [Mbit] [Mbit] [ns] [Mbit] [ns]
s344 9 11 15 416.000 208.000 0.015 1180 0.006 46.4
s382 3 6 21 432.000 216.000 0.015 1530 0.008 41.9
s386 7 7 6 0.102 0.025 0.016 1630 0.016 19.4
s400 3 6 21 432.000 216.000 0.015 1540 0.008 41.9
s820 18 19 5 192.000 0.188 0.019 4080 0.015 32.9

s1494 8 19 6 0.391 0.049 0.025 7830 0.025 32.9

In Table 1, the symbol — denotes that realization of the
cascades was impossible because of the memory limitation.
Our strategy is to construct the cascades with as small num-
ber of levels as possible within the given amount of memory
for logic. Therefore, with the enough amount of memory,
we can reduce the number of levels considerably. Table 1
shows that the number of levels decreases with the increases
of memory for almost all functions. Thus, we can realize a
high-speed sequential circuit by an LUT ring.

For the benchmark functions s510 and s713, the num-
bers of levels are the same while sizes of memory are differ-
ent. This can be explained as follows. Algorithm 4.1 gen-
erated different BDD for CFs for different sizes of memo-
ries. However, Algorithm 4.2 happened to find LUT cas-
cades with the same number of cells. In these cases, since
the numbers of rails and numbers of inputs to cells were dif-
ferent, we had cascades with different memory sizes.

5.2 Comparison with Other Methods

Table 2 compares LUT rings with other three methods,
where Name, In, Out, and FF denote the same things as
Table 1.

The column Direct denotes the size of memory for the
direct implementation by a single memory. Consider the
sequential circuit, whose number of the external input vari-
ables is n, the number of the external output variables is m,
and the number of the state variables is p. The straight-
forward implementations of the transition functions and the
output functions by memories require p·2n+p bits and m·2n+p

bits, respectively. This is impractical when n and/or p are
large.

The column Mem+Mux denotes the amount of mem-
ory by using multiplexers [6]. We can often reduce the nec-
essary amount of memory by using properties of the given

sequential circuits. In many case, the transition functions
and output functions depend on proper subsets of the input
variables. Let q be the maximal number of the external in-
put variables on which next states depend. Then, we can use
q qualifier variables instead of the external input variables.
In this case, we use current state to select the external input
variables. Also, we need q copies of n to 1-multiplexers to
select the qualifier variables from the external inputs.

In the column LCC [1]; Mem denotes the size of exec-
utive code, and time denotes the evaluation time. The LCC
is a kind of logic simulator that assigns a fragment of pro-
gram code to each gate of logic circuits. Then, it evalu-
ates codes from the inputs to the outputs in a topological or-
der. To produce the executable code, we converted a bench-
mark circuit into the program code, and compiled it by gcc
compiler with optimize option -O2. To obtain the evalu-
ation time, we generated one million random test vectors
on an IBM PC/AT compatible machine using a Pentium III
800MHz microprocessor with 256 MBytes of memory. We
obtained average evaluation time per one vector, and con-
sidered it as the LCC evaluation time.

The column LUT ring denotes the amount of mem-
ory for logic in Fig. 3, and the evaluation time (ns). In the
experiment, the memory size limitation of LUT ring is the
size for the executive code when the benchmark function is
implemented by LCC. Thus, the size of memory for LUT
ring does not exceed the size of the executive code for LCC.
Also, from the circuit simulation in [13], evaluation time for
the LUT ring was estimated as follows:
Evaluation time[ns] = 4.5×Number of levels + 5.9.

Table 2 shows that Mem+Mux require the smaller
amount of memory than Direct when the number of state
variables is small (s386,s1494), or the number of the depen-
dent variables of state transition functions is small (s820).
However, when the number of state variables or the num-
ber of the dependent variables of state transition functions is
large, the necessary amount of memory becomes too large.
LCC and LUT ring can realize the benchmark functions
with smaller amount of memory than Direct and Mem+Mux
methods. Also, Table 2 shows that the LUT ring is 25 to
237 times faster than the LCC by using the same amount of
memory.

6. Conclusion

In this paper, we presented a method to realize sequen-
tial circuits by using Look-Up Table (LUT) rings. In this
method, the user need only to specify the amount of mem-
ory and the number of memory inputs or outputs. It finds
high-speed sequential circuits by utilizing maximal amount
of memory available on the LUT ring. We also compared
the LUT rings with other methods to realize sequential cir-
cuits, and found that LUT rings efficiently realize sequential
circuits in both the amount of memory and the evaluation
time.
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