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by Using MTBDDs
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SUMMARY Fixed polarity Reed-Muller expressions (FPRMs) exhibit
several useful properties that make them suitable for many practical appli-
cations. This paper presents an exact minimization algorithm for FPRMs
for incompletely specified functions. For an n-variable function with α un-
specified minterms there are 2n+α distinct FPRMs, and a minimum FPRM
is one with the fewest product terms. To find a minimum FPRM the al-
gorithm requires to determine an assignment of the incompletely specified
minterms. This is accomplished by using the concept of integer-valued
functions in conjunction with an extended truth vector and a weight vector.
The vectors help formulate the problem as an assignment of the variables
of integer-valued functions, which are then efficiently manipulated by us-
ing multi-terminal binary decision diagrams for finding an assignment of
the unspecified minterms. The effectiveness of the algorithm is demon-
strated through experimental results for code converters, adders, and ran-
domly generated functions.
key words: AND-EXOR, Reed-Muller expression, FPRM, exact minimiza-
tion, incompletely specified function

1. Introduction

A fixed polarity Reed-Muller expression (FPRM) is one of
the canonical AND-EXOR expressions [23]. FPRMs are a
generalization of positive polarity Reed-Muller expressions
(PPRMs). A PPRM, which is unique for a completely spec-
ified function, is an AND-EXOR expression with only un-
complemented literals. PPRMs are also known as Zhegalkin
polynomials after the Russian logician Ivan I. Zhegalkin
who first published this canonical form [39]. Each vari-
able in an FPRM can appear either in complemented or
uncomplemented form. An n-variable completely specified
function has 2n distinct FPRMs. For incompletely specified
functions, the number of FPRMs increases exponentially
with the increase in the number of unspecified minterms.
There exists 2n+α distinct FPRMs for an n-variable function
with α unspecified minterms, and the objective of the exact
minimization is to find one of those FPRMs that requires the
fewest product terms. Such an FPRM is often referred to as
the exact minimum FPRM of the function.

It is believed that AND-EXOR expressions require
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fewer product terms than conventional sum-of-products ex-
pressions (SOPs) for arithmetic and error checking circuits
[24], [26]. FPRMs for these functions often also require
fewer product terms than SOPs [23]–[26]. In addition,
FPRMs have useful properties that are unavailable in other
classes of expressions. This makes FPRMs suitable for
many practical applications, several of which are summa-
rized in the following:

1) Two- and multi-level testable networks. Sarabi and
Perkowski showed that n-input two-level networks that re-
alize FPRMs can be tested for single stuck-at fault by using
only n + 4 test vectors [22]. The test vectors can be eas-
ily generated once the FPRM is available. Tsai and Marek-
Sadowska used FPRM-based two-level initial networks to
derive 100 percent single stuck-at fault testable multi-level
networks [33]. A predetermined set of test patterns serve as
test vectors, which makes test pattern generation unneces-
sary.

2) Area efficient multi-level networks. Tsai and Marek-
Sadowska took advantage of FPRMs in designing area effi-
cient multi-level circuits [34]. The circuits are derived from
FPRMs mainly by applying algebraic factorizations and re-
dundancy removal techniques [8]. For a set of arithmetic
and other benchmark functions, the method obtains a good
percentage of improvement in area as compared to Berke-
ley SIS [29]. Chattopadhyay et al. also employed FPRMs
in multi-level minimizer KGPMIN that obtains high quality
solutions [5]. Many circuits exhibit a sporadic combination
of AND-OR and AND-EXOR logic. KGPMIN uses SOPs
and FPRMs to evaluate the suitability in realizing each of
the small portions of a circuit by using one of these logic.

3) Low-power logic synthesis. Narayanan and Liu took
advantage of special properties of FPRMs in developing a
low-power multi-level logic synthesis technique for EXOR-
based circuits [18], [19]. The method often outperforms SIS
in optimizing both area and power at the same time. Tsai
and Marek-Sadowska’s FPRM-based multi-level minimiza-
tion algorithm [34] also produces circuits with lower power
consumption than that obtained by using SIS.

4) Boolean matching and symmetry detection. Boolean
matching is a crucial step in cell-library binding that deter-
mines if a cell from a library can implement a portion of the
technology-independent network [8]. Davio et al. [7], Tsai
and Marek-Sadowska [35], and Chang and Falkowski [4]
utilized FPRMs as a tool to find Boolean matching which is
also known as detection of equivalence relations of switch-
ing functions [8]. Tsai and Marek-Sadowska also used
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FPRMs to detect symmetric variables of switching functions
[32]. The presence of symmetric variables helps solve many
problems in logic synthesis more efficiently through the use
of specific algorithms that take advantage of such informa-
tion [26], [30], [32], [35].

5) Image compression. Iravani and Perkowski outlined
a method for image compression by using an FPRM mini-
mizer for incompletely specified functions [15, p.94]. Image
compression by using minimized FPRMs for completely
specified functions are also gaining attention [11], [15].

For completely specified functions, numerous exact
and heuristic minimization algorithms for FPRMs exist [9],
[10], [25], [37]. However, little research has been done to
minimize FPRMs for incompletely specified functions.

Tran discussed a graphical procedure, which is based
on a trial-and-error method, to simplify FPRMs for incom-
pletely specified functions [31]. The method can be applica-
ble to functions with up to six variables. By using spectral
techniques [14], Varma and Trachtenberg developed heuris-
tic algorithms to simplify PPRMs for incompletely speci-
fied functions [36]. Chang and Falkowski reported meth-
ods to simplify FPRMs for incompletely specified functions
[2], [3]. Zilic and Vranesic presented heuristic schemes to
compute multiple-valued Reed-Muller transform for incom-
pletely specified functions that are also applicable to binary-
valued functions [40], [41]. Popel developed a heuristic
minimization technique for FPRMs for incompletely spec-
ified functions by using information theoretical approach
[20].

McKenzie et al. developed a branch and bound algo-
rithm for the exact minimization of PPRMs for incompletely
specified functions [17]. Green described an exhaustive
search method [12]. Zakrevskij formulated the exact min-
imization of PPRMs for incompletely specified functions as
a solution of a system of linear logical equations, and pre-
sented experimental results for functions with up to 20 spec-
ified minterms [38]. McKenzie et al. [17] and Zakrevskij
[38] also considered heuristic simplification methods. Re-
cently, Habib developed an exact minimization algorithm
for FPRMs that can handle incompletely specified func-
tions; however, no benchmark results are presented [13].

In this paper we present an algorithm to obtain ex-
act minimum FPRMs for incompletely specified functions.
The method is based on the computation of an extended
truth vector and a weight vector from a function [7], [25].
These vectors are also used for the exact minimization of
FPRMs for completely specified functions [7], [25]. The ex-
tended truth vector is computed from the truth vector, and
the weight vector is computed from the extended truth vec-
tor. For completely specified functions each of the entries of
the extended truth vector and the weight vector holds a bi-
nary and an integer value, respectively. The smallest integer
value in the weight vector represents the number of product
terms in the exact minimum FPRM.

The most challenging task in optimizing an FPRM
for an incompletely specified function is to find an assign-
ment of the unspecified minterms that minimizes the num-

ber of product terms required by the expression. By us-
ing extended truth vectors and weight vectors, we formulate
this problem as an assignment of an integer-valued function
(Sect. 2). To optimize FPRMs for a function with α unspec-
ified minterms we represent each of these minterms by a bi-
nary variable. As a result each of the entries of the extended
truth vector and the weight vector becomes an α-variable
binary- and integer-valued function, respectively. An exact
minimum FPRM corresponds to an assignment of the α bi-
nary variables that minimizes at least one of the entries in
the weight vector. In other words in finding an exact min-
imum FPRM we look for an assignment of the variables
for which at least one of the integer-valued functions in the
weight vector evaluates to the smallest integer value. This
integer represents the number of product terms in the ex-
act minimum FPRM for the incompletely specified function.
We use multi-terminal binary decision diagrams (MTBDDs)
to efficiently represent and manipulate integer-valued func-
tions [6]. Once an MTBDD is built the assignment of the
variables that evaluates the integer-valued function to the
smallest value is straightforward.

In light of the existing techniques the novelty and sig-
nificance of our contribution are summarized in the follow-
ing:

1) Problem formulation. We formulate the problem of
exact minimization of FPRMs for an incompletely specified
function as assignment of the variables of integer-valued
functions. Although the concept of extended truth vectors
and weight vectors are known for over 25 years [7], their
application in solving exact minimization of FPRMs for in-
completely specified functions is unique.

2) Application of MTBDDs. To the best of our knowl-
edge this is the first attempt in using MTBDDs to opti-
mize FPRMs for incompletely specified functions. It should
be noted that MTBDDs are also employed by Sasao and
Izuhara for minimizing FPRMs for completely specified
functions [25]. The MTBDDs in this paper and that in the
Sasao-Izuhara’s paper represent different kinds of informa-
tion for the given functions. Moreover, inputs to both of the
algorithms are different: one accepts completely specified
and the other accepts incompletely specified functions.

3) Techniques for building MTBDDs. To find an assign-
ment of the unspecified minterms the algorithm requires to
perform arithmetic additions of a set of integer-valued func-
tions. The operands and the result of the additions are rep-
resented by MTBDDs. Although there are excellent public
domain software such as CUDD to help implement these
tasks [30], a straightforward implementation by using even
such efficient software often requires excessive computation
time and memory resources for solving a simple problem.
We developed a systematic method to overcome this limita-
tion. First, some operations on integer-valued functions can
be done very efficiently by exploiting their properties. Sec-
tion 2 presents two of such properties that we take advan-
tage of when building MTBDDs. We are unaware of if such
techniques are used previously in efficient construction of
MTBDDs. Second, to add a large set of integer-valued func-
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tions a series of additions is required which generates many
intermediate results. Although the final result in many cases
has a manageable MTBDD representation, the intermediate
results are often too large to store. To alleviate the problem
we developed a method for the selection of operands that try
to delay any increase in the number of variables on which
each of the intermediate MTBDDs depend (Sect. 4). The
strategy is based on the intuition that an MTBDD increases
in size if the number of variables on which it depends also
increases.

4) Experimental results. We obtained experimental
results for arithmetic functions, code converters, and ran-
domly generated functions. To the best of our knowledge no
such experimental results are reported for exact minimum
FPRMs for incompletely specified functions.

The remainder of the paper is organized as follows:
Sect. 2 introduces terminology and presents basic properties.
Section 3 outlines computation methods for extended truth
vectors and weight vectors which are the basis of the pro-
posed work. Section 4 develops a systematic method for the
exact minimization. Section 5 reports experimental results.
Section 6 presents conclusion and outlines future work.

2. Definitions and Basic Properties

This section defines the basic terminology and states impor-
tant properties that are necessary to explain the material in
the paper. In this paper the operators ‘+’ and ‘⊕’ indicate
arithmetic and mod-2 additions, respectively; the operator
‘×’ indicates arithmetic multiplication.

Definition 1: An n-variable switching function f is a map-
ping f : {0, 1}n → {0, 1}. And an n-variable integer-valued
function g is a mapping g : {0, 1}n → {0, 1, . . . , p− 1} where
p ≥ 2.

It should be noted that switching functions are a subset
of integer-valued functions, and in this paper a switching
function is often referred to as a function or as a binary-
valued function.

Definition 2: An n-variable integer-valued function f (x1,

x2, . . . , xn) can be written as
∑2n−1

j=0 mjx
b1
1 xb2

2 · · · xbn
n , where

mj ∈ {0, 1, . . . , p−1} (p ≥ 2), b1, b2, . . . , bn ∈ {0, 1} such that
b1b2 · · · bn is the n-bit binary number representing j, xbi

i = x̄i

when bi = 0, xbi
i = xi when bi = 1, and i = 1, 2, . . . , n. Then

[m0,m1, . . . ,m2n−1] is the truth vector of f .

Example 1: The truth vector of the three-variable switch-
ing function x̄1 x̄2 x̄3 ∨ x1 is [1, 0, 0, 0, 1, 1, 1, 1], and that of
the three-variable integer-valued function 3x1 + 4x2x3 + 2x̄3

is [2, 0, 2, 4, 5, 3, 5, 7].

Property 1: Let f be a switching function. Then f + f̄ = 1.

Example 2: Let the two-variable switching function f be
[1, 0, 0, 0]. Then f + f̄ = [1, 0, 0, 0] + [0, 1, 1, 1] =
[1, 1, 1, 1] = 1.

Property 2: Let f be an integer-valued function. Then
f + f + · · · + f︸�������������︷︷�������������︸

k operands

= k × f .

Example 3: Let the two-variable integer-valued function f
be [1, 0, 3, 5]. Then f + f + f = 3× [1, 0, 3, 5] = [3, 0, 9, 15].

Definition 3: An n-variable switching function f (x1, x2,
. . . , xn) can be written as a fixed polarity Reed-Muller ex-
pression (FPRM)

∑⊕2n−1
j=0 ajx

b1
1 xb2

2 · · · xbn
n , where aj ∈ {0, 1},

b1, b2, . . . , bn ∈ {0, 1} such that b1b2 · · · bn is the n-bit binary
number representing j, xbi

i = 1 when bi = 0, xbi
i ∈ {x̄i, xi}

such that for each i either x̄i or xi appear throughout the ex-
pression when bi = 1, and i = 1, 2, . . . , n.

In an FPRM each variable can appear either in com-
plemented or uncomplemented form, i.e., polarity of each
variable can be chosen in two ways. Thus, for an n-variable
completely specified function there are 2n distinct FPRMs.

In this paper we consider FPRMs for single-output
functions, because the presented algorithm can handle only
such functions. Multiple-output functions are treated as a
set of single-output functions.

Definition 4: Polarity vector (b1, b2, . . . , bn) for an FPRM
of an n-variable switching function f (x1, x2, . . . , xn) is a bi-
nary vector with n elements, where bi = 0 indicates variable
xi is used in the uncomplemented form (xi) and bi = 1 indi-
cates variable xi is used in the complemented form (x̄i).

Example 4: Let the three-variable switching function f be
x1x3 ∨ x̄2 x̄3 and (0, 1, 1) be a polarity vector for an FPRM
of f . Since x1x3 and x̄2 x̄3 are disjoint, we can write f =
x1x3 ⊕ x̄2 x̄3. By putting x3 = 1 ⊕ x̄3 in the expression for f ,
we have f = x1(1 ⊕ x̄3) ⊕ x̄2 x̄3 = x1 ⊕ x1 x̄3 ⊕ x̄2 x̄3, which is
the FPRM for f with polarity vector (0, 1, 1).

3. Extended Truth Vector and Weight Vector

For an n-variable completely specified switching function
there are 2n distinct FPRMs, and the minimization problem
is to find a polarity vector that produces an FPRM with min-
imum number of products. Once the polarity vector is deter-
mined, generation of an FPRM is relatively easy [7], [25].

Figure 1 illustrates a method for the exact minimiza-
tion of FPRMs for three-variable switching function. The
method is based on the computation of extended truth
vector and weight vector [7], [25]. The extended truth
vector [t0, t1, . . . , t26] is computed from the truth vector
[m0,m1, . . . ,m7] of a given switching function, and the
weight vector [w0, w1, . . . , w7] is computed from the ex-
tended truth vector. In general, for an n-variable completely
specified switching function, extended truth vector is a bi-
nary vector [t0, t1, . . . , t3n−1] with 3n elements, and weight
vector is an integer vector [w0, w1, . . . , w2n−1] with 2n el-
ements. Each element of the weight vector is associated
with a polarity vector, which is shown at the rightmost side
in Fig. 1. In general, for an n-variable switching function
f , polarity vector for w j is a binary vector (b1, b2, . . . , bn)
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Fig. 1 Computation of extended truth vector and weight vector for three-variable switching function.

such that b1b2 · · · bn is the n-bit binary number representing
j ( j = 0, 1, . . . , 2n−1), and w j represents the number of prod-
ucts in the FPRM for f with polarity vector (b1, b2, . . . , bn).

In Fig. 1 the calculations are done in six main steps.
The binary values ri’s, si’s, and ti’s are calculated from mi’s,
ri’s, and si’s, respectively, and the integer values ui’s, vi’s,
and wi’s are calculated from ti’s, ui’s, and vi’s, respectively,
where i can take different values as shown in Fig. 1. Ex-
pressions for several ti’s and w0 for three-variable function
[m0,m1, . . . ,m7] are obtained from Fig. 1 as follows:

w0 = v0 + v2

= u0 + u6 + u2 + u8

= t0 + t18 + t6 + t24 + t2 + t20 + t8 + t26

= t0 + t2 + t6 + t8 + t18 + t20 + t24 + t26, (1)

where

t0 = s0 = r0 = m0,

t2 = s2 = r2 = m0 ⊕ m1,

t6 = s6 = r0 ⊕ r3 = m0 ⊕ m2,

t8 = s8 = r2 ⊕ r5 = m0 ⊕ m1 ⊕ m2 ⊕ m3,

t18 = s0 ⊕ s9 = r0 ⊕ r6 = m0 ⊕ m4,

t20 = s2 ⊕ s11 = r2 ⊕ r8 = m0 ⊕ m1 ⊕ m4 ⊕ m5,

t24 = s6 ⊕ s15 = r0 ⊕ r3 ⊕ r6 ⊕ r9

= m0 ⊕ m2 ⊕ m4 ⊕ m6,

t26 = s8 ⊕ s17 = r2 ⊕ r5 ⊕ r8 ⊕ r11 = m0 ⊕ m1

⊕ m2 ⊕ m3 ⊕ m4 ⊕ m5 ⊕ m6 ⊕ m7.

(2)

In a similar manner, expressions for w1 and the associ-
ated ti’s can be obtained from Fig. 1 as follows:

w1 = v1 + v2

= u1 + u7 + u2 + u8

= t1 + t19 + t7 + t25 + t2 + t20 + t8 + t26

= t1 + t2 + t7 + t8 + t19 + t20 + t25 + t26,

where

t1 = s1 = r1 = m1,

t7 = s7 = r1 ⊕ r4 = m1 ⊕ m3,

t19 = s1 ⊕ s10 = r1 ⊕ r7 = m1 ⊕ m5,

t25 = s7 ⊕ s16 = r1 ⊕ r4 ⊕ r7 ⊕ r10

= m1 ⊕ m3 ⊕ m5 ⊕ m7,

and the expressions for t2, t8, t20, and t26 are shown in
Eq. (2). Expressions for other wi’s can be obtained in a sim-
ilar manner.

4. Minimization Techniques

For an n-variable incompletely specified switching function
with α unspecified minterms there are 2n+α distinct FPRMs,
and the minimization problem is to find a polarity vector and
an assignment of the unspecified minterms to 0’s and 1’s
that produce an FPRM with minimum number of products.
Once the polarity vector and the assignment of the unspeci-
fied minterms are determined, an FPRM can be easily gen-
erated [7], [25]. This section presents the key techniques for
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the exact minimization of FPRMs for incompletely specified
functions. The algorithm is based on extended truth vectors
and weight vectors, and the problem is formulated as an as-
signment of the variables of integer-valued functions. The
novelty of our contribution are summarized in Sect. 1.

For an n-variable switching function with α unspecified
minterms d1, d2, . . . , dα, extended truth vector is a vector of
switching functions ti(d1, d2, . . . , dα) (i = 0, 1, . . . , 3n − 1),
and weight vector is a vector of integer-valued functions
w j(d1, d2, . . . , dα) ( j = 0, 1, . . . , 2n − 1). For three-variable
case, all the ti’s and w j’s can be obtained from Fig. 1. Exten-
sion to the functions with more variables is straightforward.

Definition 5: Let the minimum value of the α-variable
integer-valued function w(d1, d2, . . . , dα), denoted by wmin,
be min0≤i≤2α−1 mi, where [m0,m1, . . . ,m2α−1] represents the
truth vector for w.

Let [w0, w1, . . . , w2n−1] be the weight vector for
an n-variable incompletely specified switching function
f (x1, x2, . . . , xn), and wmin

j be the minimum value for
w j(d1, d2, . . . , dα) where d1, d2, . . . , dα represent unspecified
minterms of f . Let 0 ≤ k ≤ 2n − 1 and a1, a2, . . . , aα ∈
{0, 1} such that wk(a1, a2, . . . , aα) = min0≤ j≤2n−1 w

min
j . Let

c1c2 · · · cn be the n-bit binary number representing k. Then,
(a1, a2, . . . , aα) represents an assignment of (d1, d2, . . . , dα)
and (c1, c2, . . . , cn) represents a polarity vector that produce
a minimum FPRM for f .

Example 5: Consider a three-variable switching function
f (x1, x2, x3) whose truth vector [m0,m1,m2,m3,m4,m5,m6,
m7] = [d0, 0, d2, d3, 1, 1, 1, 0], where d0, d2, and d3 are
unspecified minterms. By putting the value of mi (i =
0, 1, . . . , 7) in Eq. (2), we have

t0 = d0,

t2 = d0,

t6 = d0 ⊕ d2,

t8 = d0 ⊕ d2 ⊕ d3,

t18 = 1 ⊕ d0,

t20 = d0,

t24 = d0 ⊕ d2,

t26 = 1 ⊕ d0 ⊕ d2 ⊕ d3.

(3)

By using Property 1 to Eq. (3), we have t18 + t20 = 1 and
t8 + t26 = 1. Also, by using Property 2 to Eq. (3), we have
t6 + t24 = 2(d0 ⊕ d2) and t0 + t2 = 2d0. Thus, from Eq. (1)
and Eq. (3), we obtain

w0 = 2 + 2d0 + 2(d0 ⊕ d2). (4)

Equation (4) shows that w0 cannot be less than 2 and it is
independent of d3. By inspection, we have w0 = 2, when
d0 = d2 = 0; however w0 = 6, when d0 = 1 and d2 = 0.
Thus, the minimum value for w0 is 2. Similarly, we can
obtain minimum value for wi, when i = 1, 2, . . . , 7.

To manipulate integer-valued function we use multi-
terminal binary decision diagram (MTBDD) [6]. An
MTBDD, which is a natural extension of binary decision
diagram (BDD) [1], is a directed acyclic graph with mul-
tiple terminal nodes each of which has an integer value.
Arithmetic operations, such as addition and multiplication,

between integer-valued functions can be efficiently per-
formed by using MTBDDs. It should be noted that switch-
ing functions are a subset of integer-valued functions and
an MTBDD for a switching function is a BDD. We use
MTBDD data structure to perform Boolean operations be-
tween switching functions.

A straightforward method to build MTBDDs for
weight vector requires excessive computation time and
memory resources, because they represent all possible
FPRMs for the given incompletely specified function. How-
ever, we are only interested in an FPRM with the fewest
products. Suppose we have an FPRM for the given function
with tthreshold + 1 products, then it is sufficient to search for
an FPRM with tthreshold or fewer products. If such an FPRM
does not exist then the FPRM with tthreshold + 1 products is
the minimum FPRM. Thus, to restrict the search space with-
out sacrificing the minimality of the solution, we use thresh-
old value, tthreshold, during construction of MTBDDs. The
threshold value can be obtained by using any simplification
program for FPRMs.

Based on the above discussions, we develop the follow-
ing algorithm for exact minimization of FPRM for incom-
pletely specified n-variable switching function f .

Algorithm 1 (Exact Minimization):

1. Get the user supplied threshold value, tthreshold.
2. Prepare the extended truth vector [t0, t1, . . . , t3n−1] for

f . (Figure 1 shows the computation method for the ex-
tended truth vector for three-variable functions. Exten-
sion to the functions with more variables is straightfor-
ward. Each element of the extended truth vector is a
switching function represented as an MTBDD.)

3. Let [w0, w1, . . . , w2n−1] be the weight vector for f . For
i = 0 to 2n − 1, do the following:

(a) Gather elements from the extended truth vector
such that

wi =
∑
t∈Ti

t, (5)

where Ti ⊂ {t0, t1, . . . , t3n−1}. (Figure 1 shows how
to gather elements corresponding to wi from the
extended truth vector for three-variable function.
Extension to the functions with more variables is
straightforward. It is obvious from Fig. 1 that the
number of elements in wi is 2n.)

(b) Apply Properties 1 and 2 to Eq. (5). Thus, we have
wi = a +

∑
0≤ j≤L−1 bju j, where a ≥ 0, bj ≥ 1,

uj ∈ Ti, and L ≤ 2n.
(c) Construct an MTBDD for wi. During construc-

tion: (i) if any terminal value of an intermediate
MTBDD is greater than tthreshold, set that terminal
value to∞; (ii) if an intermediate MTBDD repre-
sents constant∞, stop the construction and assign
MTBDD for wi to∞.

(d) Obtain the minimum value wmin
i from the MTBDD

for wi. (This corresponds to finding a path from
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1 procedure Build MTBDD(a, S ,Dall) {
2 Dremain, Dthis: set of support variables;
3 S save, S this: subset of S ;
4 csave, cthis: integer (counter);
5 wi ← a;
6 until S � ∅ do {
7 Dremain ← Dall − support(wi);
8 csave ← 0;
9 for each dremain ∈ Dremain do {

10 Dthis ← {dremain} ∪ support(wi);
11 cthis ← 0; S this ← ∅;
12 for each b ju j ∈ S do {
13 if support(u j) ⊆ Dthis then {
14 cthis ← cthis + b j;
15 S this ← S this ∪ {b ju j};
16 }
17 }
18 if cthis > csave then {
19 csave ← cthis;
20 S save ← S this;
21 }
22 }
23 if S save = ∅ then
24 S save ← an element of S ;
25 for each b ju j ∈ S save do
26 wi ← wi + b ju j; /*  operation */
27 S ← S − S save;
28 }
29 return wi; /*  */
30 }

Fig. 2 Pseudocode of the procedure Build MTBDD.

the root to a terminal node of the MTBDD that
gives a minimum value for wi. The path represents
an assignment of the unspecified minterms of the
given function.)

(e) If wmin
i <= tthreshold : (i) save the polarity vector

and an assignment of the unspecified minterms
corresponding to wmin

i ; (ii) tthreshold ← wmin
i − 1.

4. If any polarity vector is saved in step 3(e) then obtain an
FPRM by using the most recently saved polarity vector
and assignment of the unspecified minterms, otherwise
report “No solution exists with tthreshold or fewer prod-
ucts.”

To build an MTBDD for wi at step 3(c) we must do
arithmetic addition of a set of MTBDDs, which can be ar-
ranged in numerous ways to perform addition. As outlined
in Sect. 1 the arrangement influences the computation time
and the sizes of the intermediate MTBDDs during addition.
A naive arrangement requires excessive memory resources
and long computation time. To build an MTBDD for wi

we use the procedure Build MTBDD(a, S ,Dall), the pseu-
docode of which is shown in Fig. 2. In the pseudocode a
represents an integer that is introduced in step 3(b), S rep-
resents {b0u0, b1u1, . . . , bL−1uL−1} which is also introduced
in step 3(b), Dall represents {d1, d2, . . . , dα} each of which
stands for an unspecified minterm, and support(wi) repre-
sents the set of variables on which wi depends.

The procedure first choses an MTBDD that depends
on the fewest variables and then arranges other MTBDDs
to slowly increase the number of variables in the interme-

diate MTBDDs. Lines 9 to 22 in Fig. 2 select S save ⊆ S
such that |support(wi) ∪ support(U)| − |support(wi)| = 1 and∑

bju j∈S save
b j is maximum, where U =

⋃
bju j∈S save

support(uj)
and |X| represents the number of elements in set X. In
other words, lines 9 to 22 select a set of MTBDDs such that
when the MTBDDs are added with an MTBDD for wi, the
resulting MTBDD depends on one more variable than the
MTBDD for wi depends. When such MTBDDs do not exist,
i.e., S save is empty, an MTBDD is selected on line 24 of the
pseudocode. Specifically, the MTBDD bju j ∈ S is selected
such that |support(uj) ∪ support(wi)| is minimized.

5. Experimental Results

We implemented the proposed method for the exact mini-
mization of FPRMs for incompletely specified functions by
using CUDD package [30] and conducted experiments on
a 2.40 GHz Pentium 4 PC with two gigabytes memory run-
ning Linux. The computation time of the algorithm mainly
depends on the number of unspecified minterms, the thresh-
old value supplied to Algorithm 1, and the number of vari-
ables on which the function depends. The current imple-
mentation works favorably for many functions with eight or
fewer variables. However, for functions with nine or more
variables it often requires long computation time and exces-
sive memory resources.

Table 1 shows experimental results for a set of ran-
domly generated functions. In the table, f (n, t, d, s) rep-
resents n-variable functions with t true and d unspecified
minterms, where s represents non-zero seeds for the func-
tion generator. More details about these functions are pro-
vided in Appendix A, which also shows a C program for
generating these functions. Columns two to five show the
number of product terms required by the best FPRMs when
four different methods are used to assign the unspecified
minterms. Columns dc0 and dc1 represent the number of
product terms when all the unspecified minterms are as-
signed to 0 and 1, respectively. Data for the rand column
represent the best solutions that are obtained after 100,000
random assignments of the unspecified minterms. The ex-
act minimum number of product terms that are obtained by
using the proposed algorithm are provided under exact. The
next column under thres shows the threshold values that are
supplied to Algorithm 1. The peak number of live MTBDD
nodes and the total CPU seconds are reported under columns
peak and time, respectively.

We have conducted experiments by using several eight-
variable functions to show the effect of the number of un-
specified minterms and threshold values on the requirement
of memory resources and computation time. All the func-
tions in Table 2 have the same true minterms, and they
differ in unspecified minterms. For each of the functions
three different threshold values are used. Table 2 shows that
lower threshold values help obtain solutions quickly and use
smaller memory resources. The table also shows how the
quality of the solutions improve as the number of unspeci-
fied minterms increases.
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Table 1 Experimental results for randomly generated functions.

f (n, t, d, s) dc0 dc1 rand exact thres peak time(s)
f (6, 15, 30, 25) 22 22 12 9 10 1732 0.11
f (6, 12, 40, 50) 18 18 12 6 10 11133 0.16
f (7, 35, 50, 5) 48 48 32 21 25 41733 2.41
f (7, 20, 80, 5) 34 34 28 10 15 70379 5.96
f (7, 20, 90, 5) 34 34 28 8 12 134166 6.72
f (8, 8, 240, 60) 38 38 33 3 4 371748 33.89
f (8, 15, 230, 25) 64 43 37 5 6 520119 107.39
f (8, 25, 200, 50) 72 72 64 12 12 1075438 617.27
f (8, 100, 80, 10) 107 105 81 51 51 5638312 972.15
f (8, 35, 180, 10) 84 81 71 15 15 4931098 1437.89
f (8, 60, 160, 5) 106 77 71 21 22 9874309 1784.32
f (8, 100, 90, 10) 107 103 86 47 48 20490584 3705.45
f (8, 80, 100, 50) 108 99 84 41 45 11554627 4167.28
f (9, 250, 50, 5) 217 217 188 167 170 2072822 636.81
f (9, 200, 50, 5) 228 215 192 172 175 6987484 1834.87
f (9, 15, 480, 80) 108 93 85 6 7 8192276 4917.10
f (10, 500, 40, 25) 474 453 425 397 420 4283146 1913.74
f (11, 1000, 30, 1) 951 935 921 887 900 281433 107.66
f (12, 2000, 30, 25) 1938 1938 1895 1874 1880 455409 648.93
f (14, 8000, 30, 50) 7980 7951 7882 7836 7850 855023 1279.48

Table 2 Effect of unspecified minterms and threshold values.

f (n, t, d, s) exact thres peak time(s)

f (8, 50, 10, 10) 74
74 301 0.03
79 421 0.07
84 587 0.11

f (8, 50, 30, 10) 64
64 7091 0.51
69 23575 1.36
74 44806 2.99

f (8, 50, 50, 10) 56
56 152344 16.29
61 560865 68.24
66 769065 123.82

f (8, 50, 70, 10) 53
53 5430836 1219.83
58 8648543 2652.20
63 14349474 4846.92

f (8, 50, 90, 10) 44
44 12963544 2340.06
49 17547953 4329.68
54 23184680 6103.72

f (8, 50, 110, 10) 33
33 19620571 3854.68
38 26082221 5446.19
43 31754252 7593.02

Table 3 shows experimental results for arithmetic func-
tions and code converters. An overview of the two-digit
BCD-to-binary and four-digit ternary-to-binary converters
are provided in Appendix B. The two-digit decimal incre-
menter represents combinational part of a two-digit deci-
mal counter, where numbers are represented in binary-coded
decimal format. Since the current version of the program
works only for single output functions, we report experi-
mental results for each of the outputs separately. In the table,
the column out-id identifies each of the outputs; the least
significant output bit of a function is considered to have out-
id 0. It should be noted that the program is unable to obtain
solutions for some of the outputs. The columns #true and
#dc show the numbers of true and unspecified minterms, re-

Table 3 Experimental results for arithmetic circuits and code converters.

out-id #true #dc dc0 dc1 rand exact peak time(s)
1-digit BCD adder

0 50 156 18 18 18 2 4726928 54.85
2-digit BCD-to-binary converter

0 50 156 9 9 9 1 315419 15.31
1 50 156 15 15 15 2 37093 11.19
2 48 156 15 15 15 3 315462 16.26
3 48 156 21 21 21 6 80316 27.72
4 48 156 20 20 20 11 11019893 9735.71
5 36 156 20 20 20 12 7787160 8259.94
6 36 156 14 8 8 3 35322 8.12

2-digit decimal incrementer
0 50 156 9 9 9 1 37070 12.31
1 40 156 6 6 6 2 25907 7.63
2 40 156 6 6 6 2 37078 11.72
3 20 156 18 16 16 3 43057 16.59
4 50 156 12 12 12 2 37094 7.58
5 40 156 4 4 4 2 28632 6.81
6 40 156 4 4 4 2 72494 13.44
7 20 156 10 8 8 3 54777 6.82

2-digit ternary adder
0 27 175 24 13 13 4 121987 13.73
1 27 175 24 13 13 4 123796 14.23

3-digit ternary-to-binary converter
0 13 37 13 13 8 3 280420 0.91
1 13 37 14 14 10 6 280435 0.92
2 12 37 14 14 12 8 280439 2.47
3 11 37 12 9 9 4 280426 0.89
4 11 37 13 9 8 3 280422 0.79

4-digit ternary-to-binary converter
0 40 175 40 39 37 4 122003 11.96
5 32 175 44 30 28 7 17670538 387.32
6 17 175 16 16 12 3 447850 19.44

spectively. The remaining columns share their meanings
with Table 1. Among six circuits considered in Table 3
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Table 4 Effect of variable reordering of MTBDDs.

f (n, t, d, s) #r rtime(s) peak mem time(s)

f (7, 40, 80, 5) 0 0.00 4922534 376.73 43.36
20 1765.71 1973147 101.12 1795.86

f (8, 80, 100, 50) 0 0.00 11554627 664.97 4130.98
46 14016.34 6395455 215.43 18067.74

only three-digit ternary-to-binary converter has six inputs,
the other circuits have eight inputs. The peak number of live
MTBDD nodes and the total CPU seconds in Table 3 are ob-
tained by using threshold values that are one more than the
number of product terms in the exact minimum FPRMs. We
note that experimental results in Tables 1 and 3 are gathered
without using variable reordering of MTBDDs.

We have incorporated variable reordering of MTBDDs
in our algorithm. Table 4 demonstrates the effect of variable
reordering on computation time and memory usages. Data
are collected with and without variable reordering by using
default settings of the CUDD, and sifting algorithm is used
for reordering [21]. In the table, columns #r and rtime re-
port the number of times variable reorderings are done and
the CPU seconds for performing only variable reorderings,
respectively. Columns mem and time show the memory re-
quirement in megabytes and the total CPU seconds, respec-
tively. The other two columns share their meanings with the
previous tables. Table 4 shows that when variable reorder-
ing is used computation time increases dramatically with an
appreciable decrease in memory requirement. Our experi-
ments with other functions also reveal similar tendencies.

It should be noted that a comparison with the other
exact minimization algorithms is difficult, because none of
them explicitly reported any benchmark functions.

6. Conclusions and Comments

Minimization of FPRMs for incompletely specified func-
tions is important at least for two reasons. First, FPRMs
can play important roles in several areas of logic synthe-
sis. Second, there are many practical functions that are in-
completely specified, and very little has been done in opti-
mizing FPRMs for such functions. Our experimental results
demonstrate that extended truth vectors and weight vectors
along with the concept of integer-valued functions are use-
ful for the exact minimization of FPRMs for incompletely
specified functions.

MTBDDs also play crucial roles in efficiently repre-
senting and manipulating integer-valued functions. How-
ever, MTBDDs can be practically used for handling prob-
lems with up to certain sizes. Variable reordering of
MTBDDs is helpful in reducing the memory require-
ment when optimizing FPRMs for many functions. How-
ever, variable reordering does not significantly improve
the usefulness of the algorithm, because reordering large
MTBDDs takes extremely long computation time. For an
n-variable function the algorithm requires to build at most
2n MTBDDs, and no single variable order works well for

two of those MTBDDs. The threshold value supplied to the
algorithm also has a profound impact on the computation
time and memory requirement. The impact is even greater
when functions with many unspecified minterms are consid-
ered. Therefore, a powerful heuristic minimizer should be
used for obtaining quality threshold values.

The exact minimization of FPRMs for incompletely
specified functions is challenging if the number of unspec-
ified minterms is large, because the search space increases
exponentially with an increase in the unspecified minterms.
The problem gets more complex as the number of true, false,
and the unspecified minterms become nearly equal. There-
fore, heuristic minimizers should be developed. Another
promising problem in the area is optimization of FPRMs
for incompletely specified functions considering area and
power reduction of their multi-level realizations based on
factored forms.
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Appendix A: Randomly Generated Functions

To generate the truth vectors for the test instances shown
in Table 1 we used the C program shown in Fig. A· 1, the
first two lines of which have been adapted from Kernighan
and Ritchie [16, p.46]. The subroutine f (n, t, d, s) returns a
pointer v for the truth vector [v[0], v[1], . . . , v[2n − 1]] for an
n-variable switching function with t true and d unspecified
minterms. The element v[i] (0 ≤ i ≤ 2n − 1) of the truth
vector represents a false, true, or unspecified minterm if it is
0, 1, or 2, respectively. The subroutine is based on a random
number generator which should be provided with an initial
non-zero seed through s. The truth vectors are generated
on a 32-bit machine where unsigned int and long are 32
bits.

Appendix B: Code Converters

This section shows an outline of the code converters [27],
[28] for which experimental results are presented in Table 3.
In the following, subscripts are used to indicate the base of
the number system. A base 10 should be assumed if a sub-
script is not shown. For example 10012 is a binary number

#define E(m) s = s * 1103515245 + 12345, \

r = (unsigned int) (s >> 16) % w, m > 0

char *f(int n, int t, int d, unsigned long s)

{

int r, w = 1 << n;

char *v = (char *) calloc(w, 1);

while (E(t)) if (!v[r]) v[r] = 1, t--;

while (E(d)) if (!v[r]) v[r] = 2, d--;

return v;

}

Fig. A· 1 Program to generate test instances used in Table 1.
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that is equivalent to the decimal number 9 which is repre-
sented by 910 or simply 9.

Two-digit BCD-to-binary converter. Binary-coded dec-
imal (BCD) numbers use four bits to represent one digit.
BCD numbers 00002, 00012, 00102, 00112, 01002, 01012,
01102, 01112, 10002, and 10012 represent 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9, respectively. The remaining six 4-bit num-
bers, i.e., 10102, 10112, 11002, 11012, 11102, and 11112

are not used and can be considered as don’t care. The two-
digit BCD-to-binary converter has eight inputs. And two-
digit BCD numbers can represent 100 different numbers,
i.e., from 0010 to 9910. Therefore, out of 256 possible in-
put combinations that can be applied to the eight inputs of
the two-digit BCD-to-binary converter, only 100 combina-
tions are completely specified. The remaining 156 input
combinations are don’t care. Because the largest two-digit
BCD number is 99, a two-digit BCD-to-binary converter has
seven outputs.

Four-digit ternary-to-binary converter. In the binary-
coded ternary representations, two bits are used to represent
a ternary digit (a.k.a. a trit). In this representation 002 de-
notes 0, 012 denotes 1, 102 denotes 2, but 112 is not used and
can be considered as don’t care. Therefore, the four-digit
ternary-to-binary converter has eight inputs. The smallest
and the largest numbers that can be applied to the inputs
of the four-digit ternary-to-binary converter are 00003 and
22223 (= 2×33 +2×32+2×31+2×30 = 80), respectively.
Therefore, out of 256 input combinations, 81 combinations
are completely specified and the remaining 175 combina-
tions are don’t care. A four-digit ternary-to-binary converter
has seven outputs because the largest number it requires to
produce is 80.
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