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Output Phase Optimization for AND-OR-EXOR PLAs with
Decoders and Its Application to Design of Adders

Debatosh DEBNATH†a), Nonmember and Tsutomu SASAO††b), Member

SUMMARY This paper presents a design method for three-level pro-
grammable logic arrays (PLAs), which have input decoders and two-input
EXOR gates at the outputs. The PLA realizes an EXOR of two sum-of-
products expressions (EX-SOP) for multiple-valued input two-valued out-
put functions. We developed an output phase optimization method for EX-
SOPs where some outputs of the function are minimized in the comple-
mented form and presented techniques to minimize EX-SOPs for adders by
using an extension of Dubrova-Miller-Muzio’s AOXMIN algorithm. The
proposed algorithm produces solutions with a half products of AOXMIN-
like algorithm in 250 times shorter time for large adders with two-valued
inputs. We also proved that an n-bit adder with two-valued inputs requires
at most 3 · 2n−2 + 7n − 5 products in an EX-SOP while it is known that a
sum-of-products expression (SOP) requires 6 · 2n − 4n − 5 products.
key words: three-level network, logic minimization, adder, programmable
logic

1. Introduction

Programmable logic arrays (PLAs) with two-input EXOR
gates at the outputs, also known as AND-OR-EXOR
PLAs (Fig. 1) [28], are a powerful architecture to realize
many logic functions. The AND-OR-EXOR PLA real-
izes an EXOR of two sum-of-products expressions (EX-
SOP). Minimization of the number of products in EX-
SOPs is an important step in the optimization of AND-
OR-EXOR PLAs, because the number of products is di-
rectly related to the cost of PLAs. EX-SOPs are promis-
ing because, for many practical logic functions, they often
require many fewer products than sum-of-products expres-
sions (SOPs) [7], [10], [11], [15], [16], [28].

AND-OR-EXOR three-level networks are suitable for
implementing adders, which serve as building blocks for
synthesizing many other arithmetic circuits [21]. For ex-
ample, Texas Instruments’ SN181 arithmetic circuit and
SN283 four-bit adder have two-input EXOR gates in the
outputs [31]; Monolithic Memories’ ZHAL20X8A eight-bit
counter realizes EX-SOPs [19]. An AND-OR-EXOR is one
of the simplest three-level architecture, since it contains only
a single two-input EXOR gate. However, its logic capabil-
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Fig. 1 AND-OR-EXOR three-level PLA with (a) one-bit and (b) two-bit
decoders.

ity is quite high. Because of this, various programmable
logic devices (PLDs) with two-input EXOR gates in the
outputs were developed. Especially, RICOH, Lattice and
AMD (MMI) produced series of such PLDs [19], [22], [23]
and millions of complex PLDs (CPLDs) with output EXOR
gates have been shipped [1], [2]. An AND-OR-EXOR three-
level network is also suitable for efficient implementation of
many random functions. For example, simplified EX-SOPs
for six-variable pseudo-random functions require 25 percent
fewer products and 40 percent fewer literals than simplified
SOPs [5]. For an arbitrary function of six variables, mini-
mum SOPs require up to 32 products [29], while minimum
EX-SOPs require at most 15 products [5].

Minimization of EX-SOPs were considered in the
past [13], [30], and a cut-and-try method was reported [22].
Design methods for adders by using AND-OR-EXOR PLAs
with more than one-bit input decoders were developed at
IBM [32]. Exact minimization algorithms for EX-SOPs and
upper bounds on the number of products in EX-SOPs are
also reported [4]–[6], [9]. AND-OR-EXOR networks where
output EXOR gates have unlimited fan-in is considered [27].
During the last several years significant progress in the
heuristic minimization of EX-SOPs have been made and
many interesting results are reported [7], [10], [11], [15],
[16], [28]. However, no efficient algorithm to design AND-
OR-EXOR PLAs for adders is developed.

Important contributions of the paper are as follows:

• We present a method to reduce the number of prod-
ucts in EX-SOPs by considering output phase opti-
mization [26], where some components of the function
are implemented in the complemented form.
• We develop a heuristic method to minimize EX-SOPs

for adders with two- and four-valued inputs by using
an extension of the AOXMIN algorithm [10].
• We proved that an n-bit adder with two-valued inputs
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requires at most 3·2n−2+7n−5 products in an EX-SOP.

A crucial step in AOXMIN is to partition the products
of an SOP of the given function into two sets, which is done
by a random method. We propose a partitioning method for
adders. Our experimental result demonstrates that, for an
n-bit adder with sufficiently large n, the proposed algorithm
produces solutions with a half products of the random parti-
tioning method in 250 times shorter time.

The remainder of the paper is organized as follows:
Section 2 reviews terminology. Section 3 considers out-
put phase optimization techniques. Section 4 summarizes
AOXMIN and describes its extensions. Section 5 presents
design methods for adders. Section 6 derives an upper
bound on the number of products in EX-SOPs for adders.
Section 7 shows experimental results. Section 8 presents
conclusion.

2. Definitions and Terminology

In this section, we review basic terminology related to
multiple-valued functions [25], [26].

Definition 1: A multiple-valued input two-valued output
function, or function in short, is a mapping

f (X1, X2, . . . , Xn) :
i=n×
i=1

Pi → B,

where Pi = {0, 1, . . . , pi − 1}, pi ≥ 2, B = {0, 1}, and Xi is a
multiple-valued variable taking a value from Pi.

Definition 2: Let S i ⊆ Pi. A literal XS i
i represents 0 if

Xi � S i and 1 if Xi ∈ S i. A product XS 1
1 XS 2

2 · · · XS n
n is AND

of literals. A cube is a convenient representation of a product
for computer manipulation.

Definition 3: A sum-of-products expression (SOP)
∨

(S 1,S 2,...,S n)

XS 1
1 XS 2

2 · · ·XS n
n

is OR of products. An SOP is represented by a cover, which
is a set of cubes. An EX-SOP

∨

(S 1,S 2,...,S n)

XS 1
1 XS 2

2 · · · XS n
n ⊕

∨

(S 1,S 2,...,S n)

XS 1
1 XS 2

2 · · ·XS n
n

is the EXOR of two SOPs.

Definition 4: Let fi(X1, X2, . . . , Xn) (i = 0, 1, . . . ,m− 1) be
an n-input m-output function. The two-valued output func-
tion F(X1, X2, . . . , Xn, Xn+1), where Xn+1 is an m-valued vari-
able representing the outputs such that F(X1, X2, . . . , Xn, i)
= fi(X1, X2, . . . , Xn), is the characteristic function for the
multiple-output function [26].

Definition 5: An SOP for a multiple-output function indi-
cates an SOP for its characteristic function, and an EX-SOP
for a multiple-output function indicates an EX-SOP for its
characteristic function.

Definition 6: The intersection of the products c1 = XS 1
1 XS 2

2

· · · XS n
n and c2 = XT1

1 XT2
2 · · ·XTn

n , denoted by c1 ∩ c2, is the
product XS 1∩T1

1 XS 2∩T2

2 · · · XS n∩Tn
n . If S i ∩ Ti = ∅ for some i,

then the intersection denotes a null cube.

Definition 7: Disjoint sharp of two covers F and G, de-
noted by F©# G, represents only those minterms of F which
are not contained by G.

Definition 8: ON-set, OFF-set, and DC-set is the set of
cubes for which the function value is 1, 0, and unspecified,
respectively.

In this paper, we often use the same symbol for a func-
tion and its cover; and unless otherwise specified, adder
refers to adder without carry input, and adrn represents an
n-bit adder.

3. Output Phase Optimization

In many cases, we can realize a function f in either positive
phase ( f ) or negative phase ( f̄ ). For m-output function, we
can choose the output phases in 2m ways. The choice of the
output phases in the realization of a function influences on
the number of products in its minimized expressions. To re-
duce the number of products by choosing the output phases
is output phase optimization [26].

Definition 9: Let ( f0, f1, . . . , fm−1) be an m-output func-
tion. The minimized SOP G for the characteristic function
of (g0, g1, . . . , gm−1), where gi ∈ { f̄i, fi} (i = 0, 1, . . . ,m − 1)
such that the number of products in G is minimal, is the out-
put phase optimized SOP for ( f0, f1, . . . , fm−1).

Similarly, we can define an output phase optimized EX-
SOP. We handle the output phase optimization of EX-SOPs
by using the output phase optimization techniques for SOPs.
We use an output phase optimized SOP as the input of the
EX-SOP minimizer. For a function with m outputs, an EX-
SOP minimizer produces two SOPs each having m outputs.
We optimize the output phases of the 2m-output SOP to ob-
tain an output phase optimized EX-SOP.

Let the output phase for the function fi be ai ∈ {0, 1},
where ai = 0 indicates fi is in the positive phase and ai = 1
indicates fi is in the negative phase. Let the output phases
of the two SOPs of the EX-SOP for fi be bi0 and bi1. There-
fore, the output phase of the EX-SOP for fi is ai ⊕ bi0 ⊕ bi1.
When output phase optimization of the two m-output SOPs
is impractical, we consider ai as the output phase of the
EX-SOP for fi. The output phase optimization technique
for AND-OR-EXOR three-level PLAs is shown in Fig. 2.
An output phase optimized EX-SOP can be realized in an
AND-OR-EXOR PLA, where the polarity of the outputs are
programmable.

4. Minimization Techniques

In this section we review AOXMIN [10], which is a heuristic
algorithm to simplify EX-SOPs. We then present an exten-
sion of AOXMIN.
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Fig. 2 Output phase optimization (OPO).

Fig. 3 Pseudocode for AOXMIN Specify Both.

4.1 Overview of AOXMIN

Basic steps of AOXMIN are as follows:

1. Obtain a minimized cover F for the given function f
and compute a cover R for f̄ .

2. Group the cubes of F into clusters of cubes. Two cubes
are in the same cluster if they intersect or they are con-
nected through a chain of intersecting cubes. (In [10],
a cluster of cubes are called an equivalence class.)

3. Randomly partition the clusters of cubes into two cov-
ers, FA and FB.

4. Obtain two EX-SOPs by using AOXMIN Specify-
Both(FA, FB,R) and AOXMIN Specify Both(FB, FA,R)

(Fig. 3). AOXMIN Specify Bothreturns two SOPs
which form an EX-SOP. Espresso(Fk,Dk,Rk) in Fig. 3
obtains a minimized cover for a function, where Fk, Dk,
and Rk represents the ON-set, DC-set, and OFF-set, re-
spectively.

5. Iterate steps 3 and 4 for some specified number of
times, and take the best EX-SOP among all the EX-
SOPs generated so far.

In addition, AOXMIN simplifies complement of the
given function and uses some output phase optimization
technique to obtain better solution.

4.2 Extension of AOXMIN

The proposed heuristic method to simplify EX-SOPs, which
is an extension of AOXMIN [10], have the following fea-
tures:

• It can simplify EX-SOPs for functions with two- and
four-valued variables, and can treat functions where
different variables have different domains (two-valued
or four-valued). On the other hand, AOXMIN simpli-
fies only two-valued functions.
• It uses heuristic algorithms to partition the clusters of

cubes for adders. In this regard, AOXMIN uses only a
random partitioning method.
• During iterative improvement, it concurrently mini-

mizes both SOPs of the EX-SOP to reduce the total
number of products by increasing shared products be-
tween two SOPs. On the other hand, AOXMIN uses
simultaneous minimization of both SOPs only once as
part of its simplification technique for multiple-output
functions.
• For multiple-output functions, it performs concurrent

simplification of all the outputs. However, AOXMIN
simplifies each output separately throughout the algo-
rithm. A modified AOXMIN considers simplification
of all the outputs simultaneously [11].
• For the output phase optimization of EX-SOPs, it

uses techniques for the output phase optimization of
SOPs [26]. AOXMIN handles the output phase opti-
mization problem in a different way.
• To find good solutions quickly, especially for adders, it

selects from two different minimizers for SOPs. On the
other hand, AOXMIN uses only Espresso [3].
• The method makes efficient use of the given don’t care

conditions during grouping the cover into clusters of
cubes and also during every minimization of the SOPs
of the EX-SOP. AOXMIN does not use don’t care con-
ditions during these two operations.

The minimization of an SOP for a multiple-output
function corresponds to the minimization of an SOP for its
characteristic function [26]. Similarly, we can prove the fol-
lowing:

Theorem 1: The minimization of an EX-SOP for a
multiple-output function corresponds to the minimization of
an EX-SOP for its characteristic function.

Now, the definition of the clusters of cubes can be ex-
tended as follows:

Definition 10: Let F and D be the covers for the ON-set
and DC-set, respectively, of the characteristic function for a
multiple-output function. Then, two cubes ci, c j ∈ F are in
the same cluster if

(a) G(i, j) � ∅, or
(b) G(i, i + 1) � ∅,G(i + 1, i + 2) � ∅, . . . ,G( j − 1, j) � ∅,

where G(p, q) denotes (cp ∩ cq) ©# D.

Section 4.1 shows that during every iteration AOXMIN
calls AOXMIN Specify Both twice. We replaced these
calls by Modified Specify Both(FA, FB,D,R) and Modi-
fied Specify Both(FB, FA,D,R) (Fig. 4). Make Double-
Out Cover(Fk,Gk) in Fig. 4 receives n-input m-output cov-

ers Fk and Gk, and returns an n-input 2m-output cover such
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that covers corresponding to outputs 0, 1, . . . ,m − 1 and
m,m + 1, . . . , 2m − 1 represent Fk and Gk, respectively.

In Fig. 4, both Simplify Single(Fk,Dk,Rk) and Sim-
plify Double(Fk,Dk,Rk) obtain a minimized cover for a
function, where Fk, Dk, and Rk represents the ON-set,
DC-set, and OFF-set, respectively. Simplify Single and
Simplify Double can be either Simplify Local (Fig. 5) or
Espresso-MV [25]. Simplify Local uses a single pass of Re-
duce, Expand, and Irredundant operations to obtain a sim-
plified SOP [25]. It reduces the number of cubes by locally
changing the shape of the cubes. Espresso-MV iterates these
operations as long as the solution improves. Sections 5 and
7 explain how the choice of the two-level minimizers influ-
ence the quality of the solution and execution time.

Fig. 4 Pseudocode for Modified Specify Both.

Fig. 5 Pseudocode for Simplify Local.

Fig. 6 Distribution of the clusters of output phase optimized SOPs for adders with two-valued inputs.

5. Design of Adders

In this section, we propose partitioning methods of the clus-
ter of cubes for adders with one- and two-bit decoders, and
discuss about the choice of the two-level minimizers. Note
that EX-SOPs for functions with two- and four-valued in-
puts correspond to AND-OR-EXOR PLAs with one- and
two-bit decoders, respectively (Fig. 1).

During minimization of adders, we use Simplify Local
for Simplify Single and Espresso-MV for Simplify Double
in Fig. 4. We observe that if Espresso-MV is used for Sim-
plify Single then the resulting awkward shape of Rassigned in
Fig. 4 prevent us from obtaining a good solution in the next
minimization by using Simplify Double.

5.1 Adders with One-Bit Decoders

We found that an output phase optimized SOP for n-bit (3 ≤
n ≤ 11) adder with two-valued inputs has 4n − 1 clusters
of cubes. Figure 6 shows the distribution of these clusters,
where an entry ck represents k clusters each having c cubes.
It is interesting that the number of cubes in the clusters have
a regular structure. To partition the clusters of cubes into
two covers FA and FB, we use the following method:

1. Sort the clusters in descending order of the number of
cubes in them.

2. Starting from the beginning of the sorted list of the
clusters, alternately add a pair of clusters to FA and FB.

3. Add the remaining cluster to FB.

Example 1: For three-bit adder with two-valued inputs,
the number of cubes in the clusters which form FA and FB

are 5, 5, 2, 2, 1, 1, and 3, 3, 1, 1, 1, respectively.

The above partitioning method is devised by consider-
ing outputs. Adders have pairs of clusters, where each pair
belongs to a particular set of outputs. Roughly, the strat-
egy is to put the clusters from such a pair into two different
partitions. A similar method is also devised for adders with
four-valued inputs.

Figure 7 shows Karnaugh map for a six variable func-
tion [20]. Its SOP requires 16 products and EX-SOP, (p1 ∨
p2)⊕(p3∨p4∨p5), requires five products as shown in Fig. 7.
The EX-SOP is designed by using the method presented in
this section.
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Fig. 7 Karnaugh map of an output of adr3 (output phase optimized).

Fig. 8 Distribution of the clusters of output phase optimized SOPs for
adders with four-valued inputs.

5.2 Adders with Two-Bit Decoders

We obtained functions with four-valued inputs from their
two-valued counterparts by pairing two variables using
Espresso-MV [25]. Figure 8 shows the distribution of the
clusters of output phase optimized SOPs for adders with
two-bit decoders, where an entry ck represents k clusters
each having c cubes. It shows that the output phase opti-
mized SOP for n-bit (4 ≤ n ≤ 11) adder with two-bit de-
coders have 2n clusters. Note that the number of cubes in
the clusters for adders with two-bit decoders also have a reg-
ular structure. We use the following method to partition the
clusters into two covers FA and FB:

1. Sort the clusters in descending order of the number of
cubes in them.

2. Starting from the beginning of the sorted list of the
clusters, at first add a pair of clusters to FA, then al-
ternately add a cluster to FA and FB.

6. Number of Products in Adders

In this section we derive an upper bound on the number of
products in an EX-SOP for an n-bit adder with two-valued

inputs.
Let adrn be the n-bit adder without carry input as fol-

lows:

xn−1 xn−2 . . . x0

+) yn−1 yn−2 . . . y0

zn zn−1 zn−2 . . . z0

cn−1 cn−2 . . . c0

where zi’s are sums and ci’s are carries. Note that zn = cn−1.
For adrn, we have the following relations:

zi = (xi ⊕ yi) ⊕ ci−1

= pi ⊕ ci−1

= p̄i ⊕ c̄i−1,

ci = xiyi ⊕ (xi ⊕ yi)ci−1

= gi ⊕ pici−1

= ḡi ⊕ ( p̄i ∨ c̄i−1),

ci = xiyi ∨ ci−1(xi ∨ yi),

c̄i = x̄iȳi ∨ c̄i−1(x̄i ∨ ȳi)

= ri ∨ sic̄i−1,

where pi = xi ⊕ yi, gi = xiyi, ri = x̄iȳi, si = x̄i ∨ ȳi. Also,
z0 = p0 = x0 ⊕ y0, and c0 = g0 = x0y0.

Let t(S OP, f ) be the number of products in a minimum
SOP for f . Let t(EX-S OP, f ) be the number of products in
a minimum EX-SOP for f .

Lemma 1:

t(S OP, ḡi−1 ⊕ pi−1gi−2) = 5.

t(S OP, p̄i−1 ⊕ gi−2) = 6.

t(S OP, p̄i−1) = 2.

t(S OP, p̄i−2 ∨ c̄i−3) = 2 + t(S OP, c̄i−3).

Lemma 2: t(EX-S OP, z0) = 2.

Lemma 3: t(EX-S OP, z1) = 3.

Lemma 4: t(S OP, c̄i) = 3 · 2i − 1.

Proof: Note that t(S OP, c̄0) = 2. From c̄i = ri ∨ sic̄i−1, we
have t(S OP, c̄i) = 1 + 2t(S OP, c̄i−1). From the recurrence
relation, we have the lemma.

Lemma 5: t(EX-S OP, zi) ≤ 8 + t(S OP, c̄i−2).

Proof:

zi = pi ⊕ ci−1

= pi ⊕ gi−1 ⊕ pi−1ci−2

= (pi ⊕ gi−1) ⊕ ( p̄i−1 ∨ c̄i−2).

Since t(S OP, pi ⊕ gi−1) = 6 and t(S OP, p̄i−1) = 2, we have
the lemma.

Lemma 6: Two functions ci−1 and zi−1 can be realized with
an EX-SOP at the same time by using 15+t(S OP, c̄i−3) prod-
ucts.
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Proof:

ci−1 = gi−1 ⊕ pi−1ci−2

= gi−1 ⊕ pi−1(gi−2 ⊕ pi−2ci−3)

= (gi−1 ⊕ pi−1gi−2) ⊕ (pi−1 pi−2ci−3)

= (ḡi−1 ⊕ pi−1gi−2) ⊕ ( p̄i−1 ∨ p̄i−2 ∨ c̄i−3),

zi−1 = pi−1 ⊕ ci−2

= pi−1 ⊕ gi−2 ⊕ pi−2ci−3

= ( p̄i−1 ⊕ gi−2) ⊕ ( p̄i−2 ∨ c̄i−3).

From Lemmas 1 to 5, we have this lemma.

Theorem 2: An n-bit adder without carry input can be rep-
resented by an EX-SOP with at most 3·2n−2+7n−5 products
for n ≥ 3.

Proof: Let W be the number of products necessary in an
EX-SOP. Then, we have

W =

n−2∑

i=0

t(S OP, zi) + 15 + t(S OP, c̄n−3)

≤ 2 + 3 +
n−2∑

i=2

[8 + t(S OP, c̄i−2)] + 15

+ t(S OP, c̄n−3)

= 5 +
n−2∑

i=2

[7 + 3 · 2i−2] + 15 + t(S OP, c̄n−3)

Table 1 Number of products and execution time in seconds for adders with two-valued inputs.

Dubrova-Miller-Muzio Partition [10]
Proposed Partition 20 Iterations 50 Iterations

Data In Out SOP Time OPO
SOP EX-SOP Time OPO

EX-SOP EX-SOP Time EX-SOP Time

adr3 6 4 31 0.01 25 12 0.01 11 17 0.10 13 0.29
adr4 8 5 75 0.01 61 21 0.01 18 32 0.40 32 1.23
adr5 10 6 167 0.04 137 37 0.03 36 50 2.32 50 5.64
adr6 12 7 355 0.15 293 67 0.13 66 146 10.29 133 30.29
adr7 14 8 735 0.45 609 122 0.40 120 128 38.71 128 94.57
adr8 16 9 1499 2.04 1245 233 1.81 233 423 149.90 380 360.14
adr9 18 10 3031 7.38 2521 454 6.73 454 840 594.58 840 1504.74
adr10 20 11 6099 34.63 5077 967 28.39 967 2168 2627.12 1898 6754.61
adr11 22 12 12239 153.81 10193 1993 129.73 1993 4136 15465.33 3677 38734.42

OPO: Output phase optimized.

Table 2 Number of connections to the inputs of gates for adders with two-valued inputs.

SOP OPO EX-SOP

Data In Out AND OR AND OR EXOR OPO
EX-SOP /SOP

adr3 6 4 116 31 30 20 8 0.39
adr4 8 5 340 75 58 35 10 0.25
adr5 10 6 892 167 128 72 12 0.20
adr6 12 7 2196 355 282 136 14 0.17
adr7 14 8 5196 735 620 254 16 0.15
adr8 16 9 11972 1499 1422 505 18 0.14
adr9 18 10 27068 3031 3234 998 20 0.14
adr10 20 11 60340 6099 7846 1767 22 0.15
adr11 22 12 133036 12239 18096 3307 24 0.15

OPO: Output phase optimized.

= 5 + 7(n − 3) + 3(20 + 21 + · · · + 2n−4)

+ 15 + 3 · 2n−3 − 1

= 3 · (20 + 21 + · · · + 2n−4 + 2n−3)

+ 7n − 16 + 15 − 1

= 3 · (2n−2 − 1) + 7n − 2

= 3 · 2n−2 + 7n − 5.

7. Experimental Results

We implemented the proposed method to simplify EX-SOPs
for adders in C by using Espresso-MV [25] routines on a
2.40 GHz Pentium 4 PC running Linux. For the experiments
we prepared minimized SOPs and output phase optimized
SOPs by using Espresso-MV with default options. We ob-
tained adders with four-valued inputs from their two-valued
counterparts by pairing two variables using Espresso-MV.

Tables 1, 2, and 3 summarize the experimental results,
which are obtained by using: a) output phase optimized
SOPs as the input for the EX-SOP minimizer; b) two differ-
ent techniques to partition the clusters of cubes: partition-
ing method for adders from Sect. 5 and random partitioning
method from AOXMIN [10]; and c) Simplify Local for Sim-
plify Single and Espresso-MV for Simplify Double in Fig. 4.

In Table 1, the columns with heading ‘SOP’, ‘OPO
SOP’, ‘EX-SOP’, and ‘OPO EX-SOP’ indicate the number
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Table 3 Number of products and execution time in seconds for adders with four-valued inputs.

Dubrova-Miller-Muzio Partition [10]
Proposed Partition 20 Iterations 50 Iterations

Data SOP OPO
SOP EX-SOP Time OPO

EX-SOP EX-SOP Time EX-SOP Time

adr4 17 14 13 0.01 12 13 0.15 13 0.38
adr5 26 22 18 0.03 18 18 0.53 18 1.47
adr6 37 32 25 0.07 25 25 1.67 25 4.63
adr7 50 44 33 0.18 33 33 5.35 33 12.46
adr8 65 58 42 0.60 42 43 16.48 43 39.03
adr9 82 74 52 2.41 52 51 60.15 51 138.20
adr10 101 92 63 6.78 63 65 223.18 61 535.91
adr11 122 112 75 48.63 75 75 721.77 75 2142.84

OPO: Output phase optimized.

of products in the corresponding expression, where ‘OPO’
is an abbreviation for ‘output phase optimized’. The fifth
column with heading ‘Time’ indicates the CPU seconds
spent by the Espresso-MV [25] to minimize SOPs. The
other columns with heading ‘Time’ indicate the CPU sec-
onds spent by our program to simplify EX-SOP and they do
not include the time to prepare minimized SOPs or output
phase optimized SOPs.

Table 1 shows that, for an n-bit adder with two-valued
inputs and with sufficiently large n, the proposed partition-
ing method produces solutions with a half products of the
random partitioning method in about 250 times shorter time.
We used adr6 to see how the choice of the two-level min-
imizers in Fig. 4 influence the quality of the solution and
execution time. By using random partitions and 1000 iter-
ations, we found that when Espresso-MV is used for both
Simplify Single and Simplify Double the algorithm requires
567.15 seconds and produces a solution with 122 products;
however, when we use Simplify Local for Simplify Single
and Espresso-MV for Simplify Double, the algorithm pro-
duces a solution with 81 products and requires 541.44 sec-
onds. We found similar tendencies for other adders too.
It should be noted that in Table 1 data on the 7th and 9th
columns are the same for the last four rows. This is be-
cause of the memory overflow of Espresso-MV as outlined
in Sect. 3. In spite of this as Table 1 shows, adders based on
EX-SOPs require far fewer gates than those based on SOPs.

Table 2 shows the number of connections to the in-
puts of gates for adders with two-valued inputs. For large
n, three-level AND-OR-EXOR PLAs achieve about 85 per-
cent saving in the cost of connections.

Table 3 shows that the proposed partitioning method
also produces good solutions quickly for adders with four-
valued inputs. However, in most cases, these solutions can
be obtained by random partitioning method by a reasonable
increase in the computation time. The experimental data
also reveals that the minimization time for EX-SOPs with
four-valued inputs is much smaller than that for the corre-
sponding EX-SOPs with two-valued inputs, because the for-
mer requires many fewer products than the later. Note that
an EX-SOP for an n-bit adder with two-bit decoders requires
at most (n2 + n + 2)/2 products [28].

8. Conclusions and Comments

Adders are important because they form the basic build-
ing blocks of numerous digital systems, and EX-SOPs are
promising because they often require many fewer products
than SOPs. We presented partitioning methods, which are
effective in optimizing EX-SOPs for adders. Our experi-
mental result shows that random partitioning method is un-
suitable for designing adders when n is large, because it re-
quires excessive amount of CPU time to obtain a moder-
ately optimized design. We found that the choice of two-
level minimizers in AOXMIN-like algorithm have a great
influence on the number of products in EX-SOPs and that a
powerful minimizer is not always a good choice. We proved
that an n-bit adder with two-valued inputs requires at most
3 · 2n−2 + 7n − 5 products in an EX-SOP while an SOP re-
quires 6 · 2n − 4n − 5 products. We obtained adders with
four-valued inputs from their two-valued counterparts by
pairing two variables using Espresso-MV code [25], which
reduces the number of products in SOPs [26]. A different
pairing algorithm targeting EX-SOPs may lead to better so-
lutions. Investigations are underway for integrating the pro-
posed AND-OR-EXOR design techniques with three-level
OR-AND-OR synthesis methods [8] and for adapting the in-
tegrated design systems to synthesize logic circuits for com-
mercial CPLDs that have four-level OR-AND-OR-EXOR
architecture [2]. Logic synthesis for such a four-level ar-
chitecture is a challenging problem and very little has been
published on the topic [27].

A limitation of the proposed method is its inability to
handle large adders. However, in the practical LSI appli-
cations, optimization of only small adders is sufficient in
implementing large adders. The fan-in of the gates of an
AND-OR-EXOR three-level realization for an n-bit adder
increases with n. In the LSI realization, gates with large
fan-in are difficult to fabricate and tend to be slow [24], [33].
Therefore, monolithic implementations of n-bit adders for
large n are impractical. When n is large, fast adders are
implemented by combining well-designed adders of smaller
sizes [17], and the design strategies are primarily guided by
the overall speed of the adders. Various schemes for such
design have been developed. One of them is carry-skip
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adders which use
√

n/2-bit adders for implementing an n-bit
adder [17, p.117]. Therefore, large carry-skip adders such
as one to add 128-bit numbers can be implemented by using
only 8-bit adders. A 64-bit hybrid carry lookahead adder
also uses 8-bit adders as its building blocks [18]. Another
variant of carry-skip scheme uses 2- to 6-bit adders for im-
plementing a 128-bit adder [14]. Various module-based de-
signs are used in practice [12], [17], [21].
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