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Area-Time Complexities of Multi-Valued Decision Diagrams

Shinobu NAGAYAMA†a), Student Member, Tsutomu SASAO†,††b), Yukihiro IGUCHI†††c),
and Munehiro MATSUURA†d), Members

SUMMARY This paper considers Quasi-Reduced ordered Multi-
valued Decision Diagrams with k bits (QRMDD(k)s) to represent binary
logic functions. Experimental results show relations between the values of
k and the numbers of nodes, the memory sizes, the numbers of memory
accesses, and area-time complexity for QRMDD(k). For many benchmark
functions, the numbers of nodes and memory accesses for QRMDD(k)s
are nearly equal to 1

k of the corresponding Quasi-Reduced ordered Binary
Decision Diagrams (QRBDDs), and the memory sizes and the area-time
complexities for QRMDD(k)s are minimum when k = 2 and k = 3–6, re-
spectively.
key words: decision diagrams, the number of nodes, area-time complexity,
randomly generated function, representation of logic functions

1. Introduction

Binary Decision Diagrams (BDDs) [7] and Multi-valued
Decision Diagrams (MDDs) [3], [14], [19], [20] are exten-
sively used in logic synthesis [9], logic simulation [1], [11],
[17], software synthesis [2], etc. Since modern computer
systems have the memory hierarchical structure, suitable de-
cision diagrams for the memory hierarchy can shorten the
runtimes of these applications [17], [34]. Quasi-Reduced or-
dered BDDs (QRBDDs) and Quasi-Reduced ordered MDDs
(QRMDDs) are suitable for the memory hierarchy [23], par-
allel process [12], [24], and design of LUT cascades [31].
However, in general, QRBDDs and QRMDDs require more
nodes than corresponding Reduced ordered BDDs (RBDDs)
and Reduced ordered MDDs (RMDDs) to represent logic
functions. Hence, the minimizations of QRBDDs and QR-
MDDs are very important. In many cases, the minimiza-
tions of decision diagrams use the variable reordering [8],
[9], [13], [21], [26]. In the minimization of MDDs, a parti-
tion of binary variables [10], [28] is important as well as the
variable ordering.

To represent a binary logic function using an MDD, bi-
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nary variables are partitioned into groups. The papers [10],
[28] present the optimization algorithm of partition of input
binary variables into groups of binary variables. However,
the size of groups (i.e. the number of binary variables in a
group) is fixed in these algorithms. In this paper, we as-
sume that the size of groups, that is the value of k for Quasi-
Reduced ordered MDDs with k bits (QRMDD(k)s), can be
changed, and we find the optimum sizes of groups experi-
mentally by showing the relations of the values of k and the
numbers of nodes, the memory sizes, and the numbers of
memory accesses. To show these relations, we assume that
the order of binary variable is fixed. Our statistical results
are useful for minimizations of MDDs, software synthesis
[2], and logic simulation [1], [11], [17].

The rest of the paper is organized as follows: Sect. 2
defines MDD(k)s, QRMDD(k)s, computation model for
MDDs, and a method to represent multiple-output functions.
Section 3 considers the number of nodes in QRMDD(k)s for
general functions, benchmark functions, and randomly gen-
erated functions. Section 4 introduces the measure called
area-time complexity [4], [33] to find the optimum value of
k for QRMDD(k)s, and derives the optimum values of k by
experiments.

This paper is an extended version of [22].

2. Definitions

2.1 Partitions of Binary Variables

Definition 2.1: Let f (X) be a two-valued logic function,
where X = (x1, x2, . . . , xn), and xi (i = 1, 2, . . . , n) are bi-
nary variables. And, let {X} denote the set of variables in
X. If {X} = {X1} ∪ {X2} ∪ . . . ∪ {Xu} and {Xi} ∩ {Xj} = φ
(i � j), then (X1, X2, . . . , Xu) is a partition of X. An or-
dered set of variables Xi is called a super variable. If
|Xi| = k (i = 1, 2, . . . , u), then a two-valued logic function
f (X) can be represented by the mapping f (X1, X2, . . . , Xu):
{0, 1, 2, . . . , 2k − 1}u → {0, 1}.

2.2 QRMDD(k)

In this paper, we use the standard terminologies for Reduced
ordered Binary Decision Diagrams (RBDDs) [7] and Re-
duced ordered MDDs (RMDDs) [14].

Definition 2.2: When X = (x1, x2, . . . , xn) is partitioned
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into (X1, X2, . . . , Xu), where |Xi| = k (i = 1, 2, . . . , u),
an RMDD representing a logic function f (X) is called a
Reduced ordered MDD with k bits (RMDD(k)). In an
RMDD(k), non-terminal nodes have 2k outgoing edges.
When k = 1, an RMDD(1) is an RBDD.

If |X1| = |X2| = . . . = |Xu−1| = k and |Xu| < k, then for
|Xu| = k, we use redundant binary variables which are called
dummy variables. The set of binary variables with dummy
variables is denoted by {X′} = {x1, x2, . . . , xn, xn+1, . . . , xn+t},
where |X′| = n + t, and t denotes the number of dummy
variables. Note that f is independent of xn+1, xn+2, . . . and
xn+t.

Definition 2.3: In a decision diagram (DD), a path from
the root node to a terminal node is a path of DD. The num-
ber of non-terminal nodes on the path is the length of the
path.

Definition 2.4: In a DD, the number of nodes in the DD,
denoted by nodes(DD), includes only non-terminal nodes.

Definition 2.5: When all Xi (i = 1, 2, . . . , u) appear in this
order on an arbitrary path of an MDD(k), the MDD(k) is a
Quasi-Reduced ordered MDD with k bits (QRMDD(k)).
QRMDD(k) has no isomorphic subgraphs.

The length of an arbitrary path in a QRMDD(k) is the
number of super variables. An RMDD(k) has no redundant
nodes, while a QRMDD(k) usually has redundant nodes.
Therefore, we have the following relation in the number of
nodes of an RMDD(k) and its corresponding QRMDD(k):

nodes(RMDD(k)) ≤ nodes(QRMDD(k)).

Example 2.1: Consider a logic function f = x1x2x3 ∨
x2x3x4 ∨ x3x4x1 ∨ x4x1x2. The RBDD, the RMDD(2), and

(a) RBDD. (b) RMDD(2).

(c) QRMDD(2).

Fig. 1 DDs for f .

the QRMDD(2) for f are shown in Figs. 1(a), (b), and (c),
respectively. In Fig. 1(a), the solid lines and the broken
lines denote 1-edges and 0-edges, respectively. In Figs. 1(b)
and (c), the input variables X = (x1, x2, x3, x4) are parti-
tioned into (X1, X2), where X1 = (x1, x2) and X2 = (x3, x4).
We have nodes(RBDD) = 6, nodes(RMDD(2)) = 3, and
nodes(QRMDD(2)) = 4. (End of Example)

2.3 Computation Model for MDDs

In an MDD, we assume the following computation model:

1. MDD(k)s for logic functions are evaluated by travers-
ing nodes from the root node to a terminal node accord-
ing to values of the super variables.

2. MDDs are implemented directly, not simulated using
the BDD package as described in [14].

3. Encoded input values are available, and their ac-
cess time is negligible. For example, when X1 =

(x1, x2, x3, x4) = (1, 0, 0, 1), X1 = 9 is available as an
input to the super variable.

4. Most computation time is spent for accessing nodes.
5. The access time to all MDD nodes are equal.

In this case, the time to evaluate a QRMDD for a logic func-
tion is proportional to the path length (i.e., the number of
super variables).

2.4 Representations of Multiple-Output Functions

Logic networks usually have many outputs. In most cases,
independent representation of each output is inefficient. Let
the multiple-output functions be F = ( f0, f1, . . . , fm−1):
Bn → Bm, where B = {1, 0}, and n and m denote the
number of input variables and outputs, respectively. Sev-
eral methods exist to represent multiple-output functions by
using DDs [18], [27]–[29], [32]. In this paper, we use an
encoded characteristic function for non-zero output (ECFN)
[30], [32] to represent multiple-output functions. An ECFN
uses �log2 m auxiliary variables to represent the outputs. In
the following, a DD means a DD for an ECFN.

Definition 2.6: The density for an n-variable logic func-
tion f is defined as

| f |
2n
× 100,

where | f | denotes the number of �a such that f (�a) = 1.
The density for a multiple-output function F is the den-

sity for an ECFN representing F.

3. Number of Nodes in QRMDD(k)

In this section, we first obtain an upper bound on the num-
ber of nodes in a QRMDD(k). Then, we obtain the num-
bers of nodes in QRMDD(k)s for benchmark functions, and
show that an interesting property holds for many bench-
mark functions. Finally, we obtain the numbers of nodes in
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Table 1 Upper bounds on the number of nodes in QRMDD(k).

k
n 1 2 3 4 5
10 275 101 77 33 33
11 531 345 89 273 37
12 787 357 329 273 49
13 1299 601 589 277 289
14 2323 1381 601 289 1057
15 4371 1625 841 529 1057
16 8467 5477 4685 4369 1061
17 16659 5721 4697 4373 1073
18 33043 21861 4937 4385 1313
19 65811 22105 37453 4625 33825
20 131347 87397 37465 69905 33825

QRMDD(k)s for randomly generated functions, and show
that they have quite different property from the benchmark
functions.

3.1 Number of Nodes for General Functions

Theorem 3.1: An arbitrary n-variable logic function can
be represented by a QRBDD with at most

2n−r − 1 +
r∑

i=1

22i

non-terminal nodes, where r is the largest integer that satis-
fies relation n − r ≥ 2r [16].

Theorem 3.2: An arbitrary n-variable logic function can
be represented by a QRMDD(k) with at most

2sk − 1
2k − 1

+

u−s∑
i=1

22(ki−t)

non-terminal nodes, where u is the number of super vari-
ables, t is the number of dummy variables, and s is the small-
est integer that satisfy relation

s ≥ n − r
k
.

Appendix B and Appendix C show the proofs of Theo-
rem 3.1 and Theorem 3.2.

Table 1 shows the upper bounds on the number of
nodes in QRMDD(k)s for n-variable logic functions. We
can see that the upper bounds are non-monotone functions
of k.

3.2 Number of Nodes for Benchmark Functions

We used 157 benchmark functions [5], [29], [36] in Ta-
ble A· 1. In this paper, encodings for ECFNs and binary
variable orders of BDDs are obtained by the heuristic algo-
rithm in [32]. In the following experiments, we use these
variable orders, and we consider only the partition of bi-
nary variables. For each benchmark function, we counted
the number of nodes in the corresponding QRMDD(k)s for
various k. In Table 2, avg denotes the arithmetic average of
the relative numbers of nodes, where the number of nodes
in QRBDD is set to 1.00, and stdv denotes the standard de-
viation.

Table 2 Relation of nodes in QRMDD(k) and k for benchmark
functions.

k
1 2 3 4 5

avg 1.000 0.498 0.333 0.248 0.202
stdv 0.000 0.013 0.009 0.016 0.016

Table 3 Benchmark functions with η ≥ 0.1.

Name # in # out # nodes dens. cate.
C499 41 32 24476 50.0 1
C1355 41 32 30156 50.0 1
C1908 33 25 9292 45.8 1
adr8 16 9 153 50.0 2
adr9 18 10 180 50.0 2
comp 32 3 114 37.5 2
inc17 17 18 236 48.4 3
log16 16 16 11216 59.9 1
log17 17 17 23054 55.1 1
log18 18 18 31458 55.2 1
mlp8 16 16 10112 41.5 1
mlp9 18 18 28332 37.5 1
mlp10 20 20 82077 38.5 1
my adder 33 17 450 50.0 2
nrm8 16 9 8689 49.1 1
nrm9 18 10 23152 49.0 1
pcle 19 9 221 29.3 3
rot16 16 9 1021 60.8 3
rot17 17 9 1429 49.3 3
sqr16 16 32 18366 42.9 1
tcon 17 16 183 50.0 3
vg2 25 8 217 22.9 3
vtx1 27 6 326 12.5 3
x1dn 27 6 332 12.5 3

Definition 3.1: The relation ‘�’ is defined as follows:

a � b⇔ η < 0.1,

where a and b are positive integers, and the normalized dif-
ference η is given by:

η =
|a − b|

min(a, b)
.

If a � b, then a and b are nearly equal.

For 133 functions in Table A· 1, the following property
holds.

Property 3.1:

nodes(QRMDD(k)) � 1
k

nodes(QRBDD)

For the remaining 24 functions, η ≥ 0.1 holds. Table 3
lists these 24 functions. In Table 3, “# nodes,” “dens.,”
and “cate.” denote the numbers of nodes in QRBDDs, the
densities, and the categories of functions described below,
respectively. Figure 2 shows the relation between the nor-
malized difference η and the density for benchmark func-
tions. The symbols +,×,�, and � correspond to the values
for k = 2, 3, 4, and 5, respectively. For each function, we
assume that Property 3.1 holds when all the symbols are be-
low the border line of η = 0.1 (i.e., η < 0.1 holds for k =
2–5). From Fig. 2, we categorized 24 functions in Table 3
into three sets.

1. The densities of functions are between 40% and 60%,
and the number of nodes for QRBDDs are large relative
to the number of inputs.
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Fig. 2 Relation between the normalized difference η and density for benchmark functions.

Fig. 3 Relation between the normalized difference η and density for randomly generated functions.

2. The functions have iterative properties (i.e., adder and
comparator).

3. The numbers of nodes, inputs, and outputs are small.
Property 3.1 does not hold for k = 4 or 5.

3.3 Number of Nodes for Randomly Generated Functions

For d = 1, 2, . . . , 99, we randomly generated one 25-variable
function with density d to obtain 99 functions. Figure 3
shows the relation between the normalized difference η and
the density for randomly generated functions. In this case,
no randomly generated functions of 25 variables satisfied

Property 3.1. This fact shows that randomly generated func-
tions have quite different property from the benchmark func-
tions in Table A· 1. For many benchmark functions, the
numbers of nodes in QRMDD(k)s decrease as k increase.
However, for randomly generated functions, the number of
nodes is a non-monotone function of k. For example, for
many randomly generated functions of 25 variables, the
numbers of nodes in QRMDD(5)s were larger than those
in QRMDD(3)s.

For n = 10, 11, . . . , 20, we also randomly generated
ten n-variable functions with density 50%. Table 4 shows
the average numbers of nodes in QRMDD(k)s for randomly
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Table 4 Number of nodes in QRMDD(k) for randomly generated
functions.

k
n 1 2 3 4 5
10 247.4 101.0 77.0 33.0 33.0
11 437.1 251.2 89.0 179.2 37.0
12 754.0 356.5 296.5 272.5 49.0
13 1292.8 596.6 587.2 277.0 284.6
14 2316.0 1374.1 601.0 289.0 1050.1
15 4341.1 1625.0 841.0 529.0 1057.0
16 8336.5 5346.5 4554.5 4238.5 1061.0
17 16165.3 5721.0 4697.0 4373.0 1073.0
18 31155.9 19973.9 4937.0 4385.0 1313.0
19 58836.4 22105.0 30478.4 4625.0 26850.4
20 107220.3 63270.3 37465.0 45778.3 33825.0

generated functions. The deviations were within ±2% of
the averages. From Table 1 and Table 4, we can see that the
numbers of nodes in QRMDD(k)s for randomly generated
functions with density 50% are nearly equal to the upper
bounds.

4. Area-Time Complexity of QRMDD(k)

4.1 Memory Size for QRMDD(k)

Definition 4.1: The memory size for a QRMDD(k) is the
number of bits needed to store the QRMDD(k) in memory.

In memory, a non-terminal node in an RMDD(k) re-
quires an index and a set of pointers that refer the succeeding
nodes. However, in a QRMDD(k), each non-terminal node
has no index because X1, X2, . . . , Xu are evaluated always in
this order, and the index of the super variable to evaluate can
be obtained by a counter, where the super variable order is
X1, X2, . . . , Xu.

Example 4.1: Figure 4 illustrates data structures of a node
in an RMDD(2) and a QRMDD(2). (End of Example)

Because each node in a QRMDD(k) has 2k outgoing
edges, we need

2knodes(QRMDD(k))

words to store all nodes in a QRMDD(k). Since each node in
a memory requires a unique address, each pointer requires

�log2(nodes(QRMDD(k)))
bits to specify the address. Therefore, the memory size for
a QRMDD(k) is

2knodes(QRMDD(k))�log2(nodes(QRMDD(k))).
As shown in Sect. 3.2, for many benchmark functions,

the numbers of nodes in QRMDD(k)s can be reduced with
increasing k. On the other hand, the memory sizes for
QRMDD(k)s increase with 2k. This fact shows that in
QRMDD(k), there exists optimum value of k that minimizes
the memory size.

(a) A node in DDs.

Memory
index

0- edge
1- edge
2- edge
3- edge

(b) RMDD(2).

Memory

0- edge
1- edge
2- edge
3- edge

(c) QRMDD(2).

Fig. 4 Data structure of a node in DDs.

4.2 Area-Time Complexity of QRMDD(k)s

Because a QRMDD(k) evaluates k binary variables at a time,
the number of memory accesses of a QRMDD(k) is 1

k of
the corresponding QRBDD. On the other hand, the memory
size for a QRMDD(k) increases with 2k. In this section, we
consider the area-time complexity [4], [33] for QRMDD(k)
and obtain the k that minimizes the area-time complexity.

Definition 4.2: The area-time complexity is the measure
of computational cost considering both area and time. It is
defined by

AT = (area) × (time), AT 2 = (area) × (time)2.

In this paper, the area A corresponds to the necessary
memory size for QRMDD(k), and the time T corresponds to
the number of memory accesses to evaluate logic function.

The measure AT is used when both the memory size
and the number of memory accesses are equally important.
The measure AT 2 is used when the number of memory ac-
cesses is more important than the memory size. For ex-
ample, AT can be used for software synthesis, while AT 2

can be used for logic simulators. In the software synthe-
sis for embedded systems [2], compact and fast program
codes are required because of the memory limitations and
the time limitations for systems. Thus, in the software syn-
thesis using DDs, the optimization of DDs considering both
the memory size and the number of memory accesses is im-
portant. In logic simulators [1], [11], [17], fast evaluation
of logic functions is more important to reduce the design
verification time. Thus, in logic simulators, minimizing the
number of memory accesses using a reasonable amount of
memory is important.

4.3 Experimental Results

For each benchmark function in Table A· 1, we obtained
three measures A, AT , and AT 2. Table 5, Table 6, and Ta-
ble 7 show the relations of k and A, AT , and AT 2, respec-
tively. In these tables, avg denotes the arithmetic average,
and stdv denotes the standard deviation for benchmark func-
tions.

For each benchmark function in Table A· 1, A takes its
minimum when k = 2; AT takes its minimum when k = 3
or k = 4; and AT 2 takes its minimum when k = 4–6.
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Table 5 Relation of k and A for QRMDD(k) for benchmark functions.

k
1 2 3 4 5

avg 1.00 0.90 1.14 1.61 2.54
stdv 0.000 0.035 0.079 0.144 0.292

Table 6 Relation of k and AT for QRMDD(k) for benchmark functions.

k
1 2 3 4 5

avg 1.00 0.46 0.39 0.42 0.54
stdv 0.000 0.019 0.030 0.039 0.070

Table 7 Relation of k and AT 2 for QRMDD(k) for benchmark functions.

k
1 2 3 4 5 6 7

avg 1.000 0.232 0.133 0.110 0.114 0.128 0.167
stdv 0.000 0.011 0.012 0.012 0.019 0.023 0.046

4.4 Analysis for the Functions that Satisfy Property 3.1

In Sect. 4.3, for QRMDD(k)s, we found the values of k that
make A, AT , and AT 2 minimum, experimentally. In this
section, we assume that Property 3.1 holds, and will find
the values k that make A, AT , and AT 2 minimum, analyt-
ically. Let A and T be the memory size for a QRMDD(k)
and the number of memory accesses necessary to evaluate a
QRMDD(k), respectively. Then, we have the following:

A = 2knodes(QRMDD(k))�log2(nodes(QRMDD(k))),
T =
⌈n

k

⌉
.

Let nodes(QRMDD(1)) = N and assume that Property 3.1
holds. Then we have:

A � 2k

k
N
⌈
log2

(N
k

)⌉
,

AT � 2kn
k2

N
⌈
log2

(N
k

)⌉
,

AT 2 � 2kn2

k3
N
⌈
log2

(N
k

)⌉
.

Note that N is usually so greater than 200, while k is usually
at most 7. Thus, we can use the following approximation:

�log2(N) − log2(k) � �log2(N).
Therefore, A, AT , and AT 2 can be simplified to

A � 2k

k
C0, AT � 2k

k2
C1, and AT 2 � 2k

k3
C2,

respectively, where the constants C0, C1 and C2 are indepen-
dent of k. From the above formulas, we can see that A, AT ,
and AT 2 take their minimum when k = 2, k = 3, and k = 4,
respectively.

5. Conclusion and Comments

In this paper, we considered representations of logic func-
tions using QRMDD(k)s. Experimental results showed that:
1) For many benchmark functions, the numbers of nodes
in QRMDD(k)s are nearly equal to 1

k of the corresponding
QRBDDs. On the other hand, for randomly generated func-
tions, the number of nodes is a non-monotone function of k.
2) For many benchmark functions, the memory sizes and the
area-time complexities for QRMDD(k)s take their minimum
when k = 2 and k = 3–6, respectively.

In commercial LUT-based FPGAs, the numbers of in-
puts k for LUT cells are usually between 4 and 6 [6]. The
studies in [15], [25] show that when k = 4–6, the architec-
tures of FPGAs are optimum. The cost of k-LUT cell in-
creases with k, while the level of network reduces with k.
Thus, in logic synthesis with FPGAs, we can do a similar
discussion. However, the optimum value of k for FPGAs
depends on interconnection delay, logic synthesis tools, and
process technology as well as the cost of k-LUT cell and the
level of networks [35]. It is interesting that in both cases,
the optimum values of k are 4–6 even if they have different
cost functions.
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Appendix A: Benchmark Functions

In this paper, we use 157 benchmark functions [5], [29],
[36] shown in Table A· 1, where n and m denote the num-
ber of input and output variables, respectively. In this table,
the benchmark functions under sequential originally repre-
sented sequential circuits. We removed flip-flops (FFs) from
these sequential circuits to make them combinational. Such
functions are renamed by appending a subscript ‘c’ to the
original names.

Appendix B: Proof of Theorem 3.1

Definition B.1: Suppose that a QRBDD for an n-variable
logic function is partitioned into two parts as shown in
Fig. A· 1. It is partitioned into the upper part which has the
variables X1=(x1, x2, . . . , xn−r), and the lower part which
has the variables X2=(xn−r+1, . . . , xn). In this case, the BDD
represents the logic function as follows:

f (X1, X2) =
∨
�ai∈Bn−r

X�ai

1 f (�ai, X2),

where

X�ai

1 =

{
1 (X1 = �ai)
0 (otherwise).

The upper part realizes X�ai

1 , and the lower part realizes
f (�ai, X2).

(Proof of Theorem 3.1) When the upper part of the
QRBDD (see Fig. A· 1) has 2n−r − 1 nodes (i.e., a complete
binary tree), it is the maximum. Because f (�ai, X2) is an r-
variable logic function, the number of different f (�ai, X2) is
22r

. When 22i
logic functions are realized for each level i

(i = 1, 2, . . . , r) from the terminal node to the r, the lower
part is the maximum. Therefore, the number of nodes in a
QRBDD is at most

2n−r − 1 +
r∑

i=1

22i
.



NAGAYAMA et al.: AREA-TIME COMPLEXITIES OF MULTI-VALUED DECISION DIAGRAMS
1027

Table A· 1 Benchmark functions.

Name n m Name n m Name n m
3adr6 18 12 i5 133 66 signet 39 8
C432 36 7 i6 138 67 soar 83 94
C499 41 32 i7 199 67 spla 16 46
C880 60 26 i8 133 81 sqr16 16 32
C1355 41 32 i9 88 63 t1 21 23
C1908 33 25 i10 257 224 t2 17 16
C2670 233 140 ibm 48 17 table5 17 15
C3540 50 22 in1 16 17 tcon 17 16
C5315 178 123 in2 19 10 term1 34 10
C7552 207 108 in3 35 29 ti 47 72
accpla 50 69 in4 32 20 too large 38 3
adr8 16 9 in5 24 14 ts10 22 16
adr9 18 10 in6 33 23 ttt2 24 21
al2 16 47 in7 26 10 unreg 36 16
alcom 15 38 inc16 16 17 vda 17 39
apex1 45 45 inc17 17 18 vg2 25 8
apex2 39 3 inc18 18 19 vtx1 27 6
apex3 54 50 jbp 36 57 wgt17 17 5
apex5 117 88 k2 45 45 wgt18 18 5
apex6 135 99 lal 26 19 x1 51 35
apex7 49 37 log16 16 16 x3 135 99
b2 16 17 log17 17 17 x4 94 71
b3 32 20 log18 18 18 x1dn 27 6
b4 33 23 mainpla 27 54 x2dn 82 56
b9 41 21 mark1 20 31 x6dn 39 5
bc0 26 11 misex2 25 18 x7dn 66 15
bca 26 46 misg 56 23 x9dn 27 7
bcb 26 39 mish 94 43 xparc 41 73
bcc 26 45 misj 35 14 sequential
bcd 26 38 mlp8 16 16 s208c 18 9
c8 28 18 mlp9 18 18 s298c 17 20
cc 21 20 mlp10 20 20 s344c 24 26
chkn 29 7 mux 21 1 s349c 24 26
cht 47 36 my adder 33 17 s382c 24 27
cm150a 21 1 nrm8 16 9 s400c 24 27
comp 32 3 nrm9 18 10 s420c 34 17
cordic 23 2 opa 17 69 s444c 24 27
count 35 16 pair 173 137 s510c 25 13
cps 24 109 pcle 19 9 s526c 24 27
dalu 75 16 pcler8 27 17 s641c 54 43
des 256 245 pdc 16 40 s713c 54 42
dk48 15 17 pm1 16 13 s820c 23 24
duke2 22 29 rckl 32 7 s832c 23 24
e64 65 65 rdm16 16 16 s838c 66 33
ex4 128 28 rdm17 17 17 s1196c 32 32
example2 85 66 rdm18 18 18 s1423c 91 79
exep 30 63 rot 135 107 s5378c 214 228
frg1 28 3 rot16 16 9 s9234c 247 250
frg2 143 139 rot17 17 9 s13207c 700 790
i1 25 16 rot18 18 10 s15850c 611 684
i2 201 1 sct 19 15 s38417c 1664 1742
i3 132 6 seq 41 35 s38584c 1464 1730
i4 192 6 shift 19 16

Fig. A· 1 Partition of QRBDD.

This upper bound becomes the tightest when r is the maxi-
mum integer satisfying n − r ≥ 2r [16]. (Q.E.D.)

Appendix C: Proof of Theorem 3.2

The proof of Theorem 3.2 also uses similar approach.
(Proof of Theorem 3.2) Since each node in a QRMDD(k)
has 2k outgoing edges, the upper part of QRMDD(k) is max-
imum when it is equivalent to a complete 2k-valued tree.
Therefore, the upper part has at most

2sk − 1
2k − 1

nodes, where s denotes the number of super variables in up-
per part. The lower part is maximum when all i-variable
functions are realized for each level i (i = 1, 2, . . . , u − s),
which have 2k-valued inputs and binary outputs. Note that
Xu may include dummy variables. Therefore, the number of
nodes in a QRMDD(k) is at most

2sk − 1
2k − 1

+

u−s∑
i=1

22(ki−t)
.

(Q.E.D.)
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