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Compact Representations of Logic Functions Using Heterogeneous
MDDs

Shinobu NAGAYAMA†a), Student Member and Tsutomu SASAO†,††b), Regular Member

SUMMARY In this paper, we propose a compact representation of
logic functions using Multi-valued Decision Diagrams (MDDs) called het-
erogeneous MDDs. In a heterogeneous MDD, each variable may take a
different domain. By partitioning binary input variables and representing
each partition as a single multi-valued variable, we can produce a hetero-
geneous MDD with16% smaller memory size than a Reduced Ordered
Binary Decision Diagram (ROBDD), and with comparable memory size to
Free Binary Decision Diagrams (FBDDs). And also, heterogeneous MDDs
have shorter Average Path Length (APL) than ROBDDs and FBDDs. We
minimized a large number of benchmark functions to show the compact-
ness of heterogeneous MDDs.
key words: heterogeneous MDD, ROBDD, FBDD, APL, memory size

1. Introduction

Binary Decision Diagrams (BDDs) and Multi-valued Deci-
sion Diagrams (MDDs) are extensively used in logic syn-
thesis [7], logic simulation [1], software synthesis [2], [14],
[16], [22], etc. Since the memory sizes for these applications
depend on the sizes of BDDs and the MDDs, the minimiza-
tions for BDDs and MDDs are important. Most of the min-
imization algorithms for BDDs and MDDs use the variable
reordering approach [6], [7], [10], [13], [25]. In this paper,
we propose a method to minimize MDDs using a different
approach, that is the partition of binary variables.

To represent a binary logic function using an MDD,
binary variables are partitioned into groups. In many cases,
the groups have the same number of binary variables. In
a heterogeneous MDD that is proposed in this paper, the
groups can have different numbers of binary variables. The
memory sizes of heterogeneous MDDs can be minimized by
considering the partition of binary variables. In this paper, to
show the effectiveness of this partition approach, the binary
variable order is fixed.

The rest of the paper is organized as follows. Sec-
tion 2 defines heterogeneous MDDs and a method to rep-
resent multiple-output functions. Section 3 considers the
memory size and the Average Path Length (APL) for hetero-
geneous MDDs. Section 4 proposes a memory minimization
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algorithm and an APL minimization algorithm. And, Sect. 5
compares sizes and APLs of heterogeneous MDDs for many
benchmark functions.

2. Definitions

This section defines heterogeneous MDDs, and shows a
method to represent multiple-output functions.

2.1 Partitions of Binary Variables

Definition 2.1: Let f(X) be a two-valued logic function,
whereX = (x1, x2, . . . , xn) andxi(i = 1, 2, . . . , n) are
binary variables.

Let {X} denote the set of variables inX. If {X} =
{X1} ∪ {X2} ∪ . . . ∪ {Xu} and{Xi} ∩ {Xj} = φ(i �=
j), then(X1, X2, . . . , Xu) is apartition of X. An ordered
set of variablesXi is called asuper variable. If |Xi| =
ki (i = 1, 2, . . . , u) andk1 + k2 + . . . + ku = n, then
a two-valued logic functionf(X) can be represented by the
mappingf(X1, X2, . . . , Xu): P1×P2×P3×. . .×Pu → B,
wherePi = {0, 1, 2, . . . , 2ki − 1} andB = {0, 1}.

We assume that the function is completely specified and in-
cludes no redundant variables.

Example 2.1: Consider(X1, X2), which is a partition of
X, whereX = (x1, x2, x3, x4, x5) and eachxi is a bi-
nary variable. WhenX1 = (x1, x2) andX2 = (x3, x4, x5),
k1 = 2, k2 = 3, P1 = {0, 1, 2, 3}, andP2 = {0, 1, . . . , 7}.
Note thatX1 takes 4 values, andX2 takes 8 values. So,
a 5-variable logic functionf(X) can be represented by
the multi-valued functionf(X1, X2): P1 × P2 → B.

(End of Example)

2.2 Heterogeneous MDD

We assume that readers are familiar with BDDs, Re-
duced Ordered Binary Decision Diagrams (ROBDDs or
OBDDs) [5], Free Binary Decision Diagrams (FBDDs) [8],
[9], MDDs, and Reduced Ordered Multi-valued Decision
Diagrams (ROMDDs) [15].

Definition 2.2: WhenX = (x1, x2, . . . , xn) is partitioned
into (X1, X2, . . . , Xu), an ROMDD representing a logic
function f(X) is called aheterogeneous MDD. Specif-
ically, when k1 = k2 = . . . = ku, an ROMDD rep-
resenting a logic functionf(X) is called homogeneous
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MDD in order to distinguish from a heterogeneous MDD.
A homogeneous MDD is denoted byMDD(k), wherek =
k1 = k2 = . . . = ku. An MDD(k) represents a map-
ping f : Pu → B, while a heterogeneous MDD repre-
sents a mappingf : P1 × P2 × . . . × Pu → B, where
P = {0, 1, . . . , 2k − 1}, Pi = {0, 1, . . . , 2ki − 1}, and
B = {0, 1}.

In an MDD(k), non-terminal nodes have2k edges.
Whenk = 1, an MDD(1) is an ROBDD. In a heterogeneous
MDD, non-terminal nodes representing a super variableXi

have2ki edges, whereki denotes the number of binary vari-
ables inXi.

Definition 2.3: In a decision diagram (DD), thenumber
of nodes in the DD, denoted bynodes(DD), includes only
non-terminal nodes.

Definition 2.4: Thewidth of the DD with respect to Xi,
denoted bywidth(DD, i), is the number of nodes in the DD
corresponding to the super variableXi.

The number of nodes in the MDD with the partition
(X1, X2, . . . , Xu) is given by

nodes(MDD) =
u∑

i=1

width(MDD, i).

Example 2.2: Consider the function:

f = x1x2x3 ∨ x2x3x4 ∨ x3x4x1 ∨ x4x1x2.

Figure 1(a), Fig. 1(b) and Fig. 2 represent the ROBDD, the

(a) BDD. (b) MDD(2).

Fig. 1 BDD and MDD(2).

(a) Heterogeneous MDD with min-
imum memory requirement.

(b) Heterogeneous MDD with max-
imum memory requirement.

Fig. 2 Heterogeneous MDDs.

MDD(2), and the heterogeneous MDDs forf , respectively.
In Fig. 1(a), the solid lines and the dotted lines denote 1-
edges and 0-edges, respectively. In Fig. 1(b), the input vari-
ablesX = (x1, x2, x3, x4) are partitioned into(X1, X2),
whereX1 = (x1, x2) andX2 = (x3, x4). In Fig. 2(a),
X1 = (x1, x2, x3) andX2 = (x4). However, in Fig. 2(b),
X1 = (x1), X2 = (x2, x3, x4). (End of Example)

2.3 Representations of Multiple-Output Functions

Logic networks usually have many outputs. In most cases,
independent representation of each output is inefficient. Let
the multiple-output functions beF = (f0, f1, . . . , fm−1):
Bn → Bm, whereB = {1, 0}, andn andm denote the
number of input and output variables, respectively. Sev-
eral methods exist to represent multiple-output functions
by using BDDs [19], [26]–[28]. In this paper, we use
Shared Binary Decision Diagrams (SBDDs) [19] to repre-
sent multiple-output functions. In the following, a BDD
means an SBDD unless stated otherwise.

3. Measures for Heterogeneous MDDs

Lemma 3.1: When the order of the input variablesX =
(x1, x2, . . . , xn) is fixed, the number of different partitions
of X is 2n−1.

(Proof)X = (x1, x2, . . . , xn) hasn − 1 partition points,
the positions that can be partitioned. At each partition point,
we can choose whether to partition at this point or not. Thus,
2n−1 different partitions exist. (Q.E.D.)

Therefore, when the order of the input variables is
fixed, the number of different heterogeneous MDDs to con-
sider is2n−1. From these heterogeneous MDDs, we can
find an optimal heterogeneous MDD based on some crite-
ria. This section shows the memory size and the Average
Path Length (APL) for heterogeneous MDDs.

3.1 Memory Size

Definition 3.1: The memory size of a DD is the number
of words needed to represent the DD in memory.

Definition 3.2: Given a logic functionf , the minimum
heterogeneous MDD for the logic functionf is the het-
erogeneous MDD with the minimum memory size over all
ordered partitions of the variables.

In memory, a node in a Reduced Ordered Decision Di-
agram (RODD) requires an index and a set of pointers that
refer the succeeding nodes. Since a node in a BDD has
two pointers, the memory size needed to represent a BDD
is given by

(2 + 1) × nodes(BDD), (1)

where we assume that the size of a word is large enough to
store a pointer to a node. Since a node in an MDD(k) has2k

pointers, the memory size needed to represent an MDD(k)
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is given by

(2k + 1) × nodes(MDD(k)).

As for a heterogeneous MDD, the memory size needed to
represent it is given by

u∑

i=1

(2ki + 1) × width(heterogeneous MDD, i).

Example 3.1: The memory sizes to represent various DDs
are as follows: for the BDD in Fig. 1(a),18; for the
MDD(2) in Fig. 1(b), 15; for the heterogeneous MDD in
Fig. 2(a),12; and for the heterogeneous MDD in Fig. 2(b),
21. (End of Example)

Theorem 3.1: In a minimum heterogeneous MDD, the
following relation holds for any super variableXi =
(xj , xj+1, . . . , xj+ki−1):

(2ki + 1)width(heterogeneous MDD, i)

≤ 3 ×
ki−1∑

t=0

width(BDD, j + t),

where the heterogeneous MDD and the BDD represent the
same logic function.

(Proof) In a minimum heterogeneous MDD, partitionXi

into (Xi0 , Xi1 , . . . , Xiki−1), whereXi0 = (xj), Xi1 =
(xj+1),. . ., andXiki−1 = (xj+ki−1). The memory size
for the heterogeneous MDD with respect toXit

(t =
0, 1, . . . , ki − 1) becomes

ki−1∑

t=0

(2 + 1)width(heterogeneous MDD, it)

= 3 ×
ki−1∑

t=0

width(BDD, j + t).

Note that each node in the BDD requires three words (see
the formula (1)). If the theorem does not hold, then the
original heterogeneous MDD was not minimum, which is
contradiction. (Q.E.D.)

Theorem 3.2: Let Mmax(n) be the memory size needed
to represent the minimum heterogeneous MDD for ann-
variable logic function. Then, the following relation holds:

Mmax(n) ≤ 2n−r + 3 · 22r − 5,

wherer is the largest integer satisfying the relation

n− r ≥ 2r + log2 3.

(Proof) See Appendix.

3.2 Average Path Length (APL)

Definition 3.3: A path in a DD is a sequence of nodes for
some assignment of values to all variables. Thepath length
is the number of non-terminal nodes on the path.

Definition 3.4: In a DD, thenode traversing probability,
denoted byprob(DD, i), is a fraction of all assignments of
values to variables whose path includesvi.

In an MDD, we assume the following computation
model:

1. DDs for logic functions are evaluated by traversing
nodes from the root node to a terminal node according
to values of the input variables.

2. MDDs are implemented directly, not simulated using
the BDD package as described in [15].

3. Encoded input values are available, and their ac-
cess time is negligible. For example, whenX1 =
(x1, x2, x3, x4) = (1, 0, 0, 1), X1 = 9 is available as
an input to the algorithm.

4. Most computation time is spent for accessing nodes.
5. The access time to all MDD nodes are equal.

In this case, the time to evaluate a DD for a logic function
is proportional to the number of non-terminal nodes on the
path (i.e., path length). And also, we assume that each bi-
nary variable occurs as a0 with the same probability as a1.
Under these assumptions, we use theAverage Path Length
(APL) to estimate the evaluation time of different types of
DDs.

In this paper, we use a Shared Decision Dia-
gram (SDD) to represent multiple-output functionsF =
(f0, f1, . . . , fm−1). The APL of an SDD is the sum of the
APLs of individual DDs for each functionfi [29].

Example 3.2: The APLs for different DDs are as fol-
lows: For the BDD in Fig. 1(a),3.125; for the MDD(2)
in Fig. 1(b),1.75; for the heterogeneous MDD in Fig. 2(a),
1.375; and for the heterogeneous MDD in Fig. 2(b),2.0.

(End of Example)

Theorem 3.3: [29] The APL of a DD is given by the sum
of the node traversing probabilities of all the non-terminal
nodes.

Theorem 3.4: For a BDD and a heterogeneous MDD that
represent the same logic function, the following relation
holds:

(APL of a heterogeneous MDD) ≤ (APL of a BDD).

(Proof) The number of non-terminal nodes on the path never
increases by grouping of variables inX. Therefore, we have
the theorem. (Q.E.D.)

4. Optimizations of Heterogeneous MDDs

In this section, we formulate optimization problems of het-
erogeneous MDDs, and present optimization algorithms.
We need a different optimization algorithm for each mea-
sure because the optimal solution based on a measure is not
always the optimal for another measure.
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4.1 Minimization of Memory Size

When the order of the input variablesX is fixed, the mem-
ory size needed to represent a heterogeneous MDD depends
on the partition of the input variablesX. Therefore, we will
find the partition ofX that makes the required memory min-
imum.

Example 4.1: Figure 2(a) shows the heterogeneous MDD
with the minimum memory for the functionf , while
Fig. 2(b) shows the heterogeneous MDD with the maximum
memory for the functionf . (End of Example)

We can formulate the memory minimization problem as fol-
lows:

Problem 4.1: Let the variable order for the BDD be fixed.
Given a BDD for the logic functionf , find a partition ofX
that produces the minimum heterogeneous MDD.

A naive method to obtain an optimum heterogeneous MDD
for ann-variable logic function is to construct2n−1 differ-
ent heterogeneous MDDs and then to select an optimum
one. Whenn is small, we can obtain an optimum solu-
tion within a reasonable time. For the functions with many
input variables, we propose Algorithm 4.1, which shows a
pseudo-code to solve Problem 4.1. This algorithm uses dy-
namic programing. All sub-solutions are stored in the ta-
ble. For simplicity, we assume that the variable order is
x1, x2, . . . , xn.

Algorithm 4.1: (Minimization of memory size)

1: minimizememory (void){
2: table[n] = (2 + 1)width(BDD, n) ;
3: for(i = n − 1; i ≥ 1; i −−) {
4: min mem = (memory for BDD) ;
5: for(l = 0; l ≤ n − i; l + +) {
6: k = branch[i][l] ;
7: mddmem =(2k + 1)width(heterogeneous MDD, j) ;
8: if (mdd mem> upper bound)
9: break ;
10: next indexi′ = i + k ;
11: mddmem += table[i′] ;
12: if (min mem> mdd mem){
13: min mem = mddmem ;
14: register the partition k ;
15: }
16: }
17: table[i] = min mem ;
18: }
19: return table[1] ;
20:}

Algorithm 4.1 finds an exact solution for Problem 4.1.
table[i] in Algorithm 4.1 stores the minimum memory size
for sub-graph fromxi toxn. In the 6th line in Algorithm 4.1,
branch[i][l] stores an integerk that makes the following
ratio thel-th smallest,

ratio =
(2k + 1)width(heterogeneous MDD, j)

3 ×
∑k−1

t=0 width(BDD, i+ t)
,

wherej is the index of corresponding super variableXj .
And, the 8th line usesupper bound, which is obtained by
Theorem 3.1. Thej in the 7th line denotes the index of
corresponding super variableXj .

Let n andN be the numbers of binary variables and
nodes for the BDD, respectively. Algorithm 4.1 exam-
ines at mostn

2

2 candidates, and calculates the value of
(2k + 1)width(heterogeneous MDD, j) per the examina-
tion. The time complexity to calculate the value of(2k +
1)width(heterogeneous MDD, j) is O(N). Therefore, the
time complexity for Algorithm 4.1 isO(n2N). The space
complexity for Algorithm 4.1 isO(N).

4.2 Minimization of APL

When the order of the input variablesX is fixed, the APL
for a heterogeneous MDD also depends on a partition of
the input variablesX. The partition ofX that minimizes
the APL is the trivial partition,X = X1, wherek1 = n.
However, the memory size needed to represent the het-
erogeneous MDD for the trivial partition is(2n + 1) ×
width(heterogeneous MDD, 1), and is too large in most
cases. Therefore, we find a partition ofX that minimizes
the APL within a given memory size. We formulate the APL
minimization problem as follows:

Problem 4.2: Suppose that the variable order for the BDD
is fixed. Given a BDD for the logic functionf and a mem-
ory sizeL, find a partition ofX that makes the APL of the
heterogeneous MDD minimum within the memory sizeL.

In Algorithm 4.2, we show a pseudo-code to solve Prob-
lem 4.2. This algorithm uses a branch-and-bound method
and a cache to reduce computation time. The sub-solutions
are stored in the cache, but only a subset of sub-solutions is
kept in it because the number of sub-solutions is too large in
many cases. In other words, this algorithm is similar to the
dynamic programing, except for that the cache is overwrit-
ten. In the case of cache miss, the sub-solution is searched
again. For simplicity, we assume that the variable order is
x1, x2, . . . , xn. This algorithm uses the index of the top
variable for the BDD and the memory sizeL as the argu-
ments.

Algorithm 4.2: (Minimization of APL)

1: minimizeAPL (indexi, memsizel) {
2: if (i > n)
3: return0 ;
4: check the cache ;
5: if (cache.index ==i && cache.mem ==l) {
6: register the partition cache.k ;
7: return cache.APL ;
8: }
9: min APL = (APL for BDD) ;
10: for (k = n − i + 1; k ≥ 1; k −−) {
11: memory =(2k + 1) width(heterogeneous MDD, j) ;
12: nextindexi′ = i + k ;
13: if ((l − memory)< lower bound[i′])
14: continue ;
15: currentAPL = 0 ;
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16: for (all nodesv representingXj)
17: currentAPL += prob(heterogeneous MDD, v) ;
18: currentAPL += minimize APL (i′, l − memory) ;
19: if (currentAPL < min APL) {
20: register the partition k ;
21: min APL = currentAPL ;
22: }
23: }
24: store (overwrite) to the cache ;
25: return minAPL ;
26:}

This algorithm produces an exact solution for Prob-
lem 4.2 by calculating the APLs for different parti-
tions of X. The calculation of the APL uses Theo-
rem 3.3. To compute the node traversing probability
prob(heterogeneous MDD, v) of the 17th line, we used the
method in [29]. The 13th line useslower bounds on the
memory size obtained by Algorithm 4.1 to reduce computa-
tion time.

Let n, N , and C be the number of binary vari-
ables, the number of nodes for the BDD, and the cache
size, respectively. Algorithm 4.2 examines at most2n−1

candidates by exhaustive search. The time complexities
for the calculations oflower bounds and the value of
prob(heterogeneous MDD, v) areO(n2N) andO(N), re-
spectively. Note that these values are calculated before the
exhaustive search and stored in tables. Therefore, the time
complexity for Algorithm 4.2 isO(2n + n2N). The space
complexity for Algorithm 4.2 isO(N+C) = O(N), where
C is considered as a constant value.

5. Experimental Results

5.1 Comparison with OBDDs and FBDDs

Table 1 compares the memory size and APL for heteroge-
neous MDDs with those for OBDDs and FBDDs. The OB-
DDs are obtained by the best known variable orders [30].
The data for FBDDs were provided by Dr. W. Günther [8],
[9]. In Table 1, “MDD1” denotes the minimum hetero-
geneous MDDs obtained by Algorithm 4.1, where Algo-

Table 1 Memory sizes and APLs for OBDDs, FBDDs, and heterogeneous MDDs.

nodes(DDs) Memory Size APL Time1 Time2
Function #in #out OBDD FBDD OBDD FBDD MDD1 MDD2 OBDD FBDD MDD1 MDD2 [sec] [sec]
C432 36 7 1063 1061 3189 3183 2910 3180 86.6 86.5 60.1 48.5 0.01 0.01
C880 60 26 4052 2852 12156 8556 11934 12155 135.8 128.8 128.6 112.5 0.01 0.01
C1908 33 25 5525 5067 16575 15201 13493 16570 254.3 231.0 145.8 112.2 0.01 0.05
C2670 233 64 1773 1062 5319 3186 4805 5317 214.0 205.6 178.1 157.1 0.01 0.07
C5315 178 123 1718 1445 5154 4335 4855 5154 462.1 454.3 430.1 395.9 0.01 0.05
C7552 207 107 2211 1589 6633 4767 6383 6633 484.0 466.7 453.8 412.6 0.01 0.05
alu4 14 8 349 298 1047 894 855 1019 40.8 40.3 24.4 19.6 0.01 0.01
apex1 45 45 1245 1356 3735 4068 3117 3734 180.6 189.0 101.2 76.5 0.01 0.01
apex6 135 99 497 456 1491 1368 1437 1491 291.5 284.0 226.4 260.8 0.01 0.01
cps 24 102 970 906 2910 2718 2568 2906 290.3 288.7 172.1 164.7 0.01 0.01
dalu 75 16 688 650 2064 1950 1574 2063 102.7 102.2 49.5 45.8 0.01 0.03
des 256 245 2944 2912 8832 8736 7589 8830 1210.0 1200.0 950.3 810.4 0.01 0.44
frg2 143 139 962 920 2886 2760 2773 2885 624.7 604.3 554.7 536.6 0.01 0.01
i8 133 81 1275 1196 3825 3588 3825 3825 302.5 292.5 302.5 302.5 0.01 0.01
k2 45 45 1245 1141 3735 3423 3119 3728 180.5 177.2 101.2 77.3 0.01 0.01
too large 38 3 318 284 954 852 859 953 13.2 12.5 8.8 6.6 0.01 0.01
vda 17 39 477 464 1431 1392 1088 1413 176.3 175.4 81.7 79.1 0.01 0.01

Average of ratios 1.000 0.893 0.888 0.997 1.00 0.98 0.73 0.65 – –

rithm 4.1 used the OBDDs [30] as the initial ones. Similarly,
“MDD2” denotes heterogeneous MDDs with the minimum
APL obtained by Algorithm 4.2, where the memory limita-
tionsL used the memory sizes needed for the OBDDs, and
the size of the cache to store the sub-solutions is 5,000,000.
Note that these DDs use complemented edges. The memory
sizes needed for OBDDs and FBDDs are calculated using
the formula (1) in Section 3.1. The APLs for DDs are calcu-
lated using the method in [29]. The columns “Time1” and
“Time2” in Table 1 denote the CPU time for Algorithm 4.1
and Algorithm 4.2, respectively. We used the following en-
vironment:

• CPU: Pentium4 Xeon 2.8 GHz
• L1 Cache: 32 KB
• L2 Cache: 512 KB
• Memory: 4 GB
• Operating System: Redhat (Linux 7.3)
• C-compiler: gcc -O2

In Table 1, the bottom row “Average of ratios” denotes the
arithmetic average of the relative memory size and APL,
where those for OBDD are set to1.000. These results show
that heterogeneous MDDs require comparable memory size
to the FBDDs, smaller memory size than OBDDs, and het-
erogeneous MDDs have shorter APL than OBDDs and FB-
DDs. And, Algorithm 4.1 and Algorithm 4.2 obtain the op-
timum solutions in a short computation time.

5.2 Comparison with BDDs and MDD(k)s

Table 2 compares heterogeneous MDDs with BDDs and

Table 2 Comparison of heterogeneous MDDs, BDDs, and MDD(k)s.

DDs Size APL
BDD 1.00 1.00
MDDmemory 0.84 0.69
MDDAPL 0.97 0.58
MDD(2) 1.08 0.69
MDD(3) 1.54 0.53
MDD(4) 2.39 0.50
MDD(5) 4.10 0.46
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MDD(k)s (k = 2, 3, 4, 5). The numbers of nodes in BDDs
were reduced by the dynamic variable reordering [6], [7],
[13], [25]. In Table 2, “MDDmemory” denotes the min-
imum heterogeneous MDDs obtained by Algorithm 4.1,
and “MDDAPL” denotes the heterogeneous MDDs with the
minimum APL obtained by Algorithm 4.2, where Algo-
rithm 4.1 and Algorithm 4.2 used the BDDs as the initial
ones, and the memory limitationsL for Algorithm 4.2 used
the memory sizes needed for the BDDs. The column “Size”
shows the arithmetic averages of the relative memory size
needed for each DD, where the memory size needed for a
BDD is set to1.00. And, the column “APL” shows the arith-
metic averages of the relative APL. Note that no comple-
mented edges are used in these DDs. To obtain an average,
238 benchmark functions are used.

For minimum heterogeneous MDDs, the memory size
is 84% of that for BDDs. Specifically, the memory size
needed for the minimum heterogeneous MDD forex1010
is 46% of the memory size needed for the BDD. Also, the
APL for the minimum heterogeneous MDDs is69% of that
for the BDDs.

For MDD(k), we have to increase the memory size to
reduce the APL, but in heterogeneous MDDs, we can reduce
both the memory size and APL at the same time.

6. Conclusion and Comments

In this paper, we have proposed a new representation
of logic functions using Multi-valued Decision Diagrams
(MDDs) that is called heterogeneous MDDs. We presented
the minimization algorithms for the memory size and the
Average Path Length (APL) using new approach, that is
the partition of binary variables. Our experimental results
with many benchmark functions show that: 1) Heteroge-
neous MDDs require84% of the memory size needed for the
BDDs, and have69% of the APL in the BDDs; 2) When het-
erogeneous MDDs require97% of the memory size needed
for the BDDs, the APLs for heterogeneous MDDs are58%
of the BDDs. 3) Heterogeneous MDDs require comparable
memory size to Free Binary Decision Diagrams (FBDDs),
and heterogeneous MDDs have shorter APL than FBDDs;
4) The computation time to optimize heterogeneous MDDs
is short.

It is important to note that heterogeneous MDDs repre-
sent logic functions with small memory size without chang-
ing the binary variable order. Also, an optimum heteroge-
neous MDD can be found relatively easily.

In this paper, the variable order for BDD is fixed. We
can obtain the minimum heterogeneous MDDs considering
both partitioning and ordering of the input variables by using
a similar approach [24].
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Appendix: Proof of Theorem 3.2

Definition A.1: Suppose that a BDD for ann-variable
logic function is partitioned into two parts as shown in
Fig. A·1. It is partitioned into theupper part and the
lower part. The upper part has the variablesXtop =

Fig. A· 1 Partition of BDD.

(x1, x2, . . . , xn−r), while the lower part has the variables
Xbottom=(xn−r+1, . . . , xn).

Lemma A.1: Consider the variables:X ′ = (x1, x2, . . .,
xnr

), wherenr < n. When the widths of the BDD are
given by

width(BDD, j) = 2j−1 (j = 1, 2, . . . , nr),

the partition ofX ′ that produces the minimum heteroge-
neous MDD is a trivial partition (i.e.,X ′ = X1, |X1| = nr).
And the memory size needed for the minimum heteroge-
neous MDD is given by2nr + 1.

(Proof of Lemma A.1) Consider a partition ofX ′: X ′ =
(X1, X2, . . .,Xs), wheres ≥ 1. The memory size needed
for a heterogeneous MDD obtained by this partition is

A =
s∑

i=1

(2ki + 1)width(heterogeneous MDD, i).

When width(heterogeneous MDD, j) = 2j−1 (j =
1, 2, . . ., nr), the BDD forms acomplete binary decision
tree. Therefore, we have the following:

A = (2k1 + 1) × 1 + (2k2 + 1) × 2k1

+ (2k3 + 1) × 2k1+k2 + . . .

+ (2ks + 1) × 2k1+k2+...+ks−1 .

And, we have:

A = 2k1+k2+...+ks + 2k1+k2+...+ks−1 +B,

where

B =
s−1∑

i=1

(2ki + 1)width(heterogeneous MDD, i).

Since
∑s

i=1 ki = nr, we have

A = 2nr + 2k1+k2+...+ks−1 +B.

From the relation2k1+k2+...+ks−1 + B ≥ 1, A takes its
minimum whens = 1. (Q.E.D.)

(Proof of Theorem 3.2) An arbitraryn-variable logic func-
tion can be represented by a ROBDD with at most

2n−r − 1 + 22r − 2

nodes [17], where the numbers of nodes in the upper part
and the lower part are2n−r − 1 and22r − 2, respectively.
From Lemma A.1, the memory size needed for the mini-
mum heterogeneous MDD in the upper part is2n−r + 1.
Also, from Theorem 3.1, the memory size needed for the
minimum heterogeneous MDD in the lower part is at most
3 × (22r − 2). Therefore, the memory size needed for this
heterogeneous MDD is

(2n−r + 1) + {3 × (22r − 2)} = 2n−r + 3 · 22r − 5.

This formula has its minimum value whenr is the largest
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integer that satisfies the relation

n− r ≥ 2r + log2 3.

That is, the memory size needed for the heterogeneous
MDD is minimum whenr satisfies this condition. (Q.E.D.)
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