
2498
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

PAPER Special Section on VLSI Design and CAD Algorithms

Heuristics to Minimize Multiple-Valued Decision Diagrams

Hafiz Md. HASAN BABU†, Nonmember and Tsutomu SASAO†, Regular Member

SUMMARY In this paper, we propose a method to min-
imize multiple-valued decision diagrams (MDDs) for multiple-
output functions. We consider the following: (1) a heuristic for
encoding the 2-valued inputs; and (2) a heuristic for ordering the
multiple-valued input variables based on sampling, where each
sample is a group of outputs. We first generate a 4-valued input
2-valued multiple-output function from the given 2-valued input
2-valued functions. Then, we construct an MDD for each sample
and find a good variable ordering. Finally, we generate a variable
ordering from the orderings of MDDs representing the samples,
and minimize the entire MDDs. Experimental results show that
the proposed method is much faster, and for many benchmark
functions, it produces MDDs with fewer nodes than sifting. Es-
pecially, the proposed method generates much smaller MDDs in a
short time for benchmark functions when several 2-valued input
variables are grouped to form multiple-valued variables.
key words: binary decision diagram (BDD), multiple-valued

decision diagram (MDD), multiple-output function, multiple-

valued logic, FPGA design

1. Introduction

Multiple-valued decision diagrams (MDDs) are data
structures for multiple-valued functions. MDDs are ex-
tensions of binary decision diagrams (BDDs) and usu-
ally require fewer nodes than the corresponding BDDs
to represent the same logic functions [1]–[4], [7]–[10].
MDDs are useful for logic synthesis, FPGA design,
logic simulation, etc. [2], [3], [7]. For example, Fig. 2
shows the multiplexer-based network corresponding to
the MDD in Fig. 1. In this paper, we consider multi-
rooted MDDs to represent multiple-output functions.
From 2-valued input 2-valued output functions, we con-
struct MDDs to represent 4-valued input 2-valued out-
put functions. We use a shared binary decision dia-
gram (SBDD) [4] for a multiple-output function to find
good pairs of 2-valued input variables. Since the size
of a decision diagram (DD) can vary from linear to ex-
ponential due to the orderings of the input variables,
finding a good variable ordering of the input variables
is very important [6], [11]–[14]. Dynamic variable or-
dering [11] is one of the good heuristics to order the
inputs. However, in the case of a multiple-output func-
tion, a set of output functions must be handled at the
same time. So, generating a good variable ordering

Manuscript received March 25, 2000.
Manuscript revised June 23, 2000.

†The authors are with the Department of Computer
Science and Electronics, Kyushu Institute of Technology,
Iizuka-shi, 820-8502 Japan.

that represents all the output functions compactly is
essential. Sampling based variable ordering methods
[13] and Interleaving based variable ordering meth-
ods [12] are effective to find good variable orderings for
multiple-output functions quickly. In this paper, we
combine both methods to find good orderings of input
variables. Experimental results show the effectiveness
of our approach. The rest of the paper is organized
as follows: Sect. 2 presents basic definitions. Section 3
defines MDDs, and presents their properties. Section
4 shows the minimization method of MDDs. Finally,
Sect. 5 presents experimental results.

2. Basic Definitions

This section presents notation and basic definitions.

Fig. 1 Example of an MDD.

Fig. 2 Multiplexer-based network corresponding to the MDD
in Fig. 1.

HASAN BABU and SASAO: HEURISTICS TO MINIMIZE MDDS
2499

Definition 1: Let F1 = {f0, f1, . . . , fm−1}, R =
{0, 1, . . . , r − 1}, and B = {0, 1}. An r-valued in-
put 2-valued output function F1 is a mapping

F1 : RN → Bm. ✷

Definition 2: Let R = {0, 1, . . . , r − 1} and S ⊆ R.
XS is a literal of X, where

XS =
{
0 (X /∈ S)
1 (X ∈ S).

When S contains only one element, X{i} is denoted by
Xi. A product of literals XS1

1 XS2
2 · · ·XSN

N is a product
term that is the AND of literals. The expression∨

(S1,S2,...,SN)

XS1
1 XS2

2 · · ·XSN

N

is a sum-of-products expression (SOP), where∨
(S1,S2,...,SN) denotes the inclusive-OR of products

terms. ✷

Lemma 1: An arbitrary r-valued input 2-valued
multiple-output function can be represented as
F1(X1, X2, . . . , XN) = X0

1F1(0, X2, . . . , XN) ∨X1
1

F1(1, X2, . . . , XN) ∨ · · · ∨ Xr−1
1 F1(r − 1, X2, . . . , XN).

This is a multiple-valued version of Shannon’s ex-
pansion with respect to X1. ✷

Definition 3: Let F = {f0, f1, . . . , fm−1}. Then, the
size of a decision diagram (DD) for F, denoted
by size(DD,F), is the total number of non-terminal
nodes.

Example 1: The size of the MDD in Fig. 1 is 7. ✷

3. Multiple-Valued Decision Diagrams

Let F1 : {0, 1, . . . , r − 1}N → {0, 1}m. A multiple-
valued decision diagram (MDD) for F1(X1, X2,
. . . , XN) is a multi-rooted directed graph that
has r outgoing edges labeled 0, 1, . . . , and r −
1 directed to nodes representing F1(0, X2, . . . , XN),
F1(1, X2, . . . , XN), . . ., and F1(r − 1, X2, . . . , XN), re-
spectively. Each of these nodes has r outgoing edges
which go to nodes that have r outgoing edges, etc. A
terminal node is a node that has no outgoing edges. It is
labeled by 0 or 1 which corresponds to a binary value of
the function F1. A reduced ordered MDD (ROMDD)
has no node where all r outgoing edges point to the
same node and has no equivalent subgraphs. From now
on we simply refer to an ROMDD as an MDD. Figure 1
is an example of an MDD.

3.1 Size of MDDs

The size of MDDs is an important characteristic. In
this part, we present some upper bounds on the sizes
of MDDs for various functions.

Fig. 3 Realization of all the symmetric functions of a single
variable.

Theorem 1: Let R = {0, 1, . . . , r − 1} and B =
{0, 1}. Then, the size of the MDD for an N -

input m-output function RN → Bm is at most
N
min
k=1{

m · rN−k−1
r−1 + 2rk − 2

}
. ✷

In the case of r = 2, we use an SBDD to represent an
n-input m-output function, and we have the following:

Corollary 1: The size of the SBDD for an n-
input m-output function Bn → Bm is at most

n
min
k=1

{
m ·

(
2n−k − 1

)
+ 22

k − 2
}
. ✷

Lemma 2: Let R = {0, 1, . . . , r − 1} and B = {0, 1}.
Then, all the non-constant symmetric functions RN →

B can be represented by MDDs with
N∑

i=1

[
2(

i+r−1
i) − 2

]
non-terminal nodes.

Proof: The number of non-constant symmetric func-
tions f : RN → B is 2(

N+r−1
N) − 2, where R =

{0, 1, . . . , r − 1} and B = {0, 1}.
(1) When N = 1, there are 2r −2 symmetric functions,
and they are realized as shown in Fig. 3.
(2) Suppose that all the non-constant symmetric
functions of (N − 1) variables are realized with
N−1∑
i=1

[
2(

i+r−1
i) − 2

]
non-terminal nodes. Note that an

arbitrary symmetric function of N variables is repre-
sented as follows:

f(X1, X2, . . . , XN) = X0
Nf0 ∨X1

Nf1 ∨ · · · ∨Xr−1
N fr−1,

where fj = f(X1, X2, . . . , XN−1, j) is a symmetric
function of (N − 1) variables, and j = 0, 1, . . . , r − 1.
Thus, all the non-constant symmetric functions of N
variables are realized as shown in Fig. 4. The total num-
ber of non-terminal nodes in Fig. 4 is

N−1∑
i=1

[
2(

i+r−1
i) − 2

]
+

[
2(

N+r−1
N) − 2

]

=
N∑

i=1

[
2(

i+r−1
i) − 2

]
.

Thus, from (1) and (2), we have the lemma. ✷

2500
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

Fig. 4 Realization of symmetric functions of N variables.

Theorem 2: Let R = {0, 1, . . . , r − 1} and B =
{0, 1}. Then, the size of the MDD for an N -input
m-output symmetric function RN → Bm is at most

N
min
k=1

{
m ·

k∑
i=0

(
i+ r − 1

i

)
+

N−k∑
i=1

[
2(

i+r−1
i) − 2

]}
.

Proof: Since functions are completely symmetric, the
different number of k-variable functions generated by
the r-valued complete decision tree is equal to the
number of ways to select k objects from r distinct
objects with repetition. The number of ways to se-
lect k objects from r distinct objects with repetition
is

(
k+r−1

k

)
. So, the total number of non-terminal

nodes in the r-valued decision trees of m functions is

m·
k∑

i=0

(
i+ r − 1

i

)
. By Lemma 2, in theN−k variables,

there are 2(
N−k+r−1

N−k) − 2 non-constant symmetric func-

tions, and they require
N−k∑
i=1

[
2(

i+r−1
i) − 2

]
non-terminal

nodes. Therefore, the size of the MDD for an r-valued
N -input 2-valued m-output symmetric function is at

most
N
min
k=1

{
m ·

k∑
i=0

(
i+ r − 1

i

)
+

N−k∑
i=1

[
2(

i+r−1
i) − 2

]}
.

✷

In the case of r = 2, we use an SBDD to represent an
n-input m-output symmetric function, and we have the
following:

Corollary 2: The size of the SBDD for an n-input
m-output symmetric function Bn → Bm is at most

n
min
k=1

{
m · (k+1)(k+2)

2 + 2n−k+2 − 2(n− k)− 4

}
. ✷

From now on we assume that an MDD represents a 4-
valued input 2-valued multiple-output function, where
r = 4.

Definition 4: Let inc n be an n-input (n+1)-output
function that computesK+1, whereK is a binary num-
ber consisting of n bits. It represents an incrementing
circuit. ✷

Theorem 3: Suppose that the 2-valued input vari-
ables of inc n are paired as X1 = [x1, x2], X2 =

Fig. 5 MDD for inc 2.

Fig. 6 MDD for inc (n − 1).

Fig. 7 MDD for inc n.

[x3, x4], . . ., and XN = [xn−1, xn], where n = 2N
and the variable ordering of the 4-valued inputs is
(X1, X2, . . . , XN). Then, size (MDD, inc n) ≤ 2n − 1
(n ≥ 2).

Proof: We use mathematical induction on the num-
ber of 2-valued input variables.
(1) Base: For n = 2, the MDD for inc 2 is realized with
three non-terminal nodes as shown in Fig. 5.
(2) Induction: Assume that the hypothesis is true for
k = n − 1 input variables. That is, the MDD for inc
(n − 1) is realized as Fig. 6 with 2n − 3 non-terminal
nodes. In Fig. 6, first remove the constant 0 and con-
stant 1. Second, insert the input variable xn and add
two non-terminal nodes, as well as nodes for constant
0 and constant 1. Then, we have the diagram in Fig. 7.
Note that Fig. 7 shows the MDD for inc n with 2n− 1
non-terminal nodes which has two more non-terminal
nodes than Fig. 6. It is clear that the MDD in Fig. 7 has
upper and lower parts: When n is even, xn is paired
with xn−1 and two additional non-terminal nodes are
added at the level in the bottom of the upper part of
the MDD. On the other hand, when n is odd, xn re-
mains as a 2-valued variable in the lower part of the
MDD which requires two non-terminal nodes. Note
that x1, x2, . . . , xn is the order of the 2-valued inputs in
the pairs, and (X1, X2, . . . , XN) is the variable ordering

HASAN BABU and SASAO: HEURISTICS TO MINIMIZE MDDS
2501

Fig. 8 MDD for inc 3.

Fig. 9 MDD for inc 4.

of the 4-valued inputs in the MDD. Thus, from (1) and
(2), we have the theorem. ✷

Example 2: Figures. 8 and 9 show the MDDs for inc
3 and inc 4, respectively. The sizes of MDDs in Figs. 8
and 9 are 5 and 7, respectively. ✷

In the case of r = 2, we use an SBDD to represent an
n-input (n+1)-output inc n, and we have the following:

Corollary 3: size(SBDD, inc n) ≤ 3n− 2. ✷

4. Minimization of MDDs

The pairing of 2-valued input variables as well as the
ordering of multiple-valued variables are important to
reduce the number of nodes in MDDs. In this section,
we present heuristics to minimize MDDs.

4.1 Pairing of 2-Valued Inputs

When a function has only a single-output, finding good
pairs of 2-valued inputs is relatively easy. However,
for a multiple-output function, finding good pairs of 2-
valued inputs is not so easy. In this part, we present
a heuristic to select good pairs of 2-valued inputs from
an SBDD.

Algorithm 1: (Pairing the input variables)

1. Let F2 : {0, 1}n → {0, 1}m. Construct an SBDD
for F2.

2. Let s(xi, xj) be the number of outputs that depend
on either one or both of the input variables xi and
xj . Then, [xi, xj] is a candidate pair of inputs if
s(xi, xj) is the smallest among all the pairs. Apply

Fig. 10 SBDD for finding the pairs of 2-valued inputs.

the same idea to the rest of the inputs recursively
to find good pairs of input variables. In the case
of tie, use Step 3 to find the best one among them.

3. [xi, xj] is a good pair of inputs in F2 if in the
SBDD, most of the incoming edges into nodes la-
beled xj are from nodes labeled xi.

Example 3: Consider the SBDD in Fig. 10, where
s(x1, x2) = 2, s(x1, x3) = s(x2, x3) = 3, and s(x1, x4) =
s(x2, x4) = s(x3, x4) = 4. [x1, x2] is a good pair of in-
put variables, since s(x1, x2) is the smallest among all
s(xi, xj). The remaining inputs are x3 and x4. Thus,
[x3, x4] is the another pair. Therefore, [x1, x2] and
[x3, x4] are good pairs of 2-valued inputs. ✷

4.2 Ordering of Multiple-Valued Variables

The sizes of MDDs are sensitive to orderings of in-
put variables [10]–[14]. Several algorithms exist to find
the exact variable ordering. However, such algorithms
work only for functions with small number of inputs
and are useless for general purposes. To find the opti-
mum variable ordering is an NP-complete problem [9].
So, heuristics are used for the practical problems [11]–
[13]. In the real life, many logic circuits have multiple
outputs, and most CAD tools handle multiple-output
functions at the same time. Thus, finding the same
variable ordering for different output functions is im-
portant. In this part, we present a heuristic to order the
inputs of multiple-output functions. We use a sampling
technique to compute variable orderings of MDDs: each
sample corresponds to a group of output functions, and
an MDD represents a sample. Then, we incorporate an
interleaving technique to generate a good variable or-
dering for entire MDDs from the variable orderings of
the MDDs, and minimize the entire MDDs. The tech-
niques for the proposed method are presented in Algo-
rithms 2 and 3. From now on the variable ordering of
an MDD for a sample is a sample variable ordering,
and the variable ordering for all the outputs obtained
from the sample variable orderings is the final vari-
able ordering. To obtain the final variable ordering,

2502
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

we merge a variable ordering of an MDD for a sample
with higher priority into one with lower priority while
maintaining the good variable ordering of each MDD
as much as possible. The input variables in which a
multiple-output function strongly depends on, are in-
fluential. The influential variables greatly affect the
size of the DD and such variables should be placed in
the higher positions in the final variable ordering.

Definition 5: A sample is a multiple-output func-
tion consisting of a set of outputs. These outputs form
a part of total outputs, and the number of outputs in a
sample is the size of the sample. A sample with the
larger size of the MDD has the higher priority. ✷

Definition 6: support(f) is the set of input variables
that the function f depends on. The size of the sup-
port is the number of variables in the support(f). ✷

Definition 7: Let f1 and f2 be two output functions.
The size of the union of the support for f1 and
f2 is the number of support variables for {f1, f2}. ✷

Example 4: Consider the 2-valued 4-input 2-output
function:

f0(x1, x2, x3, x4) = x̄1x2 ∨ x1x̄3 ∨ x̄2x3, and
f1(x1, x2, x3, x4) = x1x3 ∨ x̄3x4.

The size of the union of the support for f0 and f1 is 4,
since x1, x2, x3, and x4 are the support variables for
{f0, f1}. ✷

Algorithm 2: (Derivating samples)
Let F2 : {0, 1}n → {0, 1}m.

1. Generate F3 : {0, 1, 2, 3}N → {0, 1}m from F2 by
using Algorithm 1 and construct an MDD for F3.
Two output functions in F3 are a candidate pair if
the size of the union of the support for the pair is
the smallest among all the pairs. Apply the same
idea to the rest of the outputs recursively to find
good pairs of outputs. In the case of tie, goto Step
2 to find the best one among them, else goto Step
3.

2. Let wi, wj , and wij be the numbers of nodes in
the MDD for fi, fj , and {fi, fj}, respectively. Let
Wij = wi + wj − wij . Then, choose the pair of
outputs with the maximum Wij .

3. Find good pairs of outputs by using Steps 1 and 2,
and make a partition of outputs.

4. Order the output functions as they appeared in the
pairs of the partition, and make an initial sample
with the ordered outputs.

5. Check the size of the sample, and do the process
of generating samples by using Step 6 only if the
size of the sample is larger than the expected one,
otherwise stop the process for this sample.

6. Check the supports of the outputs of the sample.
If all the outputs depend on all the inputs, then
goto Step 7, otherwise goto Step 8.

7. Randomly divide the sample into some such that
the construction of the MDDs for each sample is
easy† to handle.

8. Divide the sample into two such that the outputs
with common support variables are in the same
sample, and the number of common support vari-
ables between samples is small†. Return to Step 5
for each sample.

Algorithm 3: (Minimization of MDDs)
Let F3 : {0, 1, 2, 3}N → {0, 1}m.

1. Generate samples for F3 using Algorithm 2 and
construct an MDD for each sample.

2. Optimize each MDD by using sifting starting with
an initial variable ordering [11], [12], [14], and ob-
tain the size of the MDD and the sample variable
ordering.

3. Arrange the sample variable orderings in descend-
ing order of the sizes of the MDDs.

4. Compute the final variable ordering from sample
variable orderings by using the following:
(a) Let vg be an input variable in the final variable
ordering. Let vh be an input variable of a sample
variable ordering which is not in the final ordering
and is more influential than vg. Then, in the final
variable ordering, insert vh in the higher position
than vg.
(b) Let G be a set of sample variable orderings.
Choose an input variable from the top of the sam-
ple variable orderings of G and form a final or-
dering by maintaining the priorities of the samples
in descending order and the property of Step (a).
Note that an input variable of a sample variable
ordering is inserted into the final ordering iff the
variable is not already in it.

Example 5: Let F3 = {f0, f1, f2, f3} : {0, 1, 2, 3}7 →
{0, 1}4. Let {f0, f2} and {f1, f3} be two samples for
the function F3. Let order[A] = (X0, X1, X2, X3)
and order[B] = (Y0, Y1, X2, Y3) be sample variable or-
derings obtained from the MDDs representing sam-
ples {f0, f2} and {f1, f3}, respectively. Let 5 and 13
be the sizes of MDDs under the sample variable or-
derings, order[A] and order[B], respectively. {f1, f3}
has the highest priority, since the size of the MDD
for this sample is the largest. So, we check order[B]
first and then order[A] in order to generate the fi-
nal variable ordering (order[C]). In this example,
G = {(X0, X1, X2, X3), (Y0, Y1, X2, Y3)}. To compute
the final variable ordering, we select the influential in-
put variables from order[A] and order[B] of G accord-
ing to Steps (a) and (b) as follows:

†Note that the size of a sample should not be too small so
that the number of samples is large. To solve this problem,
we finally combine some smaller samples together to get a
considerable number of samples.

HASAN BABU and SASAO: HEURISTICS TO MINIMIZE MDDS
2503

Table 1 Sizes and CPU time of DDs for benchmark functions.

Function In Out SBDD* time† Initial time‡ Heuristics

name (sec.) MDD* (sec.) minimization

sifting [11] Proposed method

MDD* time** MDD* time**

(sec.) (sec.)

c499 41 32 27845 13.26 15431 0.32 15319 76.12 15174 18.55
c880 60 26 4139 5.03 3030 0.19 2838 40.59 2905 7.43
c1908 33 25 7430 4.18 4426 0.08 4128 17.24 4166 5.08
c2670 233 140 2706 6.20 2345 0.74 1861 25.05 1830 8.31
c3540 50 22 34680 32.07 24487 0.22 21553 122.46 21607 54.73
c5315 178 123 2440 3.16 1968 0.51 1554 36.24 1473 4.70
c7552 207 108 2836 20.36 2301 2.01 2145 156.80 1836 47.13
count 35 16 81 0.03 66 0.04 64 0.33 64 0.07
des 256 245 3729 5.14 2780 1.10 2380 57.35 2512 7.29
i3 132 6 133 0.10 68 0.01 66 0.45 66 0.15
i9 88 63 2278 0.28 1369 0.03 1122 2.18 1035 0.36
rot 135 107 8393 4.63 6245 1.12 5603 31.47 5201 6.24
s838.1 66 33 196 0.25 159 0.06 128 1.52 129 0.33
s526 24 27 123 0.08 108 0.04 84 0.82 77 0.15
s5378 199 213 2710 2.90 2160 0.39 1739 30.91 1853 4.42
s13207.1 700 790 3076 7.15 2644 1.35 2406 72.45 2265 9.34
s38584.1 1464 1730 15009 44.90 11678 4.07 11457 192.35 9533 66.01

In: number of inputs; Out: number of outputs.
†CPU time in second to minimize the SBDD using a similar method to Algorithms 2 and 3.
‡CPU time in second to encode the 2-valued inputs into 4-valued variables using Algorithm 1.

*Size of the DD without using complemented edges.
**CPU time in second to minimize the MDD.

Table 2 Effect of r-valued (r = 4, 8, 16, 32) inputs on MDDs.

Function MDD* time** MDD* time** MDD* time** MDD* time**

name with (sec.) with (sec.) with (sec.) with (sec.)

r = 4 r = 8 r = 16 r = 32

c499 15174 18.55 8817 15.04 6138 11.56 5690 8.62
c880 2905 7.43 2513 5.23 1856 4.52 1709 2.19
c1908 4166 5.08 2785 4.16 2311 3.07 1532 1.35
c3540 21607 54.73 18632 46.88 16691 35.90 12035 27.56
c7552 1836 47.13 1701 40.31 1635 27.20 1410 16.32

*Size of the MDD without using complemented edges.
**CPU time in second to minimize the MDD.

order[B] = (Y0, Y1, X2, Y3)
order[A] = (X0, X1, X2, X3)
order[C] = (Y0, Y1, X0, X1, X2, X3, Y3)

✷

5. Experimental Results

We implemented C programs to construct SBDDs and
MDDs for benchmark functions. SBDDs were opti-
mized by a similar method to Algorithms 2 and 3, while
MDDs were optimized by Algorithms 1–3 and also by
sifting [11], [14]. The initial MDDs were generated by
using Algorithm 1. DDs in this paper don’t use com-
plemented edges. For benchmark functions with don’t
cares, the don’t cares were set to zero.

Table 1 compares the sizes of SBDDs, initial
MDDs, and MDDs obtained by heuristics minimiza-
tion, and presents CPU time to minimize DDs and the
CPU time to encode the 2-valued inputs into 4-valued
variables. This table shows: (1) MDDs require fewer
nodes than SBDDs; (2) MDDs obtained by heuristics
minimization require fewer nodes than initial MDDs;
(3) the proposed method is often much faster than sift-

ing: for example, sifting required 192.35 CPU seconds
to minimize the MDD for s38584.1, while the proposed
method required 66.01 CPU seconds to minimize the
MDD for s38584.1; and (4) for many benchmark func-
tions, the proposed method produces smaller MDDs
than sifting, e.g. c7552. In addition, Table 1 shows
that MDDs generated by the proposed method require
on the average, 4% fewer nodes than MDDs generated
by sifting, and 38% fewer nodes than SBDDs.

In this table, s38584.1 is one of the most complex
benchmark functions, and our program required 44.90
CPU seconds to minimize the SBDD and 4.07 CPU sec-
onds to encode the 2-valued inputs into 4-valued vari-
ables. Table 2 compares the sizes of MDDs for r-valued
(r = 4, 8, 16, 32) inputs 2-valued outputs, and presents
the CPU time to minimize MDDs: MDDs were min-
imized by the similar techniques to Algorithms 1–3.
This table shows that the sizes and the CPU time of
MDDs for the benchmark functions are reduced dras-
tically when r increased from 4 to 32. All the CPU
time were measured on a JU1/170 with 160MB of main
memory (Sun Ultra1-170 compatible).

2504
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

6. Conclusions and Comments

In this paper, we proposed heuristics to mini-
mize multiple-valued decision diagrams (MDDs) for
multiple-output functions. We presented upper bounds
on the sizes of MDDs for various functions. We also
compared the sizes of MDDs with those of shared bi-
nary decision diagrams (SBDDs). Experimental results
show that MDDs usually require fewer nodes than cor-
responding SBDDs, and sometimes MDDs require less
than a half nodes of SBDDs. The proposed method
is much faster, and for many benchmark functions, it
produced MDDs that are smaller than ones generated
by sifting. In addition, we found that the proposed
method produced much smaller MDDs in a short time
for benchmark functions when several 2-valued input
variables are grouped to form multiple-valued variables.

Acknowledgments

This work was supported in part by a Grant in Aid
for Scientific Research of the Ministry of Education,
Science, Culture and Sports of Japan. This paper is
based on [10].

References

[1] R.E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Trans. Comput., vol.C-35, no.8,
pp.677–691, Aug. 1986.

[2] T. Sasao and J.T. Butler, “A design method for look-up
table type FPGA by pseudo-Kronecker expansion,” Proc.
IEEE International Symposium on Multiple-Valued Logic,
pp.97–106, May 1994.

[3] A. Srinivasan, T. Kam, S. Malik, and R.K. Brayton, “Al-
gorithms for discrete function manipulation,” Proc. Inter-
national Conference on Computer-Aided Design, pp.92–95,
Nov. 1990.

[4] S. Minato, N. Ishiura, and S. Yajima, “Shared binary de-
cision diagram with attributed edges for efficient Boolean
function manipulation,” Proc. 27th ACM/IEEE DAC,
pp.52–57, June 1990.

[5] S. Tani, K. Hamaguchi, and S. Yajima, “The complexity of
the optimal variable ordering problems of a shared binary
decision diagram,” IEICE Trans. Inf. & Syst., vol.E79-D,
no.4, pp.271–281, April 1996.

[6] N. Ishiura, H. Sawada, and S. Yajima, “Minimization of
binary decision diagrams based on exchanges of variables,”
Proc. International Conference on Computer-Aided Design,
pp.472–475, Nov. 1991.

[7] P.C. McGeer, K.L. McMillan, A. Saldanha, A.L.
Sangiovanni-Vincentelli, and P. Scaglia, “Fast discrete func-
tion evaluation using decision diagrams,” International
Workshop on Logic Synthesis, pp.6.1–6.9, May 1995. Also,
in Proc. International Conference on Computer-Aided De-
sign, pp.402–407, Nov. 1995.

[8] G. Epstein, Multiple-Valued Logic Design: An Introduc-
tion, IOP Publishing Ltd., London, 1993.

[9] A. Thayse, M. Davio, and J-P. Deschamps, “Optimization
of multivalued decision algorithms,” Proc. IEEE Interna-
tional Symposium on Multiple-Valued Logic, pp.171–178,
May 1978.

[10] H.Md. Hasan Babu and T. Sasao, “Minimization of
multiple-valued decision diagrams using sampling method,”
Proc. Ninth Workshop on Synthesis And System Integra-
tion of MIxed Technologies (SASIMI’2000), pp.291–298,
April 2000.

[11] R. Rudell, “Dynamic variable ordering for ordered bi-
nary decision diagrams,” Proc. International Conference on
Computer-Aided Design, pp.42–47, Nov. 1993.

[12] H. Fujii, G. Ootomo, and C. Hori, “Interleaving based
variable ordering methods for ordered binary decision di-
agrams,” Proc. International Conference on Computer-
Aided Design, pp.38–41, Nov. 1993.

[13] J. Jain, W. Adams, and M. Fujita, “Sampling schemes for
computing OBDD variable orderings,” Proc. International
Conference on Computer-Aided Design, pp.631–638, Nov.
1998.

[14] F. Somenzi, Colorado university decision diagram package
(CUDD), release 2.1.2, 1997.

Hafiz Md. Hasan Babu was born
in Bangladesh. He received the M.Sc. de-
gree in Computer Science and Engineer-
ing from the Brno University of Tech-
nology, Czech Republic, in 1992 and the
Ph.D. degree in Computer Science and
Electronics from the Kyushu Institute of
Technology, Japan in March, 2000. In
1995, he was at the Asian Institute of
Technology (AIT), Thailand under the
DAAD Fellowship from the Federal Re-

public of Germany. Now, he is working as an Assistant Pro-
fessor in the Department of Computer Science and Engineering,
Khulna University, Bangladesh. His research interests include
logic synthesis, representations of logic functions, and multiple-
valued logic. He is student members of the IEEE and the IEEE
Computer Society.

Tsutomu Sasao received the B.E.,
M.E., and Ph.D. degrees in Electronic En-
gineering from Osaka University, Osaka
Japan, in 1972, 1974, and 1977, respec-
tively. He was with Osaka University
Japan, IBM T.J. Watson Research Center
and Naval Postgraduate School in Mon-
terey, California. Now, he is a Profes-
sor of Kyushu Institute of Technology, Ii-
zuka, Japan. His research areas include
logic design and switching theory, repre-

sentations of logic functions, and multiple-valued logic. He has
published many books on logic design including, “Logic Synthe-
sis and Optimization,” “Representation of Discrete Functions,”
and “Switching Theory for Logic Synthesis,” Kluwer Academic
Publishers 1993, 1996, and 1999, respectively. He has served
Program Chairman for the IEEE International Symposium on
Multiple-Valued Logic (ISMVL) many times. Also, he was the
Symposium Chairman for the ISMVL-98 held in Fukuoka, Japan
in 1998. He received the NIWA Memorial Award in 1979, and
Distinctive Contribution Awards from IEEE Computer Society
MVL-TC in 1987 and 1996. Now, he is an associate editor of
IEEE Transactions on Computers. He is a Fellow of IEEE.

