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SUMMARY This paper proposes a method to construct
smaller binary decision diagrams for characteristic functions
(BDDs for CFs). A BDD for CF represents an n-input m-output
function, and evaluates all the outputs in O(n+m) time. We de-
rive an upper bound on the number of nodes of the BDD for CF
of n-bit adders (adrn). We also compare complexities of BDDs
for CFs with those of shared binary decision diagrams (SBDDs)
and multi-terminal binary decision diagrams (MTBDDs). Our
experimental results show: 1) BDDs for CFs are usually much
smaller than MTBDDs; 2) for adrn and for some benchmark cir-
cuits, BDDs for CFs are the smallest among the three types of
BDDs; and 3) the proposed method often produces smaller BDDs
for CFs than an existing method.
key words: binary decision diagram (BDD), characteristic
function (CF), multiple-output function, variable ordering, logic
simulation, adder, bit-counting function, multiplier

1. Introduction

Binary decision diagrams (BDDs) are compact rep-
resentations of logic functions, and are useful for
logic synthesis, time-division multiplexing (TDM) re-
alization, test, verification, etc. [1],[6],[7],[12],[14],[16].
Shared binary decision diagrams (SBDDs), multi-
terminal binary decision diagrams (MTBDDs), and
BDDs for characteristic functions (BDDs for CFs) rep-
resent multiple-output functions. SBDDs are compact,
but they require O(m · n) time to evaluate an n-input
m-output function. MTBDDs evaluate all the outputs
simultaneously, but they usually blow up in memory
for large benchmark circuits. BDDs for CFs use CFs
of multiple-output functions, and evaluate all the out-
puts in O(n + m) time. A CF is a switching function
representing the relation of inputs and outputs. Fig-
ure 1 shows the general structure of a BDD for CF.
BDDs for CFs are usually much smaller than MTB-
DDs. The main applications of BDDs for CFs are logic
simulation of digital circuits [2],[4],[5] and implicit state
enumeration of finite state machines [3]. In this paper,
we consider a method to construct compact BDDs for
CFs. We present an algorithm to find a good ordering
of input and output variables. We also derive an upper
bound on the number of nodes of the BDD for CF of
n-bit adders (adrn). The rest of the paper is organized
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as follows: Section 2 presents basic definitions. Sec-
tion 3 introduces SBDDs, MTBDDs and BDDs for CFs
of multiple-output functions, and compares their com-
plexities. Section 4 describes an optimization algorithm
for BDDs for CFs. Finally, Sect. 5 presents experimen-
tal results for adrn, bit-counting circuits (wgtn), n-bit
multipliers (mlpn), and various benchmark circuits.

2. Basic Definitions

This section contains some important definitions.

Definition 1: support(f) is the set of input variables
that the function f depends on. The size of the sup-
port is the number of variables in the support(f).

Example 1: Let f(x1, x2, x3) = x1x2x3 ∨ x1x2x̄3.
Then, support(f) = {x1, x2}, since f is also represented
as f = x1x2. Thus, the size of the support is two. ✷

Definition 2: Let fi1 and fi2 be two output func-
tions. The size of the union of the support for
fi1 and fi2 is the number of support variables for fi1

and fi2.

Example 2: Consider the 4-input 2-output function:

f0(x1, x2, x3, x4) = x̄1x2 ∨ x1x̄3 ∨ x̄2x3, and
f1(x1, x2, x3, x4) = x1x3 ∨ x̄3x4.

The size of the union of the support for f0 and f1 is 4,
since x1, x2, x3 and x4 are the support variables for f0

and f1. ✷

Definition 3: Let f : {0, 1}n → {0, 1}m. The size
of a decision diagram (DD) for a multiple-output
function f , denoted by size(DD, f ), is the total number
of terminal and non-terminal nodes in the minimal DD.

Fig. 1 General structure of a BDD for CF.
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Fig. 2 BDD for CF of a 3-input 2-output bit-counting function
(wgt3).

In the case of SBDDs, the size also includes the nodes
for output selection variables.

Example 3: The size of the BDD for CF in Fig. 2 is
14. ✷

3. Binary Decision Diagrams for Multiple-
Output Functions

In this section, we present shared binary decision di-
agrams (SBDDs), multi-terminal binary decision dia-
grams (MTBDDs) and binary decision diagrams for
characteristic functions (BDDs for CFs). We also com-
pare complexities of BDDs for CFs with those of SB-
DDs and MTBDDs.

3.1 SBDDs and MTBDDs

Shared binary decision diagrams (SBDDs) and multi-
terminal binary decision diagrams (MTBDDs) repre-
sent multiple-output functions. An SBDD is a set of
BDDs combined by a tree for output selection, while an
MTBDD is a BDD with many terminal nodes. MTB-
DDs evaluate all the outputs simultaneously, but they
are usually much larger than SBDDs [13].

3.2 BDDs for CFs

In this part, we will present definition and properties
of BDDs for CFs.

Definition 4: Let B = {0, 1}. Let a ∈ Bn, and
f (a) = (f0(a), f1(a), . . . , fm−1(a)) ∈ Bm. Let b ∈
Bm. The characteristic function (CF) F of a
multiple-output function f = (f0, f1, . . . , fm−1) is an
(n + m)-variable switching function such that

F (a , b) =
{

1 if b = f (a)
0 otherwise.

✷

Table 1 2-input 2-output function.

Input Output
x1 x2 f0 f1

0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1

A CF of an n-input m-output function is a switching
function with n + m variables. In the CF, besides the
input variables, one binary variable is used for each
output function. A BDD for CF is a BDD repre-
senting the CF. In order to guarantee a fast evaluation,
the output variables can appear on any path of the
BDD for CF only after all the supports have appeared.
Figure 2 shows the BDD for CF of a 3-input 2-output
bit-counting function (wgt3), where x1, x2 and x3 are
input variables, and f0 and f1 are output variables. The
BDD for CF in Fig. 2 shows that each path from the
root to the terminal 1 corresponds to an input-output
combination. The advantages of BDDs for CFs are: 1)
they can represent large multiple-output functions; and
2) they can evaluate all the outputs in O(n+m) time.

Definition 5: Let F be the characteristic function of
an n-input m-output function. An input-output com-
bination for F is valid if the output vector in the com-
bination is produced when the input vector of the com-
bination is applied.

Lemma 1: Let F be a characteristic function of f :
{0, 1}n → {0, 1}m. Then, the number of valid input-
output combinations for F is 2n.

Example 4: Consider the 2-input 2-output function
in Table 1. The valid input-output combinations are
(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 0) and (1, 1, 1, 1). ✷

Lemma 2: If the output variables appear only after
all the supports have appeared, then an arbitrary n-
input m-output function can be evaluated by a BDD
for CF in O(n + m) time. ✷

Note that if we drop the above restriction of the
ordering of the variables, then we can’t guarantee the
evaluation time of O(n + m).

3.2.1 Size of BDDs for CFs

In this part, we will present the sizes of BDDs for CFs of
multiple-output functions. Since the CF of a multiple-
output function is a special case of an (n+m)-variable
switching function, we have the followings:

Theorem 1: Let f be an n-input m-output function.
Then,

size(BDD for CF, f ) ≤ n+m
min
k=1

{2(n+m)−k − 1 + 22k}.
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Table 2 Comparison of SBDDs, MTBDDs and BDDs for CFs.

SBDD MTBDD BDD for CF

Upper bound on the size
n

min
k=1
{m · 2n−k − 1 + 22k}

n
min
k=1
{2n−k − 1+ r2k} minn+m

k=1
{2(n+m)−k − 1 + 22k}

Asymptotic bound on the size O(m2n

n
) O( rn

n
) O( 2n+m

n+m
)

Size for fs 2m + 1 2m+1 − 1 3m + 2
Evaluation time O(m · n) O(n) O(n + m)

Fig. 3 BDD
for CF of func-
tion f0 = x0.

Fig. 4 BDD
for CF of (m−1)
functions.

Fig. 5 BDD for CF of m functions.

Example 5: Let f : {0, 1}7 → {0, 1}10. Then, by
Theorem 1, we have size(BDD for CF, f ) ≤ 16639. On
the other hand, from Table 2, we have size(SBDD, f )
≤ 335. ✷

Theorem 2: Let f s = (f0, f1, . . . , fm−1) represent
m functions, where fi = xi (i = 0, 1, . . . ,m−1). Then,
size(BDD for CF, fs) ≤ 3m+ 2.

Proof: The proof is done by mathematical induction.
1) Base: For m = 1, the CF of the function f0 = x0 is
realized by a BDD for CF with five nodes as shown in
Fig. 3.
2) Induction: Assume that the hypothesis is true for
k = m − 1 functions. That is, the CF of m − 1 func-
tions is realized by the BDD for CF in Fig. 4 with 3m−1
nodes. In Fig. 4, first remove the constant 0 and con-
stant 1. Second, attach variables xm−1, fm−1, and cor-
responding three non-terminal nodes, as well as nodes
for constant 0 and constant 1. Then, we have the di-
agram in Fig. 5. It is clear that Fig. 5 shows the BDD
for CF of m functions with 3m + 2 nodes which has
three more non-terminal nodes than Fig. 4. Thus, from

Fig. 6 BDD for CF of adr2.

1) and 2), we have the theorem. ✷

Note that the size of the MTBDD for the functions
fs is exponential, while that for the BDD for CF and
the SBDD are linear (Table 2).

Definition 6: Let adrn be a 2n-input (n+1)-output
function that computes the sum of two n-bit numbers.

Theorem 3: size(BDD for CF, adrn) ≤ 9n+1 (n ≥
2).

Proof: Suppose that the variables of the adrn are as-
signed as follows:

xn−1 xn−2,. . . , x2 x1 x0

+) yn−1 yn−2,. . . , y2 y1 y0

zn zn−1 zn−2,. . . , z2 z1 z0

We will use mathematical induction to prove the theo-
rem.
1) Base: As shown in Fig. 6, adr2 is represented by us-
ing 17 non-terminal nodes and two terminal nodes. In
the figure, only 1-paths are shown, and constant 0 and
0-paths are omitted for simplicity. Note that x0 and
y0 are near to the root node, and z2 (the output vari-
able representing the most significant bit of adr2) is the
nearest to the constant 1 node.
2) Induction: Suppose that adrn is represented by using
(9n − 1) non-terminal nodes and two terminal nodes.
Also, assume that the variable zn is the nearest to the
constant 1 node. Let v0 and v1 be the nodes of zn,
where edges e0 and e1 are connecting to the constant 1,
respectively. This situation is shown in Fig. 7. In Fig. 7,
first remove the variable zn, e0, e1, and constants. Sec-
ond, attach variables xn, yn, zn, and zn+1, and cor-
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Fig. 7 BDD for
CF of adrn.

Fig. 8 BDD for
CF of adr(n + 1).

responding 9 non-terminal nodes, as well as constant
nodes. Then, we have the diagram shown in Fig. 8.
Note that Fig. 8 has 9 more nodes than Fig. 7. It is
clear that Fig. 8 represents the characteristic function
of adr(n + 1), and has (9n − 1) + 9 + 2 = 9(n + 1) + 1
nodes. In this case, the ordering of the variables is
(x0, y0, z0, x1, y1, z1, . . . , xn, yn, zn, zn+1). Thus, from
1) and 2), we have the theorem. ✷

3.3 Comparison of Various BDDs

BDDs are useful for various applications [2]–[5],[12],[14].
Sometimes different BDDs can be used for the same
application. So, it is necessary to know the properties
of BDDs. The size of the BDD is important to represent
functions compactly, while the evaluation time for the
BDD is useful for logic simulation. Table 2 compares
the sizes and the evaluation time of SBDDs, MTBDDs
and BDDs for CFs of an n-input m-output function.
In the table, r denotes the number of distinct output
vectors for the outputs, and fs = (f0, f1, . . . , fm−1),
where fi = xi (i = 0, 1, . . . ,m− 1).

4. Construction of Compact BDDs for CFs

The construction of compact BDDs for CFs is useful for
efficient representations of multiple-output functions.
In this section, we will present a method to construct
compact BDDs for CFs.

4.1 Formulation of the Problem

Definition 7: A BDD for CF is minimum iff it con-
tains the minimum number of nodes.

Problem 1: Let u1, u2, . . . , uk be the variables. Let
Order[k] = (ue1 , ue2 , . . . , uek

) be a permutation of the k
variables. Let size(BDD for CF, f ) be the total num-
ber of nodes in the BDD for CF for a certain Order[k]

of the variables. Find a variable ordering Order[k] =
(ue1 , ue2 , . . . , uek

) for a given multiple-output function
f such that the size(BDD for CF, f ) is the minimum.

In general, it is very time-consuming to find the best or-
dering of variables of the BDD for CF. So, we will com-
pute a good variable ordering from the initial one by
using the modified sifting algorithm (Sect. 4.5). To gen-
erate a good initial ordering, we will apply the following
methods: i) ordering of output variables (Sect. 4.2); ii)
interleaving based sampling schemes for ordering of in-
put variables (Sect. 4.3); and iii) interleaving method
for input variables and output variables (Sect. 4.4).

4.2 Ordering of Output Variables

Output functions are ordered so that the outputs with
many support variables in common are adjacent. We
will use the following strategies:

Strategy 1: fi and fj are the candidates of a pair of
output functions if support(fi)

⋂
support(fj) 
= φ.

Strategy 2: Let s(fi1, fi2) be the size of the union
of the support for fi1 and fi2. Then, (fi1, fi2) is a
candidate of a pair of output functions if s(fi1, fi2) for
(fi1, fi2) is the smallest among all s(fi1, fi2). Apply the
same idea to the rest of functions recursively to find a
good partition of the output functions.

Example 6: Consider the 4-input 4-output function:

f0(x1, x2, x3, x4) = x̄1x2 ∨ x1x̄3 ∨ x̄2x3,

f1(x1, x2, x3, x4) = x3x̄4,

f2(x1, x2, x3, x4) = x1x3 ∨ x̄3x4, and
f3(x1, x2, x3, x4) = x4.

There are six pairs of output functions. The sizes
of the supports for these pairs of output functions
are: s(f0, f1) = s(f0, f2) = s(f0, f3) = 4, s(f1, f2) =
s(f2, f3) = 3, and s(f1, f3) = 2. Since s(f1, f3) = 2 is
the smallest among all s(fi, fj), (f1, f3) is the candidate
of a pair. The remaining outputs are f0 and f2. Thus,
(f0, f2) is the another pair. Therefore, we have the par-
tition of output functions as follows: {(f1, f3), (f0, f2)}.

✷

Algorithm 1: (Ordering of output functions)

1. Find a good partition of output functions using
Strategies 1 and 2.

2. Order the output functions with the pairs of out-
puts of a good partition.

Example 7: Consider the functions in Example 6.
Since {(f1, f3), (f0, f2)} is a good partition of output
functions, the ordering of outputs is (f1, f3, f0, f2). ✷
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4.3 Interleaving Based Sampling Schemes for Order-
ing of Input Variables

The sizes of BDDs are sensitive to orderings of input
variables. Dynamic reordering methods are useful to
order the input variables [11]. However, such methods
are extremely time-consuming, and can fail to construct
the BDDs for many functions [8],[9]. In the real life,
many practical logic circuits are multiple outputs [12].
So, it is important to find the same good variable or-
dering for different output functions, since most of the
BDD-based CAD tools handle multiple-output func-
tions at the same time. In this part, we will present
a method to order the inputs of multiple-output func-
tions. We consider the sampling methods [9],[10] for
computing variable orderings of SBDDs, where a sam-
ple corresponds to a group of output functions, and
each SBDD represents a sample. Then, we use an inter-
leaving method [8] to find a good ordering of the input
variables for output functions from the variable order-
ings of compact SBDDs. The algorithm for the pro-
posed method is shown in Fig. 12. The input variables
that greatly affect the size of the BDD are called influ-
ential. The influential variables should be the higher
positions in a good variable ordering.

Definition 8: A sample is a multiple-output func-
tions in which outputs with the common support vari-
ables are usually adjacent. These functions form a part
of total functions. The size of a sample is the number
of outputs in the sample.

Example 8: Consider the functions in Example 6.
(f0, f2) can be a sample, since support(f0) =
{x1, x2, x3} and support(f2) = {x1, x3, x4}. The size
of (f0, f2) is 2. ✷

Definition 9: Let G and H be two samples. The
support correlation between G and H is the num-
ber of common support variables.

4.3.1 Generating Samples from Output Functions

In this part, we will present a technique to generate
samples from output functions.

Algorithm 2: (Generating samples)

1. Order the outputs using Algorithm 1, and make an
initial sample with the ordered outputs.

2. Check the size of the sample, and do the process
of generating samples by using Step 3 only if the
size of the sample is larger than the expected one,
otherwise stop the process for this sample.

3. Check the supports of the outputs of the sample.
If all the outputs depend on all the inputs, then
goto Step 4, otherwise goto Step 5.

4. Randomly divide the sample into some such that
the construction of the SBDD for each sample is
easy† to handle.

5. Divide the sample into two such that the outputs
with common support variables are in the same
sample, and the support correlation between sam-
ples is small†. Return to Step 2 for each sample.

Example 9: Consider the functions in Example
6. (f1, f3) and (f0, f2) are two samples, since
support(f0) = {x1, x2, x3}, support(f1) = {x3, x4},
support(f2) = {x1, x3, x4}, and support(f3) = {x4}.

✷

4.3.2 Interleaving the Variable Orderings of Samples

In the previous part, we have presented a method to
generate samples from the output functions. Now, we
construct the compact SBDD for each sample by using
the sifting algorithm starting with the initial variable
ordering, and obtain the variable ordering for the sam-
ple from the SBDD. Then, we interleave the variables
of the variable orderings from the highest to the lowest
priority of the samples as shown in Fig. 12. Note that a
sample has the highest priority if the size of the SBDD
for the sample is the largest.

Example 10: Consider the functions in Example 6.
(x4, x3, x1, x2) and (x3, x4, x2, x1) are the variable or-
derings in Figs. 9 and 10 for samples (f1, f3) and
(f0, f2), respectively. The sample (f0, f2) has the high-
est priority, since the size of the SBDD for this sample
is the largest. Figure 11 shows that (x3, x4, x2, x1) is a
good variable ordering for (f0, f1, f2, f3) which is com-
puted from the variable orderings of samples (f1, f3)
and (f0, f2) by using an interleaving method [8]. ✷

4.4 Interleaving Method for Input Variables and Out-
put Variables

In Sects. 4.2 and 4.3, we have presented methods to find
good orderings of the input variables and the output
variables. In Example 7 and in Fig. 11, we have shown
that (f1, f3, f0, f2) is a good ordering of the outputs,
and (x3, x4, x2, x1) is a good ordering of the inputs. In
this part, we will present a method to find the relative
position of inputs and outputs. To find the relative
position of variables, we use the following strategy:

Strategy 3: For any output function, immediately
after all the support variables appear, we place the vari-
ables for this output.

†Note that the size of a sample should not be too small so
that the number of samples is large. To solve this problem,
we finally combine some smaller samples together to get a
considerable number of samples.
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Fig. 9 SBDD
with the vari-
able ordering for
sample (f1, f3)
obtained by the
sifting algorithm.

Fig. 10 SBDD
with the variable
ordering for sam-
ple (f0, f2) ob-
tained by the sift-
ing algorithm.

Fig. 11 SBDD with the variable ordering for f =
(f0, f1, f2, f3) obtained from the variable orderings of samples
(f1, f3) and (f0, f2) by using an interleaving method [8].

Example 11: Consider the two-bit adder (adr2)
shown below:

x1 x0

+) y1 y0

z2 z1 z0

The support for z0 is {x0, y0}, and the supports for z1
and z2 are {x0, y0, x1, y1}. Also, z2, z1, and z0 are par-
tially symmetric with respect to {x0, y0} and {x1, y1}.
Thus, the reasonable ordering for the input and output
variables would be (x0, y0, z0, x1, y1, z1, z2). ✷

4.5 Algorithm for Ordering the Variables

In this part, we will present a method to optimize BDDs
for CFs using the modified sifting algorithm.

Algorithm 3: (Optimization of BDDs for CFs)

1. Make an initial ordering for the variables of the

Procedure siftm(f : {0, 1}n → {0, 1}m) {
S ← Set of samples obtained by using Algorithm 2;
Count← 0; z ← φ;

for (each sample in S) do {
Construct the compact SBDD by using the sifting
algorithm starting with the initial variable ordering;
Count← Number of nodes in the SBDD;
z ← Ordering of inputs in the SBDD;

return Count;
return z;
}

}
Procedure Interleavesiftm (f : {0, 1}n → {0, 1}m) {

Z ← φ; /* “Z” denotes a set of orderings for
input variables of the ordered samples */

I ← φ; /* “I” denotes the resulting order of inputs */
siftm(f );

Make an order of the samples in descending order of the
numbers of nodes in the “Count”;

Z ← Orderings of the input variables for the ordered
samples;

while Z �= φ do {
for (each variable order z from the beginning of
Z) do {

Choose the input variable x from the top of z;
if (x is not in I) then {
if (x is top in z) then

Insert x into top of I;
}

else
x is already in I, and let y be a variable just before
x in z and (y is not in I);
Insert y before x in I; /* y is inserted before x, since

y is more influential than x in z */
}

}
return I;
}

Fig. 12 Pseudocode for interleaving based sampling schemes
for the ordering of input variables.

BDD for CF using Algorithm 1, Procedures in
Fig. 12 and Strategy 3.

2. Select a variable from the initial ordering, and use
the sifting algorithm [11] to find the position of the
variable that fits Strategy 3 to minimize the size
of the BDD for CF.

3. Do Step 2 until all the variables from the initial or-
dering have been checked, and choose the smallest
BDD for CF.

Example 12: Consider the 4-input 4-output function
in Example 6. In this example, (x3, x4, x2, x1) is a good
ordering of the inputs, and (f1, f3, f0, f2) is a good or-
dering of the outputs. Since support(f1) = {x3, x4},
f1 appears after {x3, x4}. Next, support(f3) = {x4},
f3 appears after f1. Finally, support(f0) = {x1, x2, x3}
and support(f2) = {x1, x3, x4}, f0 and f2 appear in the
last. Thus, an initial ordering for the input and output
variables is (x3, x4, f1, f3, x2, x1, f0, f2). ✷
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Table 3 Sizes of DDs to represent adrn.

Circuit In Out SBDD MTBDD BDD

name for CF

adr2 4 3 15 18 19
adr3 6 4 25 44 28
adr4 8 5 35 98 37
adr5 10 6 45 208 46
adr6 12 7 55 430 55
adr7 14 8 65 876 64
adr8 16 9 75 1770 73

In: number of inputs; Out: number of outputs.

Table 4 Sizes of DDs to represent wgtn.

Circuit In Out SBDD MTBDD BDD

name for CF

wgt2 2 2 7 6 10
wgt3 3 2 11 10 14
wgt4 4 3 19 15 22
wgt5 5 3 27 21 28
wgt6 6 3 37 28 38
wgt7 7 3 47 36 44
wgt8 8 4 64 45 57
wgt9 9 4 80 55 67
wgt10 10 4 98 66 79

5. Experimental Results

We implemented C programs to construct SBDDs,
MTBDDs and BDDs for CFs. SBDDs and MTB-
DDs were simplified by the sifting algorithm [11], while
BDDs for CFs were simplified by Algorithm 3. The
numbers of terminal nodes in the SBDD, MTBDD and
BDD for CF are at most 2, 2m, and 2, respectively,
where m is the number of output functions.

Table 3 compares sizes of DDs of adrn (Definition
6). From this table, we can observe that, for 2 ≤ n ≤ 8,

size(SBDD, adrn) = 10n− 5,
size(MTBDD, adrn) = 7 · 2n − 2n− 6, and
size(BDD for CF, adrn) = 9n + 1.

Table 3 also shows that, for n = 7 to 8, the BDD for
CF is the smallest.

Table 4 compares sizes of DDs of wgtn, where wgtn
is an n-input (�log2 n�+1)-output function that counts
the number of 1’s in the inputs, and represents it by a
binary number. From this table, we can observe that,
for 2 ≤ n ≤ 10, MTBDD is the smallest. This table
also shows that, for 7 ≤ n ≤ 10,

size(BDD for CF,wgtn)<size(SBDD,wgtn).

Table 5 compares sizes of DDs of n-bit multipliers
(mlpn), where mlpn is a 2n-input 2n-output function
computing X×Y . From this table, we can observe that,
for 2 ≤ n ≤ 6, SBDD is the smallest, and for n = 6,

size(BDD for CF,mlpn)<size(MTBDD,mlpn).

Table 6 compares sizes of DDs of various bench-
mark circuits. In this table, BDDs for CFs are usually

Table 5 Sizes of DDs to represent mlpn.

Circuit In Out SBDD MTBDD BDD

name for CF

mlp2 4 4 15 19 28
mlp3 6 6 51 82 100
mlp4 8 8 150 330 360
mlp5 10 10 423 1332 1346
mlp6 12 12 1200 5270 5059

Table 6 Sizes of DDs to represent various benchmark circuits.

Circuit In Out SBDD MTBDD BDD

name for CF

apex5 117 88 1167 − 5618
chkn 29 7 281 220 264
clip 9 5 111 139 96
cordic 23 2 78 45 49
cps 24 109 1095 − 4920
count 35 16 98 1298 147
c432 36 7 1298 7511 1693
c499 41 32 31732 − 16840
c880 60 26 4168 − 388462
c1908 33 25 8741 − 115934
duke2 22 29 366 639 815
f51m 8 8 76 511 60
in7 26 10 107 299 185
mainpla 27 54 1869 629 1178
misj 35 14 56 4656 109
misex1 8 7 44 28 55
misex3 14 14 557 2910 531
sao2 10 4 90 69 81
signet 39 8 1449 7347 2950
soar 83 94 632 − 3719
tial 14 8 701 697 825
x1 51 35 586 − 2061
x3 135 99 715 − 4396
xparc 41 73 1949 3861 2349
5xp1 7 10 79 255 74

“− ” indicates memory overflow.

Table 7 Sizes of BDDs for CFs of vari-
ous benchmark circuits generated by Scholl-
Drechsler-Becker [5] and the Proposed method.

Circuit In Out Scholl et al. Proposed

name [5] method

apex7 49 37 2479 2260
b9 41 21 735 680
c432 36 7 1730 1693
c499 41 32 17017 16840
c880 60 26 393633 388462
c1908 33 25 117231 115934
clip 9 7 102 96
count 35 16 184 162
f51m 8 8 65 60
misex1 8 7 59 55
misex2 25 18 230 189
rd73 7 3 42 44
rd84 8 4 52 57
sao2 10 4 86 81
vg2 25 8 140 127
5xp1 7 10 74 74

much smaller than MTBDDs. However, for some cir-
cuits, MTBDDs are the smallest, e.g. mainpla. For
apex5, cps, c499, c880, c1908, soar, x1, and x3, MTB-
DDs are too large to be constructed, while BDDs for
CFs are smaller and easy to be constructed. Further-
more, for clip, c499, f51m, misex3, and 5xp1, BDDs for
CFs are the smallest among the three types of DDs.
Sometimes BDDs for CFs are much smaller than other
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DDs. For example, the sizes of the BDD for CF and the
SBDD for c499 are 16840 and 31732, respectively, while
the MTBDD for c499 is too large to be constructed.
Note that c880 is one of the most complex benchmark
circuits in Table 6, and our program required 86.2 CPU
seconds to order the variables, and to construct the
BDD for CF on a JU1/170 with 160 MB of main mem-
ory (Sun Ultra1-170 compatible workstation).

Table 7 compares the sizes of BDDs for CFs of var-
ious benchmark circuits generated by Scholl-Drechsler-
Becker [5] and the proposed method. It shows that the
proposed method often generates smaller BDDs for CFs
than Scholl-Drechsler-Becker [5].

6. Concluding Remarks

In this paper, we have proposed a method to con-
struct smaller binary decision diagrams for character-
istic functions (BDDs for CFs) to represent multiple-
output functions. We have compared the sizes of SB-
DDs, MTBDDs and BDDs for CFs. SBDDs evaluate
outputs in O(m·n) time, while MTBDDs and BDDs for
CFs evaluate outputs in O(n) time and O(n+m) time,
respectively. Experimental results show that, in most
cases, BDDs for CFs are much smaller than MTBDDs.
However, BDDs for CFs are usually larger than the cor-
responding SBDDs. For some benchmark circuits (e.g.
c499), BDDs for CFs are the smallest among the three
types of BDDs. We have shown three types of circuits:
1) n-bit adders (adrn), where BDDs for CFs are the
smallest; 2) bit-counting circuits (wgtn), where MTB-
DDs are the smallest; and 3) n-bit multipliers (mlpn),
where SBDDs are the smallest. We have also derived
upper bounds on the sizes of SBDDs, MTBDDs and
BDDs for CFs of adrn. Furthermore, the experimental
results have shown that the proposed method often pro-
duces smaller BDDs for CFs than an existing method.
BDDs for CFs are used for logic simulation [2],[4],[5],
e.g., c880 is one of the most complex benchmark cir-
cuits in Scholl-Drechsler-Becker [5], and their simulator
required 29.37 CPU seconds for the evaluation of the
500,000 random input vectors using a BDD for CF on a
Sun Sparc 20 workstation (256 MB physical memory).
An SBDD-based simulator can be faster for some func-
tions. However, the simulator based on the BDD for
CF should be faster than the SBDD-based one when
there are no page faults in the physical memory and
no misses in the Translation Lookaside Buffer (TLB)
during function evaluation [4].
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