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SUMMARY This paper describes a method to represent m
output functions using shared multi-terminal binary decision dia-
grams (SMTBDDs). The SMTBDD(k) consists of multi-terminal
binary decision diagrams (MTBDDs), where each MTBDD rep-
resents k output functions. An SMTBDD(k) is the generaliza-
tion of shared binary decision diagrams (SBDDs) and MTBDD:s:
for k = 1, it is an SBDD, and for £ = m, it is an MTBDD.
The size of a BDD is the total number of nodes. The fea-
tures of SMTBDD(k)s are: 1) they are often smaller than SB-
DDs or MTBDDs; and 2) they evaluate k& outputs simultane-
ously. We also propose an algorithm for grouping output func-
tions to reduce the size of SMTBDD(k)s. Experimental results
show the compactness of SMTBDD(k)s. An SMTBDD,,,;, de-
notes the smaller SMTBDD which is either an SMTBDD(2) or
an SMTBDD(3) with fewer nodes. The average relative sizes for
SBDDs, MTBDDs, and SMTBDDs are 1.00, 152.73, and 0.80,
respectively.

key words:  binary decision diagram (BDD), multiple-output
Sfunctions, cliqgue cover, TDM realization, logic simulation

1. Introduction

Efficient representations of logic functions are very im-
portant in logic design. Various methods exist to
represent logic functions. Among them, graph-based
representations such as BDDs (binary decision dia-
grams) are extensively used in logic synthesis, test, and
verification [1],[4],[12],[13]. In logic simulation, the
BDD-based methods offer orders-of-magnitude poten-
tial speedup over traditional logic simulation meth-
ods[2],[3],[5],[15]. In real life, many practical logic
functions are multiple-output[12]. In this paper,
we consider three different approaches to represent
multiple-output functions using BDDs: shared binary
decision diagrams (SBDDs), multi-terminal binary de-
cision diagrams (MTBDDs), and shared multi-terminal
binary decision diagrams (SMTBDDs). SMTBDDs
are the generalization of SBDDs and MTBDDs. A
general structure of an SMTBDD(k) with & = 3 is
shown in Fig.1. The evaluation of outputs using an
SMTBDD(k) is k times faster than an SBDD, since it
evaluates k outputs at the same time. For most func-
tions, SMTBDD(k)s are smaller than the correspond-
ing MTBDDs. In modern LSI, the reduction of the
number of pins is not so easy, even though the in-
tegration of more gates may be possible. The time-
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division multiplexing (TDM) realizations of multiple-
output networks from SMTBDDs are useful to reduce
the number of pins as well as to reduce hardware[9].
SMTBDD(k)s are also helpful for look-up table type
FPGA design[6], logic simulation [5],[ 14],[15], etc. In
the previous paper [ 7], we considered SMTBDD{(2)s. In
this paper, we consider SMTBDD(3)s. SMTBDD(3)s
are smaller than SMTBDD(2)s for many benchmark
functions. In addition, the evaluation of outputs using
an SMTBDD(3) is faster than an SMTBDD(2). The
rest of the paper is organized as follows: Section 2
deals with definitions and properties of multiple-output
functions and SMTBDD(k)s. Section 3 proposes an
optimization algorithm for SMTBDD(3)s using clique
cover, and Sect. 4 shows the experimental results for var-
ious benchmark functions. J

2. Preliminaries

This section shows definitions and properties of
multiple-output functions and SMTBDD(k)s[7],[8],
[12]. The results of this section will be used in Sect. 3.
Definition 1: Let B = {0,1}. A multiple-output logic
function f with n input variables, z1,...,2,, and m
output variables y1, ..., Ym, is a function

f:B"— B™,

where & = (z1,...,2,) € B™ is an input vector, and y
= (y1,--.,Ym) € B™ is an output vector of f.

Example 1: Table 1 shows a 2-input 6-output function.
O
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Fig. 1  General structure of an SMTBDD(k) with & = 3.
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Definition 2: Let F'(a) = (fo(a), fi(a),..., fm-1(a))
be the output vector of m functions for an input
a = (a,0,...,a,) € B". Two output vectors F(a;)
and F(a;) are distinct iff F(a;) ¥ F(a;). Let r
be the number of distinct output vectors in F(a) =
(fola), fi(a),- .., fm—1(a)).

Example 2: Consider the 2-input 6-output function in
Table 1. The distinct output vectors are (0,1,0,0,1,1),
(1,1,1,0,1,0), and (0,1,1,1,0,1). Therefore, the num-
ber of distinct output vectors is three, i.e. r = 3. O
Lemma 1: Let fg, f1,..., and fi—1 (fi &= 0) be dis-
joint each other, ie. f; - f; = 0, and ¢ & j. Then,
the number of distinct output vectors for F(z) =
(folz), fi(®),..., frm—1(®) ism or m + L.

Proof: Since fy, f1,..., and f,,_1 are disjoint, in the
vector F(z) = (fo(z), f1(), ..., fm—1(x)) at most one
output f;(x)(i = 0,1,...m — 1) is one and others are
zero. Therefore, the number of distinct output vectors is
at least m. On the other hand, when there is the output
vectors with all zero’s, the number of distinct output
vectors is m + 1. O
Example 3: Consider the 2-input m-output function in
Table 2, where m = 3. The distinct output vectors for
the functions fy, f1, and fy are (1,0,0), (0,1,0), and
(0,0,1). So, the number of distinct output vectors is m.
Now, consider the 2-input 3-output function in Table 3.
The distinct output vectors in (fo, f1, f2) are (1,0,0),
(0,1,0), (0,0,1), and (0,0,0). In this case, the number
of distinct output vectors is m + 1. (|

Definition 3: Let f be a function. The set of input
variables on which f depends is the support of f, and

Table 1  2-input 6-output function.
Input Qutput
z1i_ x| fo fr fo fs3 fa fs
0 0 0 1 0 0 1 |
0 1 0 1 0 0 1 1
1 0 1 1 1 0 1 0
1 1 0 1 1 1 0 1
Table 2 2-input 3-output function with three distinct output
vectors.
Input Output
z1 z3 | fo fr S
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 0 1 0
Table 3  2-input 3-output function with four distinct output
vectors.
Input Output
1 x2 [ fo i fo
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 0 0 0
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is denoted by support(f). The size of the support is the
number of variables in the support(f).

Example 4: Table 1 shows a 2-input 6-output func-
tion. An SMTBDD(3) can be constructed with the
groupings [fo, f1, f2] and [f3, fa, f5]. support(fo, f1, f2)
= {@1,z2}, and support(fs, f1, f5) = {x1,z2}. Thus,
the sizes of the supports are 2. a
Definition 4: The size of the BDD, denoted by
size(BDD), is the total number of terminal and
non-terminal nodes. In the case of SBDDs and
SMTBDD(k)s, the sizes include the nodes for the output
selection variables.

Example 5: The size of the SMTBDD(3) in Fig.3 is
9. O

2.1 Shared Multi-Terminal Binary Decision Diagrams

Shared binary decision diagrams (SBDDs), multi-
terminal binary decision diagrams (MTBDDs), and
shared multi-terminal binary decision diagrams (SMTB-
DDs) represent multiple-output functions. SMTBDDs
consist of MTBDDs. An SMTBDD(k) is the general-
ization of SBDDs and MTBDDs: for k = 1, it is an
SBDD, and for k = m, it is an MTBDD, where m is
the number of output functions. Figures 2 and 3 show
an SMTBDD(2) and an SMTBDD(3) for Table 1, re-
spectively. In Fig.3, the SMTBDD(3) has two groups:
[fo, f1, f2) and [fs, f4, f5], and go is the output selection
variable which selects a group of outputs. In this paper,
“[ T denotes a group of output functions that consists
of two or more outputs.
We use the following two techniques to reduce the
number of nodes in the SMTBDD(k)s:
Let [f;, f;] be a pair of two output functions, where
ik
e In general, an MTBDD for two outputs has four
terminal nodes [0,0], [0,1], [1,0], and [1,1]. How-
ever, if f;f; =0, then [1, 1] never appers as a termi-
nal node in the MTBDD of an SMTBDD(2). Thus,
this pairing of output functions tends to produce a

Fig. 2 SMTBDD(2) with groupings [fo, fi], [fe, fs], and
[fa, f5s] for the functions in Table 1.
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[f3.f4,fs]

Fig. 3 SMTBDD(3) with groupings [fo, f1, f2] and [fs, fa, fs]
for the functions in Table 1.

smaller BDD, since the numbgrgof terrrlinal nodes
is at most three. Similarly, if f;f; =0, fifi =0, or
fif; = 0, then [f;, f;] is also a candidate of a pair.

o If support(f;) N support(f;) & ¢, then [f;, f;] is a
candidate of a pair, otherwise, they should be rep-

resented by the seperate BDDs.

Note that these two techniques are also applicable to
SMTBDD(k)s with k& > 3.

Definition 5: Let an SMTBDD(k) consist of two
MTBDDs: MTBDDI1 and MTBDD2., MTBDDI and
MTBDD?2 are disjoint iff they do not share any non-
terminal nodes each other in the SMTBDD(k).
Example 6: In Fig.3, there are two disjoint MTBDDs
for groupings [fo, f1, f2] and [f3, f4, f5]- o
Property 1: Let SMTBDD! and SMTBDD2 be
SMTBDD(k)s. Let SMTBDDI consist of MTBDDI
and MTBDD?2, and let SMTBDD?2 consist of MTBDD?3
and MTBDD4. If all the MTBDDs are disjoint
each other and size(MTBDD1) = size(MTBDD3),
and size(MTBDD2) = size(MTBDD4), then
size(SMTBDD1) = size(SMTBDD?2). O
Lemma 2: The numbers of terminal nodes in an
SMTBDD(2) and an SMTBDD(3) are the same iff the
numbers of distinct output vectors are also the same.
Proof: Since the number of terminal nodes in an
SMTBDD(k) is equal to the number of distinct out-
put vectors, an SMTBDD(2) and an SMTBDD(3) have
the same number of terminal nodes iff the numbers of
distinct output vectors in the both SMTBDDs are also
the same. O
Example 7: Figures 2 and 3 show an SMTBDD(2)
and an SMTBDD(3) for the functions in Table 1, re-
spectively. The numbers of terminal nodes in the both
SMTBDDs are the same, since the numbers of distinct
output vectors are also the same, i.e. 4. O
Lemma 3: All the functions {0,1}" — {0,1,...,7r—1}
can be represented by an MTBDD with 72" nodes.
Proof: No more than 72" nodes are needed. Else two
nodes represent the same function and can be combined.
No less than 72" nodes can be used because there are
this many functions. O
The constructive proof of this lemma is shown in [7].
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Fig. 4 Representation of an n-input m-output function by an
MTBDD.

Theorem 1: Letr be the number of distinct output vec-
tors of an n-input m-output function. Then, the size of

the MTBDD can be at most Ikn_i11q{2”_lf -1+ r2k}.

Proof: Consider the MTBDD in Fig. 4, where the upper
block is a binary decision tree of (n — k) variables, and
the lower block generates all the functions of k& or fewer
variables. The binary decision tree of (n — k) variables
has

142444497 k=1 —on—k _ 1 podes.

By Lemma 3, the MTBDD of k-variable functions with

7 distinct output vectors has 2" nodes. Thus, the size
of the MTBDD can be at most

n
Ikn_irll{Z"*k -1+ 7°2k}. O

Note that the upper bound on the size of the MTBDD
is used in Algorithm 1.

Lemma 4: Let m; be the total number of groups of m
distinct output functions. Then, the number of nodes
for the output selection variables in the SMTBDD is
my1 — 1.

Example 8: Consider the SMTBDD in Fig. 3, where
the total number of groups is two, i.e. [fo, f1, f2] and
[f3, f4, f5]- Therefore, the number of nodes for the out-
put selection variables in the SMTBDD is one. a
Theorem 2: Let m; be the total number of groups
of m distinct output functions and f : {0,1}" —
{0,1,...,7 — 1}™. Then, f can be represented by an

SMTBDD with at most min{m; -2"~* —1 +72°} nodes.

Proof: Consider the mapping f {0,1}" —
{0,1,...,7 — 1}, where r is the number of terminal
nodes. In the SMTBDD in Fig.5, the upper block
selects mq groups for m output functions, the middle
block constitutes binary decision trees of (n — k) vari-
ables, and the lower block generates all the functions of
k variables by an MTBDD with r terminal nodes. By
Lemma 4, the upper block requires (m; — 1) nodes to
select my groups. By Lemma 3, the lower block requires
2" nodes. Now, we consider the middle block. Each
binary decision tree of (n — k) variables has
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Fig. 5 Representation of an n-input m-output function by an
SMTBDD.

14+2+4+... 4 2n~k=1 _9n—k _ 1 podes.

Since the number of binary decision trees is mq, the
total number of nodes for m; binary decision trees is
my - (2"% — 1). Therefore, the number of nodes in the
SMTBDD for m output functions can be at most

" n—k 2k
min{(m; —1) +my - (277 1) + 77}

= Iiﬁrll{ml Lok 4 rzk}. O

Theorem 3: Let an SMTBDD(m) represent m func-
tions f;, = =z, (¢ = 0,1,...,m — 1), and let
[fos f1,--+, fm—1] be the group of an m-output func-
tion. Then, the size of the SMTBDD(m) for grouping

[anfl?"':fm~l] is 2m+1_1 [8] O
3. An Optimization Algorithm for SMTBDD(k)s

In this section, we will show an algorithm for deriving
small SMTBDD(k)s using clique covers. Note that this
algorithm can be used for SMTBDD(k)s with £ > 3. A
similar algorithm for SMTBDD(2)s was considered in
[7]- The clique covering is one of the NP-hard problems
of graph optimization [16]. Usually, the edge or vertex
weighted graph for this problem is considered [10]. For
the optimization of SMTBDD(k)s, we will use a clique
weighted graph, i.e. each group of vertices has a weight.
Definition 6: A cligue of a graph is a set of vertices
such that every pair is connected by an edge.
Example 9: Each of ¢y and ¢; in Fig. 6 is the clique.
O

Definition 7: Let G = (V, F) be a graph, where V and
E denote a set of vertices and a set of edges, respectively.
A clique cover of G is a partition of V such that each
set in the partition is a clique.

Example 10: In Fig. 6, a clique cover is formed by the
cliques ¢y and c¢;. O
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Fig. 6 The clique weighted graph.

Definition 8: Let G = (V, E) be a graph. Then, G is
a clique weighted graph iff each subset of vertices of G
has a weight and each vertex pair is connected by an
edge.

Example 11: Figure 6 is an example of a clique
weighted graph. For simplicity, we show only two
cliques with their weights. The weights of the cliques
cp and c; are wg and w;, respectively. O
Problem 1: Given a clique weighted graph G = (V, E),
find the clique cover such that the sum of weights of the
cliques in the clique cover is minimum., |
Note that the weight corresponds to the upper bound
on the size of the MTBDD, and the minimum weighted
clique cover corresponds to the groupings of outputs
that have small size, though sometimes they are not min-
imum.

3.1 The Weight Calculation Procedure

Each clique in the clique weighted graph has a weight.
In this part, we show a method for calculating the
weights of the cliques. From here, we assume that the
size of a clique is three, i.e. each clique has three vertices.
Definition 9: Let F' = {fo, f1,..., fm—1} be a set of m
output functions. Let F; (i = 1,2,3,...,s) be subsets
of F. {F, Fy,...,Fs} is called a partition of F if

S

(JF =F, and F;n F; = ¢, where

i=1
i &+ j, and F, + ¢ for every i. Henceforth, each of
By, .. Fg is called a group of output functions.
Note that each vertex in the clique weighted graph rep-
resents an output function, where each group and each
partition of output functions are denoted as a clique and
a cligue cover, respectively.

Example 12: Let F' = {f07f17f27f3)f47f5} be a set
of 6-output function. Then, the partitions of F

into groups are as follows: {[fo, f1, fa], [fs, fa, f5l},
{[fo, f1, fals [f2 fas B}, Alfo, fu fals (o fas f5]
{lfo, fu, Jols  [f2r fa, fal}s Alfo f2, 3l [fa, fa, fo] )
{fos fas ful, [f1s f3, 51}, Alfo, fa, fsls (1, fas fal}s
{[fo, f3: fal, [f1, fa, f5]}s {1fo, f3, f5l, [f1, fa, fal}, and
{Lfo, fa, f5], [f1, fo, f3]} U
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Definition 10: Let F' be an n-input m-output function.
The dependency matrix B = (b;;) for F is a 0-1 matrix
with n columns and m rows. b;; = 1 iff f; depends on
z;, and b;; = 0 otherwise, where ¢ =0,1,...,m» — 1, and
i=1,2,..,n

Example 13: Consider the 4-input 6-output function:

fo(z1, 22,23, 24) = z223,
f1($17x2’$37 Ty) = T1T4 \/I27
f2($1,$2,$3, T4) = x1 VI3,

f3(37]_73’,‘2,$3, T4
f4(.’£1,$2,$3, T4

f5($1,$2,3€3>$4

NN RN NI NN

The dependency matrix is

1 T2 T3 Tq

/0 1 1 0
Al1 1 0 1
Hl1 0 1 0
B=%10 0o 1 o
Al oo 11
A\o o0 o0 1

O

Definition 11: Let F' be an n-input m-output function,
and let [f;, f;, fx] be a group of output functions. The
group-dependency matrix A = (a;;) for F' is a 0-1 ma-
trix with 7 columns and M rows. a;; = 1 iff
at least one of the outputs depends on z;, and a;; =0,

otherwise.

Example 14: Consider the 6-output function in Exam-
ple 13. The group-dependency matrix A is given as fol-
lows:

Z2

8
%

Ty

—

[fo, f1, f2]
[fo, f1, f3]
[anfla f‘d
[fo, f1, fs]
[anfQ: fS}
[fo, fa, f4]
[fo, f2, fs]
[fo, f3, f4]
[fO)f3: fS}
[f07f47 f5}
[f1, f2, f3]
[f1, fo, fd]
[f17f27f5]
[f1, f3, f4]
[f1, f3, f5]
[fl?f47f5]
[f2, f3, f4]
[f2, f3, ]
[fzv f47f5}
[f?n f47f5]

e e R i R e e e R L e e e e e e
OO OO R P P H R e e e
»—*)—l»—l)—l»—lHH»—lHH)—AH»—\H»—A»—\;—A»—\»—!»—*&Z
= R e e e e e e e e = O e e
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Note that the row for [f;, f;, fi] in A is equal to bit-wise
OR of rows for f;, f;, and fi in the dependency matrix
B.

Definition 12: Let r(f;, f;, fi] be the number of distinct
output vectors for the group of outputs [f;, f;, fi]. Note
that 1 < r[fmfjJ fk:[ <8 T[f'ivfj’ fk] is_e_qual EO tkle
number of non-zero functions in f; f; fx, fif, fr, fififx,
flfjfk7 fzfjfka flf]fk:’ fzf]fk» and fzfjfk

Example 15: Consider the 6-output function in Exam-
ple 13. There are 20 groups of output functions. The
number of distinct output vectors r[f;, f;, fr] for each
group [f;, f;, fi] is calculated as follows:

For 7[fo, f2, f3]

fofofs = zizom3 V 2023,

fofafs =0,
fof2fs =0,
fofofs = 0,

fofofs = z1Zazs V Tozs,

fofofs = 1Z2Z3 V x,Z3,

Jofafs = 0, and

Jofafs = Z1Z2T3 V T3.
Since the number of non-zero functions is four, we have
r[fo, f2, f3] = 4. Similarly, we can calculate the num-
ber of distinct output vectors for other groups of output
functions. |

Definition 13: Let s(i,7,k) be the size of the sup-
port for a group of output functions [f;, f;, fx]. The

n—1 .
weight w(i, j, k) for [fi, f;, fr] is Itn_iél{2s(z’j’k)_t -1+

(r[fs, 1, fx])% ). This will be the weight of the clique in
the clique weighted graph.

Example 16: Consider the 6-output function in Exam-
ple 13. w(0,2,3) is calculated as follows: From Exam-
ple 13, we know that r[fq, f2, f3] = 4, and s(0,2,3) = 3.
w(0,2,3) takes its minimum when ¢ = 0. Therefore,
w(0,2,3) = 2% — 1 + 4 = 11. Similarly, we can calcu-
late the weights for other groups. Since w(3,j, k) is an
upper bound on the size of the MTBDD for [f;, f;, fx]
(Theorem 1), the MTBDD with the minimum weight is
relatively small. ]

3.2 Optimization of SMTBDD(3)s

To find the minimum weighted clique cover is an NP-
hard problem of graph optimization[16]. So, we use a
heuristic algorithm for finding a clique cover with small
weight.

Algorithm 1: (Optimization of SMTBDD(3)s)
Input: A graph G = (V, E).

Output: A clique cover K of G whose sum of weights
of the cliques is relatively small.

Method: Firstly, calculate the weights of all cliques in
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procedure Weightedcliqgue(V, E) {

C « set of cliques in which each clique consists of a
triple of vertices;

for each c € C do { ‘

/% cis a clique with a triple of vertices %/

w(e) MR (2 I 1 (rlfe £, D)

/% “w(c)” denotes the upper bound on the size
of an MTBDD 3 /

}

procedure Min Weightcliqgue cover(V, E) {
Weightedclique(V, E);
Make a list of weights, W sorted in ascending order;
while C+¢ do {
Select ¢ € C  with the smallest weight w(c)
[rom W;
K — Ku{c}
Eliminate the cliques that contain the
vertices in ¢ from C;
Update W and C;
}

return K;

¥

Fig. 7 Pseudocode for optimizing SMTBDD(3)s.

the graph G as shown in procedure “Weightedclique”
in Fig.7. Secondly, use procedure “MinWeightclique-
cover” in Fig.7 to find the clique cover with small
weight, where “W is the list of sorted weights of C,
C is the set of cliques, and w(c) is the weight of the
clique c.

Since Algorithm 1 is greedy one, it may not obtain the
optimal solutions, but we can expect good solutions.

4. Experimental Results

We implemented C programs for constructing SBDDs
and MTBDDs. SMTBDDs were constructed from SB-
DDs. We developed a C program for Algorithm [ and
built SMTBDD(3)s. The SMTBDD(2)s were obtained
by the method in [7]. In [7], we also showed that,
in most cases, our algorithm obtains the best partition
of output functions for SMTBDD(2)s. We used dy-
namic ordering[11] for the input variables that mini-
mized the sizes of SBDDs, MTBDDs, and SMTBDDs.
The numbers of terminal nodes in the SBDD, MTBDD,
SMTBDD(2), and SMTBDD(3) are at most 2, 2™, 4,
and 8, respectively, where m is the number of output
functions.

Table 4 compares the sizes of BDDs for small
benchmark functions. For most benchmark functions
in Table 4, MTBDD:s are larger than SMTBDD(2)s and
SMTBDD(3)s. Sometimes MTBDDs are much larger
than SMTBDDs. For example, the size of the MTBDD
for ts10 is 589837, while the size of the SMTBDD(2)
for ts10 is 121. For many functions, SMTBDD(3)s
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are smaller than SMTBDD(2)s. The ratios show
the relative sizes of SMTBDD(3)s to SMTBDD(2)s.
An SMTBDD,,;, denotes either an SMTBDD(2) or
an SMTBDD(3), with fewer nodes. In Table 4, 15
SMTBDD(3)s are the smallest among four types of
BDDs, while 9 SMTBDD(2)s are the smallest among
four types of BDDs. Note that the smallest BDD is
the BDD with the fewest nodes. For some functions,
MTBDDs are the smallest, e.g. nrm4. The average rel-
ative sizes for SBDDs, MTBDDs, and SMTBDDs are
1.00, 152.73, and 0.80, respectively. Furthermore, the
columns 7 and 9 in Table 4 show the construction times
for SMTBDD(2)s and SMTBDD(3)s, respectively. The
maximum construction time in Table 4 was 1.2 seconds
that required for ts10 to construct the SMTBDD(3) from
the SBDD.

Table 5 compares the sizes of BDDs for larger
benchmark functions. In Table 5, the SMTBDD de-
notes either an SMTBDD(2) or an SMTBDD(3). For
many benchmark functions, MTBDDs were impossible
to construct due to their excessive sizes, while other
BDDs were possible, e.g. cps. Sometimes SMTBDDs are
much smaller than SBDDs, e.g. the size of the SMTBDD
for apex5 is 847, while the size of the SBDD for apex5
is 1167. In Table 5, c880 was one of the most com-
plex benchmark functions, and our program required
10.7 seconds to construct the SMTBDD(2) from the
SBDD on a JU1/170 with 160MB of main memory
(Sun Ultral-170 compatible workstation). Note that
in most cases, the constructions of SMTBDDs are not
so time consuming as MTBDDs. For example, the con-
struction time of the SMTBDD(2) from the BDD for
ts10 was 2.2 seconds, while the construction time of the
MTBDD from the BDD for ts10 was 30.2 seconds (these
were construction times for both BDDs without using
variable ordering).

5. Conclusions and Comments

In this paper, we proposed a method to represent
multiple-output functions using SMTBDDs. We also
compared three types of BDDs. SMTBDD(k)s are not
so large as MTBDDs, and the evaluation speed is k
times faster than SBDDs, since k outputs are evalu-
ated simultaneously. In addition, for large benchmark
functions, MTBDDs are impossible to construct due
to their excessive sizes, while SMTBDDs are possible.
We presented an algorithm for grouping output func-
tions to reduce the size of SMTBDD(k)s. Experimen-
tal results showed the compactness of SMTBDD(k)s.
By combining an SMTBDD(2) and an SMTBDD(3),
we also proposed a compact representation for the
SMTBDD which denotes either an SMTBDD(2) or an
SMTBDD(3) with fewer nodes. The average relative
sizes for SBDDs, MTBDDs, and SMTBDDs are 1.00,
152.73, and 0.80, respectively. Thus, SMTBDDs com-
pactly represent many multiple-output functions, and
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Table 4 Number of nodes in the BDDs to represent various benchmark functions.
Function | In | Out | SBDD | MTBDD SMT- | time! SMT- | time? | ratio® SMT-
name BDD(2) | (sec) | BDD(3) | (sec) BDD,n
alul 12 8 29 580 22 0.2 130 0.5 5.90 22 %
benchl 9 9 688 691 732 0.6 675 04! 092 675 %
clip 9 5 111 139 117 0.3 167 0.5 1.42 117
exp 8 18 212 153 219 0.4 186 03| 084 186t
ex1010 10 10 1421 1548 1402 0.7 1361 0.5 097 1361 %
gary 15 11 322 228 334 0.5 210 0.3 0.62 210 %
inc 7 9 80 85 76 0.3 72 0.2 0.94 72 %
in0 15 11 290 570 294 0.7 238 04 0.80 238 %
log8 8 8 205 303 187 0.4 246 0.6 1.31 187 %
m2 8 16 133 140 133 0.9 85 0.8 0.63 85x%
max128 7| 24 189 133 220 0.7 100 04| 045 100 %
nrm4 8 5 158 130 147 0.3 195 0.6 1.32 1471
prom2 9 21 958 578 766 0.7 466 0.3 0.60 466 x
pl 8| 18 354 370 388 0.5 220 0.3 0.56 220 %
p3 8 14 222 247 241 0.7 191 0.5 0.79 191 %
rdS3 5 3 27 21 26 0.2 21 0.1 0.80 21t
radd 8 5 45 98 39 0.3 62 0.5 1.58 39 %
sao2 10 4 90 69 74 0.2 62 0.1 0.83 62 %
sex 9| 14 68 140 62 0.6 59 0.5 0.95 59 %
sqrd 4 8 27 31 25 0.4 33 0.5 1.32 25%
sqré 6 12 84 127 76 0.7 104 0.9 1.36 76 %
ts10 22| 16 163 589837 121 0.9 225 1.2 1.85 121 %
testl 81 10 406 452 428 0.6 344 0.4 0.80 344 %
Sxpl 7|1 10 93 255 76 0.5 99 0.7 1.30 76 %
average? 1.00 152.73 0.80
relative
size

In: number of inputs; Out: number of outputs.
*SMTBDD with the fewest nodes among [our types of BDDs.

tNumber of nodes in the SMTBDD is less than the SBDD.

1.
2.

3.

ratio =

Table 5

L N
average relative size = N E

size of the BDD for function @

i=1

where N is the total number of functions.

size of the SBDD for function » °’

CPU time in sec on a JU1/170 for constructing the SMTBDD(2) from the SBDD.

CPU time in sec on a JU1/170 for constructing the SMTBDD(3) from the SBDD.

s1ze(SMTBDD(3))
s1ze(SMTBDD(2))*

Number of nodes in the BDDs to represent large benchmark functions.

Function | In | Out | SBDD | MTBDD | SMTBDD? | time!
name (sec)
apexl 45| 45 1321 — 1619 1.7
apex2 39 3 67 62 79 0.1
apex5 117 88 1167 — 847 2.7
al2 16 47 145 4707 115 0.3
alcom 15| 38 118 5033 76 0.3
cps 24 | 109 1095 — 1127 2.1
c880 60| 26| 4168 — 15634 | 10.7
pdc 16 40 609 18451 494 0.6
misex3 14 14 557 2910 522 0.9
proml 91 40! 2012 852 1710 1.0
soar 83| 94 632 — 918 2.4
x1 51 35 586 - 938 1.5
x3 135 99 715 - 1131 2.8
xparc 41 73 1949 3861 2277 1.9

1

— 7 indicates memory overflow.

i{The SMTBDD denotes either an SMTBDD(2) or an SMTBDD(3).

1. CPU time in sec on a JU1/170 for constructing the SMTBDD from the SBDD.

2551



2552

are useful for TDM (time-division multiplexing) real-
izations of multiple-output networks, look-up table type
FPGA design, and logic simulation.

A multiple-output function can also be represented
by a BDD for characteristic functions (CFs)[2],[3]. In
a BDD for CFs, if the input variables appear before
the output variables in the variable ordering, then an n-
input m-output function can be evaluated in O(n + m)
time. However, in most cases, BDDs for CFs are much
larger than the corresponding SBDDs. Moreover, if all
the output functions depends on all the input variables,
then the size of the BDD for CFs is greater than the
corresponding MTBDD. By dropping the above order-
ing restriction, we can reduce the size of the BDD, but
we can not guarantee the time of O(n 4+ m) to evaluate
a multiple-output function. Furthermore, in most cases,
the sizes of such BDDs are still larger than the corre-
sponding SBDDs. For example, the size of the BDD
for CFs of ¢880 in [3] is about 90 times larger than the
corresponding SBDD, while the size of the SMTBDD
for c880 is about 4 times larger than the corresponding
SBDD. In many cases, the sizes of SMTBDDs are not
so large as BDDs for CFs. Also, the evaluation speed
of an SMTBDD is k times faster than the corresponding
SBDD.
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