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SUMMARY Three types of ternary decision diagrams
(TDDs) are considered: AND_TDDs, EXOR_TDDs, and
Kleene.TDDs. Kleene TDDs are useful for logic simulation
in the presence of unknown inputs. Let N(BDD : f),
N(AND.TDD : f), and N(EXORTDD : f) be the num-
ber of non-terminal nodes in the BDD, the AND_TDD, and
the EXOR_TDD for f, respectively. Let N(Kleene-TDD : F)
be the number of non-terminal nodes in the Kleene.TDD for
F, where F is the regular ternary function corresponding to
f. Then N(BDD : f) £ N(TDD : f). For parity functions,
N(BDD : f) = N(AND.TDD : f) = N(EXOR.TDD : f) =
N(Kleene.TDD : F). For unate functions, N(BDD : f) =
N(AND_TDD : f). The sizes of Kleene_TDDs are O(3™ /n), and
O(n®) for arbitrary functions, and symmetric functions, respec-
tively. There exist a 2n-variable function, where Kleene.TDDs
require O(n) nodes with the best order, while O(3™) nodes in the
worst order.

key words: binary decision diagram, ternary decision diagram,
logic simulation, ternary logic

1. Introduction

Various methods exist for representing logic functions.
A truth table is the most straightforword method. An-
other method is a sum-of-products expression (SOP). Bi-
nary Decision Diagrams (BDDs)[1] are commonly used
in+logic synthesis[2],[3], since they can represent com-
plex functions with many variables. Recently, Ternary
Decision Diagrams (TDDs) have been developed as an
alternative representation of logic functions[4]. TDDs
are similar to BDDs, except that each non-terminal
node has three children. Some TDDs have terminals
other than constant 0 and 1. In this paper, we con-
sider three types of TDDs: AND_TDDs, EXOR_TDDs,
and Kleene_TDDs. AND_TDDs represent the sets of
the implicants implicitly[5]. They can treat functions
for which the conventional cube-based method [6] fails.
EXOR_TDDs are useful to minimize AND-EXOR logic
expressions [7]. The TDD presented by Jennings (here-
after, we will call it Kleene_TDD) is useful to evaluate
logical functions in the presence of unknown inputs[8].

In this paper, we will show some properties of
Kleene_TDDs. In Sect.2, we will introduce a method
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to evaluate logic functions in the presence of un-
known inputs[9]. In Sect.3, we will introduce BDDs,
AND_TDDs, EXOR_TDDs, and Kleene_ TDDs. In
Sect. 4, we will compare the sizes of TDDs representing
various classes of logic functions: symmetric functions,
unate functions, and parity functions. In Sect. 5, we will
compare the sizes of TDDs for benchmark functions.
Also, we show the size of Kleene_ TDDs for randomly
generated functions.

2. Evaluation of Logic Functions in the Presence of
Unknown Inputs

Let B = {0,1}. An n-variable switching function f
represents the mapping:

f:B™ — B.

Let @ = (a1,az2,...,a,) be a binary vector, where
a; € B. We often have to evaluate the value f(a) for
d, where some a; are unknown[10]. When we do logic
simulation for sequential circuits, we have to consider
such inputs. In this section, we will review the method
to evaluate f in the presence of unknown inputs.

Let "= {0,1,u}, where u is the truth value show-
ing an unknown input. Let & = (a3, az,...,0,) be a
ternary vector, where o; € T. If «; is either O or 1 for
all i, then & € B™. 'In this case, f(&) is either 0 or
1. If @; = u for some i, then & € T™ — B™. In this
case, for some &, f(&) is either 0 or 1, but for other &,
f(&) cannot be determined in general. Therefore, it is
convenient to introduce a three-valued logic function,
F «T" — T, which is derived from f. Note that f
uniquely defines F.
Definition 1: Let & € T™. A(&) denotes the set of all
the binary vectors that are obtained by replacing all u
with 0 or 1.

Let s be the number of w’s in &, then the set A(&)
consists of 2° binary vectors.
Definition 2: Let f be a two-valued logic function, and
aerTm.

flA@) ={f(@) | a € A(@)}.
0 if f(A(Q)) = {0}.
F@ =41 if f(A@) =11}
u if f(A(d@)) = {0,1}.
F is called the regular ternary logic function[11] of f
(hereafter, we will call it RT function).
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Fig. 1 Ternary AND, OR, NOT, EXOR and Alignment oper-
ations.
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Fig. 2 Realization of expression in Example 1.

Example 1: Consider the expression

f(z1,22,23) = x139 V xoxs. For the inputs &; =

(0,0,u), @ = (1,u,1), and ds = (1,u,u), F(&1),

F(&s), and F(ds) are derived as follows:
f(A(1))={f(0,0,0),f(0,0,1)} = {0},

F(A(@E)={£(1,0,1),£(1,1,1)} = {1}, and

f( (&3)):{.]‘.(17 07 O)af(la 07 1)7f(17 170)af(17 17 1)}

={0,1}.

By Definition 2, we have

A
A

f(&l) = 0, f(&z) = 1, and .7:(0_23) = Uu. O

When we do gate-level logic simulation, we extend

binary operations to ternary logic as shown in Fig. 1.
This is the Kleenean strong ternary logic[12]. In this
case, signals are evaluated from the primary inputs to
the primary outputs by using Fig. 2.
Example 2: Figure 2 shows an AND—OR network that
realizes the expression in Example 1. When we evalu-
ate the output f for the input & = (1,u,1) by using a
naive method, we have the output u as shown in Fig.2.
However, Example 1 shows that

Thus, the naive method does not always produce accu-
rate results. O

Several methods exist to evaluate output val-
ues according to Definition 2: including represen-
tations using SOPs[9], using BDDs[13], and using
Kleene_TDDs[8].

3. BDDs and TDDs

In this section, we will give formal definitions for BDDs
and TDDs.

Definition 3: A BDD is a rooted, directed graph with
node set V' containing two types of nodes:

A non-terminal node v has as attributes an argu-
ment index index(v) € {1,...,n}, and two children
low(v), high(v) € V. A terminal node v has as attribute
a valuevalue(v) € B.
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For any non-terminal node v, if low(v) is also non-
terminal, then index(v) < index(low(v)). Similarly,
if high(v) is also non-terminal, then index(v) <
index(high(v)). The correspondence between BDDs
and Boolean functions is defined as follows:

For a terminal node v:

If value(v) =1, then f, =1.
If value(v) =0, then f, =0.

For a non-terminal node v:
Let X = (931,.’132, ey L1, i1y e ,:Un).
If index(v) =14, then f, is a function such that

fv(mly .. .,In) =T flow(v)()z) V- fhigh(v)()z)'

Note that the root node represents the function f itself.
Definition 41 A BDD is a Reduced Ordered Binary De-
cision Diagram (ROBDD) if it contains no node v with
low(v) = high(v), and if it does not contain distinct
nodes v; and wy such that the subgraph rooted by v
and vy are equivalent.
Example 3: Figure 3(a) shows the ROBDD for the
function in Example 1. The number O(1) attached to
each edge incident to v denotes low(v)(high(v)). O

TDDs are similar to BDDs, except that each non-
terminal node v has three children, low(v), high(v), and
middle(v).
Definition 5: A TDD is a rooted, directed graph with
node set V' containing two types of nodes:
A non-terminal node v has as attributes an argument
index index(v) € {1,...,n}, and three children low(v),
high(v), and middle(v) € V. A terminal node v has
as attribute a valuevalue(v) € T. For any non-terminal
node v, if low(v) is also non-terminal, then index(v) <
index(low(v)). Similarly, if high(v) is non-terminal,
then index(v) < index(high(v)). Also, if middle(v) is
non-terminal, then index(v) < index(middle(v)).
Definition 6: A TDD is a Reduced Ordered Ternary
Decision Diagram (ROTDD) if it contains no node v
with low(v) = high(v), and if it does not contain dis-
tinct nodes v; and v such that the subgraph rooted by
v1 and v are equivalent.

Different assignments of operations to the third
child produce different TDDs.
Definition 7: Figure 1 shows the ternary operation
Alignment. Let a,b € T.

a@b:{a if a=b.
u  otherwise.

The correspondence between AND_TDD (EXOR.
TDD, Kleene.TDD) and a function f is defined as fol-
lows:

For terminal node v:

If value(v) =1, then f, =1.
If walue(v) =0, then f, =0.
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Fig. 3 BDD and TDD:s.

For non-terminal node v: If index(v) = 4, then f, and
frmiddie(v) are the functions such that

fv(f) =Ty flow('u)()?) V- fhigh(v)()z)'
e In the case of an AND_TDD:

fmiddle(v) (X) = flow(v) (X) : fhigh(v) (X)

e In the case of an EXOR_TDD:

Frmiddie()(X) = Frow()(X) @ frign(X).

e In the case of a Kleene_TDD:

Fmidare@)(X) = Fow(w)(X) © fuighn (X)-

If the above relation does not hold, then there is no
function for the TDD.

Example 4: Figure 3 shows the AND_TDD, the
EXOR_TDD, and the Kleene_ TDD for f and F in Ex-
ample 1. By expanding the ROBDD in (a), we have
the complete binary decision tree (b). In Fig. 3(c), the
new edge at the root node is generated, and the sub-
graph is created by using the AND operation to derive
the AND_TDD. Note that fo = fiow, fi = frigh, and
fo = fmidate- In Fig.3(c), fooo corresponds to the left
most terminal node. fyop is obtained as the AND of
fooo and fipp. When EXOR is used to generate the
middle child, we have an EXOR_TDD. When Align-
ment is used to generate the middle child, we have a
Kleene_TDD. Here, 0, 1, and 2 attached to each edge de-
note low(v), high(v), and middle(v), respectively. For
each subsequent node, create the third node recursively
down to the leaves, and we have the complete ternary
decision tree shown in (d). By eliminating all the
redundant nodes, and sharing all the equivalent sub-
graphs, we obtain an AND_TDD, an EXOR_TDD, and

(d) Ternary Decision Tree

(g) Kleene_TDD

a Kleene_TDD as shown in (e), (f), and (g), respectively.
O

AND_TDDs represent the set of implicants implic-
itly[5]. EXOR.TDDs are useful to minimize AND-
EXOR expressions[7]. Kleene_.TDDs are useful to eval-
uate logic functions in the presence of unknown in-
puts[8].

Example 5: We can evaluate F(«) in Example 1 by
using the Kleene.TDD in Fig.3(g). F(«) is obatained
by tracing the edges from the root node to a terminal
node according to the value of . When the input is
ay = (0,0,u), trace the edges, 0, 0, and 2, and reach
the terminal node 0. Thus, we have 7(0,0,u) = 0.
Similarly, when the input is ap = (1, u,1), trace the
edge, 1, 2, 1, and reach the terminal node 1. Thus,
F(1,u,1) = 1. When the input is a3 = (1,u,u), by
tracing 1,2,2, and reach the terminal node u. Thus, we
have F(1,u,u) = u. O

4. Complexities of TDDs

In this section, we compare the sizes of TDDs represent-
ing various classes of functions: symmetric functions,
unate functions, and parity functions.

Definition 8: Let N(BDD : f), N(AND_TDD : f),
and N(EXOR.TDD : f) be the number of non-
terminal nodes in the BDD, the AND_TDD, and the
EXOR_TDD for f,respectively. Let N(Kleene TDD :
F) be the numbers of non-terminal nodes in the
Kleene_.TDD for F.

Theorem 1:

N(BDD: f) < N(AND_TDD : f),
N(BDD: f) < N(EXOR.TDD : f), and
N(BDD : f) < N(Kleene . TDD : F).
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Proof: Remove all the middle edges. Remove the ter-
minal node u. Eliminate all the redundant nodes and
share all the equivalent sub-graphs. And, we obtain
the BDD for f. This procedure does not increase the
number of nodes. Hence, the theorem. O

Theorem 2:
N(ANDTDD: f) < N(Kleene TDD : F).

Proof: In the Kleene_.TDD for F, replace the termi-
nal node v with the terminal node 0. Next, eliminate
all the redundant nodes, and remove all but one equiv-
alent sub-graph. Then, we get the AND_TDD for f.
This procedure does not increase the number of nodes.
Hence the theorem. O

Theorem 3: Let f be a parity function. Then, we have

N(BDD : f) = N(AND_TDD : f)
— N(EXOR.TDD : f)
= N(Kleene TDD : F).

Proof: Figure 4 (a) shows the BDD for the parity func-
tion f=ag®x1 Bz D ... D x,, where ag = 0. Note
that N(BDD : f) =2n —1.

e AND_TDD:
The parity function returns the value 0(1), when
the number of 1’s in the inputs is an even {odd)
number. Consider two input vectors g; and as,

where a1 = (a1,...,0i-1,0,Git+1,...,0n) and d3 =

(c) EXOR_TDD
Fig. 4 BDD and TDD for parity function.

(d) Kleene_TDD
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(a1y---,0i-1,1,8i11, ..., 0,). Consider the node v
for which the paths for di and a3 visit. low(v)
corresponds to aj and high(v) corresponds to a3.
If the number of I’s in a7 is an even (odd) num-
ber, then the number of 1’s in a5 is an odd (even)
number. Hence, f(d1) = f(a3). Thus, fiouw) -
Jrigh(vy = O for every non-terminal node v. In
the AND_TDD, all the middle edges point to the
terminal O as shown in Fig.4(b). Thus, we have
N(ANDTDD: f)=2n—1.

e EXOR_TDD:
As is the case of AND_TDD, f(di) = f(a2) holds.
Hence, fioww) © frigh(vy = 1 always holds for
every non-terminal node. On the EXOR_TDD,
all the middle edges are incident to the terminal
1 node as shown in Fig.4(c). Thus, we have
N(EXORIDD: fy=2n—1.

e Kleene_ TDD:
As is the case of AND_TDD, f(ai) = f(d2) holds.
Hence, fiow(v) @ frigh(v) = © always holds for every
non-terminal node. On the Kleene_TDD, all the
middle edges point to the terminal v as shown in
Fig.4 (d). Thus, we have N(Kleene T DD : F) =
2n — 1. O

Theorem 4: Let f be a unate function. Then,
N(BDD : fy=N(AND.TDD : f).

Proof: For simplicity, we assume that f is a monotone
increasing function. For a non-terminal node v with
index(v) = k, Shannon’s expansion of f with respect

to the variable xy is as follows:
f(xly"wmn) = i‘kf(xla' "7xk—1a07xk+1>"' 7$n)
Vg f(z, .. s T

Since f is a monotone increasing function, the follow-
ing inequality holds:

ey The1s 1y Thotly .-

f(il)'l,...,mk_1,0,$k+1,...,$n)
< f(mlw' . 7mk~1717$k+17"'amn)-
Hence, we have
flzy,. o0, mn) - 2,0, 1,0, 20)

= f(x].) T
Therefore, middle(v) is the same node as low(v) for ev-
ery node v in the AND_TDD. By adding middle edges
to the low edges in the BDD, we have the AND_TDD.
Hence we have the theorem. Similarly,we have the the-
orem for unate functions. a

The number of nodes in a complete ternary deci-
sion tree for an n-variable function is:

1+3' 432+, 43" =3 -1)/2

However, in a reduced TDD, only one sub-graph is re-
alized for each sub-function. Thus, the number of nodes
can be reduced.

We can state the following:

0,00, T0).
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Lemma 1: All the functions of k or fewer Variables
can be represented by a Kleene_.TDD with at most 33
nodes.

Theorem 5: An arbitrary n-variable function can be
represented by a Kleene_ TDD with at most

n 31€+1 —1 N 33n—k
k=1 2 ‘

min

nodes.

Proof: Consider the Kleene_.TDD in Fig.5, where the
upper block is the complete ternary decision tree of k&
variables, and the lower block generates all the func-
tions of (n—k) or fewer variables. The complete ternary
decision tree for a k-variable function has

14314324 ...+ 3% = (3" - 1)/2 nodes.

By Lemma 1, the lower block has at most 33" 7" nodes.
Hence, we have the theorem. |

Corollary 1: An arbitrary n-variable function can be
represented by a Kleene_.TDD with O(3"/n) nodes.
Proof: Set k = n —log; n+logs logg n in Theorem 5. O

Theorem 6: An arbitrary symmetric function of n-
variables can be represented by a Kleene . TDD with
O(n®) nodes.

Proof: Consider the complete ternary decision tree for
k variables (Fig.6). The number of different functions
generated in the lower part of the tree is derived as fol-
lows:

1. Since f is symmetric, the permutation of the sub-
scripts of f will not change the function: e.g.,
f021120 is equal to f001122. SO, the different number
of k-variable symmetric functions generated by the
complete ternary decision tree is equal to “the num-
ber of ways to select & objects from three distinct
objects with repetition.”

Complete ternary decision 3k+_11
- . nodes
tree of k variables 2
| I I - L] -
Kleene TDD for all functions 3n-k
with (n-k) or fewer variables 3 nodes

Fig. 5
TDD.

Representation of an n-variable function by Kleene_

fo foi foo fz..mmz

Fig. 6 Complete ternary decision tree for k-variable function.

IEICE TRANS. INF. & SYST., VOL. E81-D, NO. 7 JULY 1998

2. “The number of ways to select & objects from p
distinct objects with repetition” is pyx—1Ck.

3. Since p = 3, the number of the different symmetric
functions is (k + 1)(k +2)/2.

The total number of non-terminal nodes in the (non-
reduced) Kleene_TDD is

R i )4 8) + ().

i=0
Hence, we have the theorem. a

The following is easy to prove:
Theorem 7:

N(BDD : f) = N(BDD: f).
N(EXOR.TDD : f) = N(EXOR.TDD : f).
N(Kleene TDD : f) = N(Kleene TDD : f).

However, in general,

N(ANDTDD: f)y+ N(ANDTDD : f).
5. Experiments and Observation
5.1 Sizes of TDDs

We developed TDD algorithms, and generated TDDs
for various benchmark functions. Multiple-output func-
tions are represented by shared BDDs and shared TDDs.
Note that a node in a TDD requires one more word than
that of a BDD in our implementation. The ordering of
the inputs variables for BDDs and TDDs are obatined
by heuristic algorithms for BDDs[14],[15]. Note that
the ordering that minimizes the size of a BDD does not
always mininzes the size of the TDD. We used Sun Ultra
170 workstaion with 512 mega bytes of memory.

Table 1 compares the number of non-terminal
nodes in BDDs, AND_TDDs, EXOR_TDDs, and
Kleene_TDDs. From this table, we observe the follow-
ing:

1. N(BDD : f) < N(TDD : f) always holds.

2. Except for e64, rd84, t481, xor5, and z5xpl,
N(AND.TDD: f) < N(EXORTDD : f) holds.

3. Except for bc0, chkn, misex3, ts10, x6dn, and xor3,
N(I'DD: f) < N(Kleene.T'DD : F) holds.

4. The number of nodes in Kleene. TDDs and
EXOR_TDD are comparable.

5. TDDs are considerably larger than corresponding
BDDs.
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Table 1 Sizes of BDDs and TDDs.

function | in | out || BDD TDD

AND | EXOR | Kleene
addoé 12 7 47 47 47 106
adr4 8 5 29 29 29 60
alu2 10 6 1 8 142 173
apex] 45| 451 1332 ] 6249 | 47814 | 18401
apex2 39 3 410 542 3575 3500

. 34574 | 7119
apex5 | 117 | 88| 1078 | 3039 | 3282 | 4204

apla 10 12 102 139 302 354
bcO 26| 11 578 | 3137 12650 8034
bw 51 28 108 117 144 225
chkn 29 7 273 |+ 649 2556 2281
cli 9 5 97 174 259 1+ 289
col4 14 1 27 27 39 51
conl 7 2 15 25 35 43
cordic 23 2 75 83 153 271
cps 24 | 109 987 | 1457 4808 5653
c2 8 7 4 124 167
dist 8 5 152 323 563 572
dk17 10} 11 62 78 147 189
dk27 8 25 27 31 49
duke2 221 29 336 522 2176 2555
e64 651 65| 1379 | 1379 1379 2693
ex5 81 63 278 381 444 628
ex5 8 63 278 381 444 628
f51m 8 8 67 87 72 164
in2 191 10 232 377 892 1129
in7 26| 10 9 131 252 428
inc 7 9 70 104 172 214
intb 15 7 600 | 2338 3774 6876
misex! 8 7 36 45 70 92
misex2 251 18 &1 1 138 204
misex3 14| 14 542 | 1219 3644 3262
misj 351 14 42 72 83
mlp4 8 8 141 322 383 595
pdc 16 | 40 560 | 1024 2321 3031
rd53 5 3 23 26 25 39
rd73 7 3 43 52 52 84
rd84 8 4 59 79 72 121
risc 8| 31 67 67 76 124
rot8 8 5 75 119 211 227
sao2 10 4 85 114 216 305
seq 411 35| 1248 | 3873 | 67414 | 18745
sex 91 14 46 47 62

spla 16 | 46 581 717 2237 2315
sqr8 8| 16 233 503 654 895
1481 16 1 32 48 43 66
tial 14 8 686 | 1732 5241 6558
ts10 221 16 146 146 951 786
V%Z 25 8 194 399 865 961
x6dn 39 5 229 637 7597 3177
X015 5 1 9 9 9

z5xpl 71 10 68 79 75 158
9sym 9 1 33 60 70 94

6. xor5 is a parity function. Thus,
N(BDD: fy=N(AND.TDD: f)
= N(EXOR.TDD: f)= N(Kleene . TDD : F).

Table 2 shows the sizes of Kleene. TDDs for ran-
domly generated functions. The orderings of the vari-
ables in TDDs in Table 2 minimize the size of BDDs.
We can observe that the sizes of Kleene_TDDs are
O(3™/n) for n-variable randomly generated functions.

Table 2 also shows the sizes of Kleene TDDs for
the Achilles’ heel function: f = z1y1 V @2y2 V...V
ZTnyn. The size is O(3™) when the variable order is
T1, T2y s Tny Y1, Y2, - - -, Yn, While 5n—2 when the vari-
able order is z1,y1,%2,Y2,-- ., %n,Yn. Lhis shows that
the sizes of TDDs greatly depends on the variable or-
dering.
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Table 2  Sizes of Kleene TDDs for n-variable randamly gener-
ated functions and Achilles’ heel functions.

n || Random || f=zi1y1 V...V Zryn
function worst optimum
3 - 42 13
4 — 127 18
5 28 378 23
6 68 1123 28
7 139 3342 33
8 295 9967 38
9 592 29778 43
10 1357 89083 48
11 2898 266742 53
12 6165 799207 58
13 12905 || 2395578 63
2500 TO0OT F FHFFF AR ¢
wh#ug, BOD | 3 EXOR_TDD *
20007 # # i# #
@ # # 500007 se, :&
S E' * * +
'§ 1500 # # 400004 . L
5 10009 # # | 300003 ettt
H* 200007 Kleene_TDD +
500 +*
100007 ++*AND_TDD
L+t
ETTTTTE ST EL  ETTTTEE L R S
# of minterms # of minterms

(@) (b)

Fig. 7 Dependency on the number of true minterms.

5.2 Dependency on the Number of True Minterms

We generated pseudo-random logic functions of n = 14
variables for different number of true minterms s(0 <
s < 2™), and counted numbers of nodes in BDDs and
TDDs. Figure 7(a) shows the numbers of BDD nodes
for different s. As shown in Theorem 7, the graph
is symmetric with respect to s = 277!, Also, the
number of nodes takes its maximum when s = 271,
Figure 7(b) shows the number of TDD nodes. As
shown in Theorem 7 the graphs for EXOR_TDDs and
Kleene_TDDs are symmetric with respect to s = 2771,
However, the graph for AND_TDDs is asymmetric. Sur-
prisingly, the number of nodes in Kleene TDDs takes its
maximum for two values of s, and takes its local mini-
mum for s = 2771, This is quite different from the case
of BDDs.

5.3 CPU Time

Although Kleene_.TDDs are greater than BDDs,
Kleene_TDD-based logic simulation are more efficient
than BDD-based one.

To evaluate the performance of Kleene_ TDD based
simulation, we did the following experiments: In logic
simulation for design verification, expected outputs for
networks are 1 or 0, rather than u. For a given logic
function, input vectors can be generated as follows:
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353 # BDD #
'gso—: * Kleene_TDD

k ok ok k k k %
T T

Y T T T
0 5 10 15 20 25
# of variables

Fig. 8 Comparison of CPU time for adr6~12.

e To verify the ON set.
Let F' be an irredundant sum-of-products expres-
sion (ISOP) for f. For each product p; of F,
we have a corresponding input vector & such that
f(&) =1 as follows:

am,), Where

o'2=(a1,a2,...,

1: p; contains the literal z;,

0: p; contains the literal ;,
Q; =
u : otherwise.

e To verify the OFF set.

Let F be an ISOP for f.
For each product g; of F', we have a corresponding

input vector 4 such that f(/;) =0 as follows:

5: (/81) ﬁ27 e 7/871), Where
0 : g; contains the literal Z;,
ﬁz =

1: g; contains the literal x;,
u : otherwise.

Note that the total number of input vectors is equal to
the sum of products in F' and F. In this experiment,
we used these as example data for Kleene_ TDD based
simulation. In the practical logic simulation, we may
not use all the product terms of ISOPs for f and f.

Figure 8 compares simulation time for adders
(adr6~adrl2) for the vecters generated in the above
method. This figure shows that Kleene TDD-based sim-
ulation is faster than BDD based one. TDDs are gener-
ated from BDDs. We need extra time to generate TDDs.
Even if we condiser this time, Kleene_.TDD based sim-
ulation is often faster. In the case of adders, the time
for generation of TDDs is negligibly small. In the case
of apexl, the generating of the TDD from the BDD
required 300 millisecond. In this case, if the number
of the patterns in the simulation is greater than 40,000,
then the total cpu time is shorter.

5.4 Observation

The facts in 5.2 can be interpreted as follows:

1. In AND_TDDs, 1-paths correspond to the impli-
cants of f. The average number of implicants of
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n-variable functions with s true minterms is given
by [16].

ek () ()
G(n,s):§2 <k)W

where w=2", and w; = 2~.

G(n, s) takes its maximum when s is near to 27,
Suppose that the number of nodes in the TDD
is monotone increasing with the number of paths.
Then the graph for AND_TDD has similar shape
as the graph for G(n, s).

2. In a Kleene_TDD, 1-paths correspond to the impli-
cants of f, and O-paths correspond to the implicants
of f. Thus, a Kleene. TDD denotes implicants of
f and f at the same time. The average number of
implicants for f and f is given by

G(n,s) + G(n,2" — s).

Thus, the shape of the graph is symmetric with re-
spect to s = 2"~ !, and the graph takes its maximum
for two values of s.

6. Conclusion and Comments

In this paper, we introduced three types of TDDs:
AND_TDDs, EXOR_TDDs, and Kleene. TDDs. We
compared complexities of TDDs for various classes
of functions: parity functions, unate functions, and
symmetric functions. For parity functions, N(BDD :
f) = N(AND.TDD : f) = N(EXORTDD : f) =
N(Kleene TDD : F). For unate functions, N(BDD :
f) = N(AND.TDD : f). The sizes of Kleene TDDs
are O(3"/n) and O(n3) for arbitrary functions, and
symmetric functions, respectively. We compared the
sizes of TDDs for benchmark functions. We also
show that there exist a 2n—variable function where
Kleene . TDDs require O(n) nodes with the best order,
while O(3™) nodes in the worst order.
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