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Minimization of AND-OR-EXOR Three-Level Networks

with AND Gate Sharing

Debatosh DEBNATH!, Nonmember and Tsutomu SASAO', Member

SUMMARY This paper presents an exact minimization algo-
rithm for AND-OR-EXOR three-level networks, where a single
two-input exclusive-OR (EXOR) gate is used. The network re-
alizes an EXOR of two sum-of-products expressions (EX-SOP),
where the two sum-of-products expressions (SOP) can share prod-
ucts. The objective is to minimize the total number of different
products in the two SOPs. An algorithm for the exact minimiza-
tion of EX-SOPs with up to five variables are shown. Up to five
variables, EX-SOPs for all the representative functions of NP-
equivalence classes were minimized. For five-variable functions,
we confirmed that minimum EX-SOPs require up to 9 prod-
ucts. For n-variable functions, minimum EX-SOPs require at
most 9 - 2"~5 (n 2 6) products.

key words:  three-level networks, AND-EXOR, logic minimiza-
tion, complexity of logic networks, NP-equivalence

1. Introduction

Logic networks are usually designed by using AND and
OR gates. However, two-level AND-EXOR networks
are often more compact and easily testable than two-
level AND-OR networks[6],[13],[14],[17],[19]. For
example, to realize five-variable functions, on the aver-
age, minimum SOPs (sum-of-products expressions) re-
quire 7.46 products, while minimum ESOPs (exclusive-
OR sum-of-products expressions) require 6.16 prod-
ucts[15]. To realize an arbitrary function of six vari-
ables, minimum SOPs require up to 32 products, while
minimum ESOPs require up to 15 products[9]. Thus,
these are advantages of using EXOR gates. In these de-
signs, EXOR gates with large fan-in are used. However,
in most technologies, EXOR gates with many inputs are
expensive.

The network shown in Fig. 1 realizes an exclusive-
OR of two sum-of-products expressions (EX-SOP),
where only a single two-input EXOR gate is used. An
EX-SOP for a function f can be written as F' = F,® Fy,
where F, and F;, are SOPs. Recently, we developed a
minimization algorithm for EX-SOPs[3]. The objec-
tive was to minimize the total number of products in
F, and F}, where no product sharing was permitted be-
tween F, and F;. Figure | shows the realization of an
EX-SOP for f with no product sharing.

We can often reduce the total number of prod-
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ucts in EX-SOPs if we permit product sharing be-
tween two SOPs[16]. The network shown in Fig.2
realizes an EX-SOP for f with product sharing. An
EX-SOP for f with product sharing can be written as
F = (F,V Fy) @ (Fy V Fy), where F,, F;, and F; are
SOPs, and F; represents shared products. In this pa-
per, our objective is to minimize the total number of
products in F,, F}, and Fj.

AND-OR-EXOR three-level network is suitable for
implementing arithmetic functions. For example, the
Texas Instruments SN181 arithmetic circuit has EXOR
gates in the outputs{20]. Programmable logic arrays
(PLAs) with two-input EXOR gates in the outputs ef-
ficiently realize adders[21]. AND-OR-EXOR is one
of the simplest three-level architecture, since it contains
only a single two-input EXOR gate. However, its logic
capability is quite high. Because of these, various PLAs
with two-input EXOR gates in the outputs were devel-
oped. Especially, RICOH, Lattice and AMD (MMI)
produced series of such PLAs.

Design methods for AND-OR-EXOR three-level
networks were considered in the past[5],[18], but no
practical algorithm was reported. A cut-and-try method
was reported in [ 12] and several heuristic algorithms to
simplify EX-SOPs were presented in [16], but they can-
not guarantee the minimality of the solutions. Upper
bounds on the number of products in AND-OR-EXOR
expansion were reported in [3],[4].

Fig.1 AND-OR-EXOR three-level network with no AND gate
sharing.
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Fig. 2 AND-OR-EXOR three-level network with AND gate
sharing.
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This paper is organized as follows: Sect.2 intro-
duces the notations. Section 3 shows the properties of
EX-SOPs. Section 4 illustrates the idea for the min-
imization of EX-SOPs and a technique to reduce the
search space. Section 5 presents an exact minimization
algorithm for EX-SOPs with five variables. Section 6
outlines an idea to simplify EX-SOPs with six or more
variables. Section 7 presents the experimental results.

2. Preliminaries

In this section, we introduce notations. We show the
differences between EX-SOPs with and with no prod-
uct sharing. In this paper, we distinguish functions and
their expressions. We use lower case letters, such as f,
g, h, to represent functions, and upper case letters, such
as F', H, S, to represent expressions of function.
Definition 1: Let 7(F') be the number of products in
an expression F'. A logic expression F' for f is said to
be minimum when 7(F) is minimum.
Definition 2: Let 7(SOP : f) be the number of prod-
ucts in a minimum SOP for f. Let 7(SOP : F) be the
number of products in an SOP F.
Definition 3: Let 7(EX-SOPng : f) be the number of
products in a minimum EX-SOP for f with no product
sharing (NS), and let 7(EX-SOPpg : f) be the number
of different products in a minimum EX-SOP for f with
product sharing (PS).

Let a logic function f be represented as follows:

f=({faVg)d(frVyg) (1)
Note that f,, f» and g correspond to F,, F}, and F;
in Fig. 2, respectively. To compute 7(EX-SOPps : f),
we choose f,, fp and g such that Eq.(l) is satisfied.
Thus, we have 7(EX-SOPpg : f) = min{7(SOP :
g) +7(SOP : f3) + T7(SOP : fi)}.

When F, = 0, the network in Fig. 2 reduces to the
network in Fig. 1. To compute 7(EX-SOPns : f), we
have to consider ¢ = 0, and choose f, and f, such
that they satisfy Eq. (1). Thus, we have 7(EX-SOPysg :
f) =min{r(SOP: f,) + 7(SOP : f)}.

Definition 4: 7(EX-SOPpgs : F) denotes the number
of different products in an EX-SOP F with product
sharing.

3. Properties of EX-SOPs

In this section, we show properties of EX-SOPs, which
are useful in minimizing EX-SOPs with product shar-
ing.

Definition 5: On the Karnaugh map of a function, a
cell that contain 1 is called a 1-cell and a cell that con-
tain O is called a O-cell.

Property 1: Consider the Karnaugh map for an EX-
SOP. Any 1-cell must be covered by the loop(s) for ex-
actly one SOP. If a O-cell is covered by a loop, then it
must be covered by at least one loop from both SOPs.
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Definition 6: Let g(x) and h(x) be n-variable logic
functions, where x = (z1,%s,...,2,). Let B = {0,1}.
If every a € B™ satisfying g(la) = 1 also satisfies
h(a) =1, then g(x) Ch(x). For simplicity, we write
g Ch. If every a € B™ satisfying g(a) = 1 also satisfies
h(a) = 1, and there exist @ € B™ such that g(a) = 0
and h(a) = 1, then g(x) C h(x). For simplicity, we
write g C h.

Definition 7: If p is a product and pC f, then p is an
implicant of f.

Lemma 1: If p is a shared product of an EX-SOP for
a function £, then p is an implicant of f.

Proof: An EX-SOP for f with a shared product p can
be written as f = (f, V p) ® (fp V p). This implies
f= (fa &b fb) P Thus, f = (fa®fb) Vp, ie, ng
Therefore, from the definition of the implicant, we have
the lemma. a
Corollary 1: If g represents shared products of an EX-
SOP for a function f, then g C f.

4. Minimization of EX-SOPs

In this section, we develop an exact minimization tech-
nique for EX-SOPs with product sharing.

4.1 Preparatory

The following two lemmas are used for the minimiza-
tion of EX-SOPs in Sects. 4.2 and 4.3.

Definition 8: Let g represents the shared products of an
EX-SOP of function f. The number of different prod-
ucts in a minimum EX-SOP for f with product sharing
is denoted by T(EX-SOPps: f: g).

To compute T(EX-SOPps : f : g) using the expan-
sion in Eq. (1), g is fixed and we choose f, and f, such
that Eq. (1) is satisfied. Thus, we have T(EX-SOPpg :
f:9)=71(SOP : g)+min{7(SOP : f,)+7(SOP: fi)}.
Note that 7(EX-SOPps : f : g) 2 T(EX-SOPps : f)
and T(EX-SOPpg : f : 0) = 1(EX-SOPns : f).

To obtain a minimum EX-SOP for f with g repre-
senting the shared products, we must minimize EX-SOP
for f with no product sharing where g represents don’t
cares of f.

Lemma 2: 7(EX-SOPpg : f : g) = 7(SOP : g) +
’fnguz T(EX-SOPyNs : fV h).

Proof: Consider f and gC f. From the definition, we
have

T(EX-SOPpg: f:g)
= 7(SOP:g)+ min{r(SOP: fo)+ 7(SOP: fu)},
(2)
where,
f=(avge(fevy)
= (fa®fo) 3 3)
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In Eq.(3), when ¢ = 1, f = 0. This implies that
in the computation of f, and f; in Eq.(3), g acts as a
don’t care set for f. Thus, there exists a function hg,
such that f V hs = f, ® fp and hsCg. If f, and fp
are represented by SOPs, then f, ® f, corresponds to an
EX-SOP for f V h, with no product sharing.

To obtain a minimum value of 7(SOP : f,) +
T(SOP : f,), compute the minimum EX-SOP for each
fV h with no product sharing, where h C g, and then
take the minimum of all 7(EX-SOPyg : fV h). Thus,

min{7(SOP : f,) + 7(SOP: f)}
= ’fngirz T(EX-SOPys : f V h). 4)

Therefore, from Eqs. (2) and (4), we have the lemma.
O

Example 1: Let us apply Lemma 2 to the logic
function f shown in Fig.3(a), where g represents
the shared products of an EX-SOP for f. To ob-
tain 7(EX-SOPps : f : g), we have to compute
T(EX-SOPng : f V h) for all hC g and choose h that
makes 7(EX-SOPng : fVh) minimum. The candidates
for h are 0, Tyzw, TyzZw, and Tyz.

Figure 3(b) shows the Karnaugh map of f Vv h,
where we choose h = ZyZw. Figure 3 (c) corresponds to
an EX-SOP for f Vv h with no product sharing. g, and
g» denote the functions represented by the two loops.
Therefore, fVh = q,®q and 7(EX-SOPng: fVh) =
2. For any other hCg, T(EX-SOPNs : fV h) > 2.

Thus, ;nging T(EX-SOPys : fVh) =2.

Thus, from Lemma 2, 7(EX-SOPpg : f : g) = 3,
since 7(SOP : g) = 1. When the shared products rep-
resents g in Fig.3(d), we have the minimum EX-SOP:
f=(5aVg)®(spVyg). o
Lemma 3: To obtain a minimum EX-SOP for a func-
tion f, it is sufficient to consider only the prime impli-
cants of f as the candidates for the shared products.

Proof: Let ¢ be a shared product of an EX-SOP for
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Fig. 3 Karnaugh maps for Example 1.
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f that is not a prime implicant of f. From Lemma 1,
q is an implicant of f. There exists a prime implicant
p of f, such that ¢ C p. Note that a replacement of ¢
by p does not change the function represented by the
EX-SOP. Therefore, it is sufficient to consider only the
prime implicants of f as the candidates for the shared
products, instead of all the implicants of f. ]

4.2 Candidates for the Shared Products

To obtain a minimum EX-SOP with product sharing,
we use the candidate functions for the shared products.
The computation technique of the candidate functions
is shown in the following:

Definition 9: Let PI(f) be the set of prime implicants
of f. Let G; (1 = 1) be the set of minimum SOPs with
i products, where each product is an element of PI(f).
If there are two or more candidate SOPs for G; each
representing the same function, eliminate all but one.
Let Go = {0}. G; (i = 0) is called the i-th shared set

for f.

Example 2: Figure 4 shows the Karnaugh map of a
logic function f. The prime implicants of f are shown
by p1, p2, ps, and py, and a false minterm of f is rep-
resented by m in the figure. A false minterm means a
O-cell. From the definition of the shared set, the follow-
ing are true:

. p1 V p2 € Gy, since 7(SOP : p; V p2) = 2, and
p1, p2 € PI(f).

2. Although ps, p3, pa € PI(f), p2 Vps Vps € Gs,
since p V p3 V pg is not a minimum SOP.

3. Although 7(SOP : mVpyg) = 2, mVpy ¢ Gz, since

m ¢ PI(f). mVps is not an element of any shared
set for f.

4. Gy = {p1, p2, p3, pa}, G2 = {p1 Vp2, ;1 V
P3, P1V Pa, P2V P3, P2V pa, p3 V s} and Gz =
{PrVP2Vps, prVpsVps}.

5. Since 7(SOP : f) =3, fori 2 4,G; = ¢ (null). O

Example 3: Figure 5 shows the Karnaugh map of a
logic function f. The prime implicants of f are shown
by p1, p2, P3, P4, D5, and pg. From the definition of the
shared set, either p; Vp3 Vps € G3 or p2Vpy Vpe € Gz,

but {p1 Vp3Vps, p2 VpsVpe} & Gs, since p; Vs V ps
and p; V py V pe represent the same function. 0

Py Py X
GeimB
(ERE @__]"p“

y
Fig. 4 Karnaugh map for Example 2.
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Fig. 5 Karnaugh map for Example 3.

Lemma 4: The i-th shared set (G;) for f provides suf-
ficient candidates for the ¢ shared products of EX-SOPs
for f.

Proof: From Lemma 3 and by the definition of the
shared set, we have the lemma. O

4.3 Idea for Minimization

The key idea for the minimization of EX-SOPs with
product sharing is shown in the following theorem:
Theorem 1: For a given function f, let s = T(SOP :

f) and G; (i =0,1,...,s) be the i-th shared set for f.
Then,

7(EX-SOPps : f) = i:cﬁfﬁif‘..,s {z

+ min {;?EI}, 7(EX-SOPys : f V h)}} NG

Proof: Note that in Eq.(5), g € G;. From Lemma 4,
g is a candidate function for the shared products. If g
represents the shared products, then from Lemma 2, the
number of different products in a minimum EX-SOP
for f is T(SOP : g) + ’ILnCH; T(EX-SOPns : f V h).

Let t; be the number of different products in a min-
imum EX-SOP for f with exactly ¢ shared products.
From Lemma 4, G; represents all the candidate func-
tions for the 7 shared products. Therefore, to obtain ¢;,
we must consider all the elements of G; as the candi-
dates for the shared products, and choose the EX-SOP
with the fewest products. Thus,

i =min {+(SOP: g)

+ f{ngilz 7(EX-SOPys: fV h)}. (6)

In Eq. (6), for any g € G, 7(SOP : g) = ¢. Thus, we
have

t; = i + Min {inghl, T(EX-SOPys : fV h)}. 7

To obtain the number of different products in a
minimum EX-SOP for f with product sharing, we must

choose the minimum of all the ¢;’s, wherei = 0,1,...,s.
Thus,
7(EX-SOPps : f) =, _in  {t:}. (8)

Hence, from Egs. (7) and (8), we have the theorem. O
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Fig. 6 Karnaugh maps for Examples 4 and 6.

Example 4: Let us apply Theorem [ to the logic func-
tion f shown in Fig.6(a). The 0-th shared set is Gy =
{0}. This implies g = 0, where g € Go. Since g = 0,
we have 7(EX-SOPps : f : g) = T(EX-SOPpns : f).
Thus, we consider an EX-SOP with no product shar-
ing as the initial solution for the EX-SOP with prod-
uct sharing. The prime implicants of f are shown in
Fig.6(a) by pa, ps, pe, and pg. T(SOP : f) = 4
and 7(EX-SOPng : f) = 4. Therefore, we consider
Pa V Py V pe V pg as an initial solution for EX-SOP
of f with product sharing. Figure 6(a) also shows
the prime implicants of f: p, = yw, po = Zz, and
p3 = zz. From the definition of the shared set, we have
G1 = {p1, p2, p3}, G2 = {p1 V2, p1 V3, p2V p3}, and
Gz = {p1Vp2Vps}

We search for an improved result by considering the
elements of G as the candidates for the shared products.
Let g = p1, where g € G;. Here, p; represents the shared
product. h has 16 candidate functions, where h Cg. Let
us choose h = ZTyzw V zyZw. Figure 6(b) shows the
Karnaugh map of f v h. Figure 6 (c) corresponds to an
EX-SOP for f Vv h with no product sharing. The func-
tions represented by the two loops are denoted by ¢, and
¢. Thus, fVh = q.Dq, and 7(EX-SOPys : fVh) =2.

For any other hCg and g € G; (i = 1,2,3),
T(EX-SOPNS L fVv h) > 2. Thus, T(EX-SOPPS :
f) = 3, and p;(= yw) represents the shared product.
Figure 6 (d) corresponds to a minimum EX-SOP for f
with product sharing: f = (faV fs) ® (fs V fs)- 0

4.4 Reduction of Search Space

Theorem 1 shows that for a given function f, we must
compute 7(EX-SOPyg : fVh) forall hCyg, g € G;
and ¢ = 0,1,2,...,7(SOP : f). This search space is
very large, even for functions with as few as five vari-
ables. The following observation reveals this:
Observation 1: Five-variable functions have up to 32
prime implicants. Some shared set for many five-
variable functions have more than 100,000 elements.
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Example 5: Consider the logic function f(z,y,z,v,
w) = »(7,11,13,14,17,18,20,24,31). This represen-

tation is defined in [7],[10],[11]. 7(SOP : f) = 12
and we have the following:

i 1 2 3 4 5 6
|G| 26 325 2440 | 11845 | 38014 | 79763
i 7 8 9 10 11 12

|G| || 106094 | 86139 | 40364 | 9967 | 1184 82
where |G;| denotes the number of elements in the shared
set G; (1 £i£12). a

A technique to drastically reduce the search space
for Theorem 1 is shown in the following:

Theorem 2: In Theorem 1, suppose we need to find an
EX-SOP with fewer than t different products, then we
must only consider those i’s, such that i < ¢ — 2.

Proof: Suppose we already considered all the i’s such
that ¢ <t — 2. Now it is sufficient to prove that a fur-
ther increase in i cannot produce an EX-SOP F' with
T(EX-SOPps : F) < t. We prove this by contradiction.

To obtain 7(EX-SOPpg : F) < t, we increase ¢ by
I, i.e., i is now ¢t — 1. In Theorem 1, ¢ represents the
number of shared products. An EX-SOP with prod-
uct sharing must have at least one non-shared product.
Thus, 7(EX-SOPpg : F) =2 t. Similarly, we can show
that a further increase in ¢ cannot produce an EX-SOP
with fewer products. Hence, we have the theorem. O

Example 6: Let us consider the logic function f shown
in Fig.6(a). We have 7(SOP : f) = 3. This implies
that without Theorem 2, we must consider those ¢’s in
Theorem 1, such that i £ 3. We have 7(EX-SOPyg :
f) = 4. We need to find an EX-SOP for f with fewer
than four different products. Thus, from Theorem 2,
we have only to consider those ¢’s in Theorem 1, such
that ¢ £ 2. Example 4 shows that when i = 1, we found
an EX-SOP for f with three different products. Thus,
from Theorem 2, we have only to consider those ¢’s in
Theorem 1, such that 7 < 1. ]

Example 7: Let us consider the logic function f shown
in Example 5. Without Theorem 2, we have to consider
those i’s in Theorem 1, such that i < 12. We have
T(EX-SOPng : f) = 7. Thus, from Theorem 2, we
have only to consider those ¢’s in Theorem 1, such that
i £ 5. The values of |G;| shows that the number of
elements in the shared sets to consider in Theorem 1 is
reduced by 86%. m]

5. An Algorithm Using Table Look-Up

The minimization algorithm for EX-SOPs with prod-
uct sharing is based on Theorem 1. To compute
T(EX-SOPpg : f) using Theorem 1, we have to com-
pute 7(EX-SOPxg : f vV h) many times. A straightfor-
ward computation of 7(EX-SOPng : fVh) is time con-
suming. Thus, instead of doing logic minimization, we
use a table of all the values for 7(EX-SOPys : fV h).
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32 bits 32 bits 32 bits integer

frep fa b T (EX'SOPNS:freP)

1,228,158 entries

~ NP-representative functions

Fig. 7 EX-SOP solution and cost table with no product shar-
ing for the NP-representative functions of five variables.

Up to four-variable functions, we can use a table of
all the values for 7(EX-SOPys : fV h). In the
case of five-variable, the total number of functions is
232 ~ 4.3 x 10%, and it is impractical to store all the
values for 7(EX-SOPpng : fV h). Thus, we use a cost
table for the NP-representative functions.

The number of products in a minimum EX-SOP
for a function is invariant under the permutation and/or
negation of the input variables. In other words, if f~g,
then 7(EX-SOPys : f) = T(EX-SOPys : g), where ~
denotes the NP-equivalence relation[7],[8],[11]. The
number of NP-equivalence classes of five-variable func-
tions is 1,228,158. Figure 7 shows the table we use.
We have computed this table in [3] and 16 megabytes
memory space is necessary to keep it in the memory.
The left most column of the table in Fig. 7 contains all
the NP-representative functions f..,. The two columns
at the middle store the values of f, and f,, where
frep = fa ® fo, such that 7(SOP : f,) + 7(SOP : f)
is minimum. The right most column stores the values
of T(EX-SOPyns : frep). For a given function fgiven,
to obtain T(EX-SOPns : fgven) from Fig.7, first we
compute the NP-representative function fre, of fyiven.
Since the number of products is invariant under the NP-
equivalence class, we have T(EX-SOPng : fgiven) =
T(EX-SOPNg : frep). Using fre, for the table look-up
in Fig.7, we obtain 7(EX-SOPps : fgiven)-

The minimization algorithm for EX-SOP with
product sharing 1is 1implemented as procedure
SHARE_EX-SOP, the pseudocode of which is shown
in Fig.8. A minimum EX-SOP for the given function
with no product sharing is taken as an initial solution.
Then, a minimum EX-SOP with the fewer shared prod-
ucts is searched first and a new solution is saved if it
reduces the number of different products. Thus, we have
the following:

Remark 1: The procedure SHARE_EX-SOP produces
a minimum EX-SOP with the least number of shared
products.

6. EX-SOPs with More Than Five Variables

When no product sharing is permitted, an EX-SOP for
an n-variable function can be derived from a pair of
EX-SOPs for (n — 1)-variable functions[3],[4]. In this
section, we prove that this is also true when the sharing
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/* obtain fo, fy, fs, and product, where f = (fa v */
/¥ ) ®(fu V fs), such that product = min{r(SOP: */
/¥ fs)+T(SOP: fa) + T(SOP: f3)} */
| procedure SHARE_EX-SOP(function f) {
var /% define variables % /

product, bound, i, u : integer;

P, Q, S, G; : set of logic functions;

fa, fo; fs, frep, o b, fhpep © logic function;

2

3
4

5

6 make S and G; empty;

7 P « {all the prime implicants of f};

8 frep «— NP-representative function of f;

9  product — T(EX-SOPNs : frep); /% from Fig.7 %/
10 obtain f, and f, by using frep; /% from Fig.7 %/
11 fs — 0;

12 bound — product -2;

13 for i — 1 to bound do {

14 for each Q C P such that |Q| =i do {

15 g — logical OR of all the elements in Q;
16 if g4 S and g ¢ G; then

17 store g in Gj;

18 }

19 for each g € G; do {

20 for each h C g such that h ¢ S do {

21 store h in S;

22 fhrep — NP-representative function of fVh;
23 u— 7(EX-SOPNs : fhrep);

24 if u + i < product then {

25 product — u + i;

26 obtain f, and fp by using fhyep;
27 fs —g;

28 bound — product —-2;

29 }

30 }

31 }

32

33 print fo, fs, fs, and product as the final solution;

Fig. 8 Pseudocode of the procedure SHARE_EX-SOP.

of products is permitted in EX-SOPs.

Lemma 5: If f and g are disjoint (i.e., f - g = 0), then
[ (h1®hi12)Vg-(hor ®haz) = (fh11V gha1) ® (fhi2V
ghas).

Proof:

[ (h1 ©hi2) Vg (ha1 @ ho2)
=f - (h11®h12) ® g (ha1 ® h22)
= (fh11 ® gh21) ® (fhi2 @ ghao)
= (fh11 V gh21) ® (fhi2 V gha2). ]
Theorem 3: Let 7(EX-SOPpg : n) be the maximum
number of different products required to realize an

n-vartable function by a minimum EX-SOP with prod-
uct sharing. Then

T(EX-SOPpg :n) < 27(FX-SOPpg : n—1).

Proof: An arbitrary n-variable function f(zy,zs,...,
z,) can be decomposed into two sub-functions by using
the Shannon decomposition[7],[11],[17], f = Z1fo V
z1f1, where fo = flz,=0 and fy = fl|z,=1. By repre-
senting fo and f; by minimum EX-SOPs with product
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sharing, we have an expression F) for f:

Fy =z.{(Hoo V So) ® (Ho1 V So)}
Vzi{(Hiwo VvV S1)® (Hi1 VS1)}Y  9)

where, H;;’s are minimum SOPs. S, and S; are min-
imum SOPs representing shared products for the mini-
mum EX-SOPs of fy and f;, respectively. Then,

T(Fl) = T(Hoo) + T(Ho]) + T(So)
+T(H10)+T(H11)+T(51). (10)

fo and f; are functions of n—1 variables, thus from
Eq.(9) we have

7(Fy) € 2r(EX-SOPps : n — 1). (11)

By applying Lemma 5 to Eq.(9), we have an EX-
SOP F, for f:

F> = {(Z1(Hoo V So) V z1(H1o V S1)}
& {(Z1(Ho1 V So) V z1(Hy1 V S1)}.
= F3 = {(#1Hoo V x1Hio) V (2150 V 21.51)}
& {(#1Ho1 V 21H11) V (150 V 2151)}.
= Fy=(H,VS)® (HyV S). (12)

In Eq.(12), H,, Hp, and S represent minimum
SOPs Of.'f]_Hoo\/.’L‘lHlo, leOIV‘TlHlls and :2150V$1Sl,
respectively. S represents shared products of the EX-
SOP F, for f. Note that the number of products in
Eq. (12) does not increase from Eq.(9). Thus, we have

T(EX-SOPpg : n) £ 7(Hoo) + 7(H10) + 7(Ho1)
+7‘(H11)+7'(So)+7'(51). (13)

Hence, from Egs.(10), (11), and (13), we have the the-
orem. O
By using the minimization algorithm presented in
Sect. 5, we can obtain a table of minimum EX-SOPs for
the NP-representative functions of five variables. From
the idea presented in Theorem 3, this table can be used
to develop a heuristic simplification program of EX-
SOPs with product sharing for six or more inputs[1].

7. Experimental Results

We minimized expressions for all the 1,228,158 NP-
representative functions of five variables. Table 1
compares numbers of five-variable functions requiring
t products for different classes of minimum expres-
sionst. In this table, the data for SOPs and ESOPs
are taken from [15]. EX-SOPs with no product shar-
ing were minimized by the algorithm in [3]. EX-SOPs
with product sharing were minimized by the procedure
SHARE_EX-SOP presented in Sect. 5.

In Table 1, av = Z(t x number of functions requir-
ing t products)) / total fumber of functions. Total number

of five-variable functions is 232.
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Table 1 Numbers of five-variable functions requiring ¢ prod-
ucts in minimum expressions.
EX-SOP

t SOP ESOP NS Ps

0 1 1 1 1
1 243 243 243 243
2 20676 24948 25988 25988
3 818080 1351836 1511996 1532236
4 16049780 39365190 47838990 49658670
S| 154729080 | 545193342 | 694830748 | 727980932
6| 698983656 | 2398267764 | 2678055614 | 2697565894
7| 1397400512 | 1299295404 | 870943300 | 816721636
8 | 1254064246 11460744 1760384 1481664
9| 571481516 7824 32 32
10 | 160200992

11 34140992

12 6160176

13 827120

14 84800

15 5312

16 114

av 7.4635 6.1616 6.0185 5.9971

NS : with no product sharing.

PS : with product sharing.

av : average.

x=1

x=0
P3y /v\1p4 Ps Pg

N ) 22
(111)52/\g1 D,

y y
€ 1[5 CI LD
w b w
Fig. 9 Karnaugh map for a five-variable function.

For five-variable functions, on the average, mini-
mum EX-SOPs with and with no product sharing re-
quire 5.9971 and 6.0185 products, respectively, while
minimum SOPs require 7.4635 products. For five-
variable functions, on the average, minimum EX-
SOPs require fewer products than minimum ESOPs.
On the average, minimum EX-SOPs with and with
no product sharing require nearly the same num-
ber of products. For, about 92 million five-variable
functions, we could reduce the number of prod-
ucts up to two by using product sharing.  For
example, minimum EX-SOPs for f(z,y,z,v,w) =
$(7,8,11,12,13,14, 16,19, 20, 21, 22, 31) with and with
no product sharing require five and seven products, re-
spectively. The number of shared products in a mini-
mum EX-SOP for five-variable functions is up to three.
For example, a minimum EX-SOP for f(z,y, z,v,w) =
3(1,2,4,5,7,13,14,21, 22, 25, 26) requires three shared
products, which is shown in Fig.9. This EX-SOP can
be represented as (p; V Fy) @ (p2 V p3 V Fy), where
F; = py V ps V pg represents the shared products, and p’s
are shown in Fig.9.

In [3], we showed that five-variable functions re-
quire up to 9 products in minimum EX-SOPs with no
product sharing. Table 1 shows that this is also true
for EX-SOPs with product sharing. Thus, from Theo-
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rem 3, minimum EX-SOPs for n variables with product
sharing require at most 9- 2”5 (n > 6) products.

The execution time of the procedure
SHARE_EX-SOP for function f depends on many fac-
tors. They include 7(EX-SOPys : f), the number
of prime implicants of f, the number of minterms in
each of these prime implicants, and the distribution of
these prime implicants on Karnaugh map. On the aver-
age, a five-variable function took 41 cPU seconds on a
DEC ALPHASTATION 200. This average is obtained by
minimizing 10,000 randomly generated functions with
16 true minterms. Although the minimization program
is not so time consuming for each function, we spent
nearly two and half months of computation time by us-
ing several workstations to minimize over 1.2 million
NP-representative functions.

8. Conclusions and Comments

In this paper, we presented an exact minimization
algorithm for AND-OR-EXOR three-level networks
(EX-SOPs) for up to five-variable functions. We min-
imized EX-SOPs with product sharing for all the
1,228,158 NP-representative functions of five variables
and completed the table of minimum EX-SOPs with
product sharing. We confirmed that the minimum EX-
SOPs for five-variable functions require up to 9 prod-
ucts and that for n-variable functions require at most
9.2775(n 2 6) products. This bound is tighter than the
previously known one: 5-2"* (n > 4) [4]. This up-
per bound is smaller than 2"~1, the tight upper bound
for the minimum SOPs. Also, we found that for five-
variable functions, on the average, minimum EX-SOPs
with and with no product sharing require 5.9971 and
6.0185 products, respectively, while minimum SOPs re-
quire 7.4635 products. The table of minimum EX-SOPs
is useful in a heuristic simplification program for EX-
SOPs with six or more inputs[1]. An exact logic min-
imizer is useful to evaluate the minimality of heuristic
logic minimizers. In order to develop a good heuristic
logic minimizer, an exact logic minimizer is essential.
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