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SUMMARY A generalized Reed-Muller expression (GRM) is
obtained by negating some of the literals in a positive polarlty

Reed-Muller expression (PPRM). There are at most ar2™ 7 dif-
ferent GRM:s for an n-variable function. A minimum GRM is one
with the fewest products. This paper presents certain properties
and an exact minimization algorithm for GRMs. The minimiza-
tion algorithm uses binary decision diagrams. Up to five vari-
ables, all the representative functions of NP-equivalence classes
were generated and minimized. Tables compare the number of
products necessary to represent four- and five-variable functions
for four classes of expressions: PPRMs, FPRMs, GRMs and
SOPs. GRMs require, on the average, fewer products than sum-
of-products expressions (SOPs), and have easily testable realiza-
tions.

key words: AND-EXOR, Reed-Muller expression, complexity
of logic networks, logic minimization, binary decision diagrams,
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1. Introduction

Conventional logic design is based on AND and OR
gates. However, exclusive-OR (EXOR) based designs
have certain advantages. The first is that arithmetic
and telecommunication circuits are efficiently realized
with EXOR gates[21]. Examples of such circuits are
adders and parity checkers. The second advantage is
that the circuits can be made easily testable by using
EXOR gates. Various classes exist in AND-EXOR ex-
pressions [9],[13],[20]. Among them, positive polar-
ity Reed-Muller expressions (PPRMs) are well known:
a PPRM, an exclusive-OR sum-of-products with posi-
tive literals, uniquely represents an arbitrary logic func-
tion of n variables. Networks based on PPRMs are
easily testable[15],[16], but they require more prod-
ucts than ones based on other expressions. Generalized
Reed-Muller expressions (GRMs) [4] are generalization
of PPRMs. They were studied many years ago[2],
but no practical applications have been shown. Re-
cently, we have developed easily testable realizations for
GRMs[23]. Because GRMs require many fewer prod-
ucts than PPRMs and have very good testability, the op-
timization of GRMs have practical importance. As for
the optimization of GRMs, only a few papers have been
published [3],[5],[14]. This paper presents some prop-

Manuscript received March 21, 1996.
fThe authors are with the Department of Computer
Science and Electronics, Kyushu Institute of Technology,
Tizuka-shi, 820 Japan.
*This paper is based on [24].

erties and an exact minimization algorithm for GRMs.
GRM based design is useful in field programmable gate
arrays (FPGAs), where ORs and EXORs have the same
costs.

2. Definitions and Basic Properties
2.1 PPRM, FPRM, and GRM

Definition 1: An expression for f is said to be min-
imum if it represents f and has the least number of
product terms.
The following Lemma is the basis of the EXOR-
based expansion:
Lemma 1: [25] An arbitrary logic function f (z1,xa,
.,Tn) can be expanded as

[ =Z1fo®m1f1, (D
f=fo@mfe, (2)
f=hezfs, (3)

where fo = f(0,29,...,
fa=fo® fi1.
Equations (1), (2) and (3) are called the Shannon
expansion, the positive Davio expansion, and the neg-
ative Davio expansion, respectively. If we use Eq.(2)
recursively to a function f, then we have the following:
Lemma 2: [25] An arbitrary n-variable logic function
f(z1,22,...,2s) can be represented as

m“)’ -fl :f(17w27"'

, %), and

f = (J/O@alxl@a@zZ@"'@anmn
@ a1271Ty D 4132123 D+ D An—1nTn—1Tn

<> IR @D a13..,.L1L2L3 * * * Ty 4)

where o’s are either O or 1.

Equation (4) is called a positive polarity Reed-
Muller expression (PPRM). For a given function f,
the coefficients ag, a1, az, - - -, a12..., are uniquely deter-
mined. Thus, the PPRM is a canonical representation.
This unique representation is also the minimum. The
number of products in Eq. (4) is at most 2" and all the
literals are positive (uncomplemented).

In Eq.(4), for each variable z; (i = 1,2,...,n), if
we use either the positive literal (z;) throughout or the
negative literal (Z;) throughout, then we have a fixed po-
larity Reed-Muller expression (FPRM). For each vari-
able x;, there are two ways of choosing the polarities:
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positive (z;) or negative (Z;). Thus, 2 different set of
polarities exist for an n-variable function. For a given
function and a given set of polarities, a unique set of
coefficients (ag, a1, ..., a12...,) exists. Thus, an FPRM
is a canonical representation.

In Eq.(4), if we can freely choose the polarity for
each literal, then we have a generalized Reed-Muller ex-
pression (GRM). Unlike FPRMs, both z; and Z; can
appear in a GRM. There are n2" ! literals in Eq. (4), so
272" " Gifferent set of polarities exist for an n-variable
function. For a given set of polarities, a unique set of
coeflicients (ag, a1, ..., a1s..,) exists. Thus, a GRM is a
canonical representation for a logic function. Properties
were analyzed in [3] for GRMs and an exact minimiza-
tion algorithm was shown. However, this algorithm can
simplify functions with only a few input variables. In
the next section, we will develop a more efficient mini-
mization algorithm for GRMs.

Example 1:
l. 12923 ® T129 is 2 PPRM.,

2. z1%29%3 ® z2Z3 is an FPRM, but not a PPRM (z3
has negative literals).

3. 21 B z2 ® 1Ty is a GRM, but not an FPRM (z1
and z2 both have positive and negative literals).

From the above arguments, we have the following:
Theorem 1: Suppose that PPRM, FPRM and GRM

denote the corresponding set of expressions. Then, the
following relations hold:

PPRM C FPRM C GRM.

Tables 1 and 2 show the number of 4- and 5-
variable functions requiring ¢ products for different
classes of minimum expressions, where SOP denotes
sum-of-products expressions. In the case of five-variable

Table 1 Number of 4-variable functions requiring ¢ products
in minimum expressions.

t | PPRM | FPRM | GRM | SOP
0 1 1 1 1
1 16 81 81 81
2 120 836 2212 1804
3 560 3496 | 20856 | 13472
4 1820 8878 | 37818 | 28904
5 4368 17884 4512 | 17032
6 8008 20152 56 3704
7 11440 11600 512
8 12870 2336 26
9 11440 240

10 8008 32

11 4368

12 1820

13 560

14 120

15 16

16 1

av 8.00 5.50 3.68 4.13
av : average
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functions, on the average, GRMs require 6.230 products
while SOPs require 7.463 products.

Definition 2: Let n(PPRM : n), n(GRM : n), and
n(SOP : n) denote the average numbers of products
needed in the minimal representation for n-variable
functions by PPRMs, GRMs, and SOPs, respectively.
Theorem 2: n(PPRM :n)=2""1

Proof: An arbitrary function of n variables can be writ-
ten as Eq. (4). The average is

277.
1
n(PPRM :n) = ="t (number of functions
2 =0
requiring ¢ products)

1 & [
- 2(7)
t=0

1

22"
= o1 O

Definition 3: Let 7(GRM : f) denote the number of
products in a minimum GRM for f. Let 7(GRM : n)
denote the maximum number of products to realize an
n-variable function by minimum GRM:s.

Lemma 3: 7(GRM :n) < 27(GRM :n — 1).

Proof: An arbitrary n-variable function can be ex-
panded as f = fo @z, fa, where fy and f, are functions
of variables z1,,...,and z,_,. Let Gy and Gy be
minimum GRMs for fo and f,, respectively. Note that
if Go and G, are GRMs, then Gy ®z,, G5 is also a GRM.
Thus, we have 7(GRM : f) < 7(GRM : fo)+7(GRM :
Jf2). Because 7(GRM : fo) and 7(GRM : f,) are at most
T(GRM :n —1), f can be represented by a GRM with
at most 27(GRM : n — 1) products. O

2n22”—1

Table 2 Number of 5-variable functions requiring ¢ products
in minimum expressions.

t FPRM GRM SOP
0 1 1 1
1 243 243 243
2 6932 24452 20676
3 79820 1283820 818080
4 575930 36127630 16049780
5 3228162 489868278 154729080
6 14327120 | 2243146768 698983656
7 49694224 | 1494589544 | 1397400512
8 | 138496600 29183904 | 1254064246
9 | 319912340 677056 571481516
10 | 587707228 65600 160200992
11 | 877839192 34140992
12 | 955078352 6160176
13 | 803257168 827120
14 | 393502216 84800
15 | 130238200 5312
16 19114960 114
17 1816640
18 88032
19 3680
20 208
21 48
av 11.566 6.230 7.463

av : average
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Lemma 4: n(GRM :n) < 2n(GRM :n —1).

Proof: From the proof of Lemma 3, 7(GRM : f) <
T(GRM : fo) + T(GRM : f5). Let F,, be the set of all
the n-variable functions.

1

MGRMHn):éﬁ-z:dGRM:ﬂ
fE€Fn

< oy O {T(GRM : )
feln

+7(GRM : f3)}

= 2% . QZH{U(GRM in—1)
+9(GRM :n — 1)}

= 2n(GRM :n —1). O

Theorem 3: n(GRM :n) < (6.230)-2" %, whenn > 5.
Proof: From Lemma 4, we have n(GRM : n) <
2" 5n(GRM : 5). From Table 2, we have n(GRM :
5) = 6.230. Hence, we have the theorem. |

Theorems 2 and 3 show that GRMs require, on the
average, less than a half of the products for PPRMs.

Similarly, we have the following theorem.
Theorem 4: 7(SOP :n) < 7.463-2""° (n >5).

Table 2 also shows that GRMs require fewer prod-
ucts than SOPs. Thus, we have the following:

Conjecture 1: 7(GRM : n) < n(SOP : n).

The above conjecture considers the number of
products on the average. However, there are exceptions.
There exists functions whose minimum GRMs require
more products than their minimum SOPs. For example,
the n-variable function zy x5 - - - £, V& Zg - - - T, TEQUITES
n products in a minimum GRM and two products in a
minimum SOP.

3. Some Properties of GRMs

Definition 4: Let p be a product. The set of variables
in p is denoted by V (p) = {z; | =; or Z; appears in p}.
Example 2: V(z1Z9%4) = {z1, T2, 24}

Definition 5: Let G be a GRM. A product p is said
to have a maximal variable set if V(p) ¢ V(p'), for all
other products p’ in G.

Example 3: LetaGRMbe G = T1ToPT1T3DT1T2T3D
Z4. Then, V(:Eﬂfz) = {(1;‘1,232}, V(.’f11‘3) = {I1,$3},
V(:L‘lfzx;;) = {:El,mg,.’l]g,}, and V(f4) = {.274} Thus,
x1Zox3 and z4 have maximal variable sets.

Definition 6: Let = be a variable and « € {0,1,2}. z*
is a literal of z such that

z if a=0,
=< x if a=1,
1 if a=2.

From the definition of PPRM, we have the follow-
ing lemma:
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Lemma 5: An arbitrary PPRM can be represented by
an expression

F=Y WPy abn,

where 3 = (ﬂl,ﬂg,...,ﬁn>, Bi € {1,2} ('L: 1,2,...

and h(B) € {0,1}.

Example 4: Consider a PPRM F =z Q2122 D x3. It

can be represented as F' = zjzizi & zlzizs @ ciziz].
From the definition of GRM, we have the following

lemma:

,’I’L),

Lemma 6: An arbitrary GRM can be represented by
an expression

G=Y gle)agiag - agm,

where & = (a1, g, ..., ), a; € {0,1,2} (1 =1,2,...,
n), and g(a) € {0,1}.

Example 5: Consider a GRM G =%, @ 21Z2 @ T3. It
can be represented as G = x9x3z2 © zizdzi ® x¥x3x§.

Lemma 7: Let the PPRM for f be
P =3 h(@)ef e - o,

Where,B — (ﬂl?ﬂ%"' aIBn)y ﬁz S {172} (2 = 1727"'an)7
and h(B) € {0,1}. Also let a GRM for f be

G=¥W gla)siag? - a2n,

where o = (a1, q9,...,0,),q; € {0,1,2} (i =1,2,...,
n), and g(e) € {0,1}. If F' has a product p = xf1x§2
---zPn with a maximal variable set, then G has a prod-

uct ¢ =z x5? - - - x2", where
_J Oorl if gi=1,
&= 2 if B;=2,

and ¢ has the maximal variable set in G.
Proof: Without loss of generality, we can assume that
the PPRM for f contains a product p1 = zyxg--- o4
with a maximal variable set.

1) Suppose that a GRM for f contains a product

ql — xilmgz .. 'CUgS,
where s > ¢, ¢; € {0,1} (j = 1,2,...,s), and q; has a
maximal variable set. Then, ¢; can be written as

qr = (.T1@51)($2®52)"'($s@55)- Q)

By expanding Eq. (5), it can be shown that the PPRM
for f must contain the product zyzs---zs. Also, be-
cause ¢; has a maximal variable set, the product will
not disappear. However, this contradicts the assump-
tion that p; has a maximal variable set of size {. Thus,
the GRM does not contain the product g;.

2) Suppose that a GRM for f contains a product

_ c1 .,C C,
g2 = Ty' Ty TS,
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where s < ¢, ¢; € {0,1} ( =1,2,...,s), and g2 has a
maximal variable set. Because ¢y is maximal and can
be written as

g2 = (21 @ E) (22D C) - (x5 B ECs),

the PPRM must contain the product zyxs - --xs. Also,
the product will not disappear since ¢g; has a maximal
variable set. However, this contradicts the assumption
that the product p; has a maximal variable set.

From 1) and 2), the GRM contains a product with
a form

q=afiag - aft,
where ¢; € {0,1} (j =1,2,...,t), and ¢ has a maximal
variable set. a
Corollary 1: If all the products in the PPRM of a func-
tion f have a maximal variable set, then a minimum
GRM for f contains the same number of products as
the PPRM.
Corollary 2: The PPRM in Corollary 1 is also a min-
-+ imum GRM for f.
Example 6: Let the PPRM for a function f be F =
z1 ® zaz3. Because both of the products have a maxi-
mal variable set, a minimum GRM has two products.
Thus, F' is also a minimum GRM for f.
Corollary 3: Let p; be a product in the PPRM for f
which has a maximal variable set. Then,

a) any GRM for f contains a product p, such that
V(p2) = V(p1), and

b) any GRM for f does not contain a product p3 such
that V(ps) D V(p1) and V(p3) + V(p1).

Example 7: Let the PPRM for f be F = z1 & zox3.
GRMs for f are Gy = ©1 ® zax3, G2 = 71 ® 23 O To73,
Gs =1PxaPr2Ts3, G4 = T1 P2 S x3PT2T3, etc. Note
that, in the PPRM for f, the products z; and z,x3 have
maximal variable sets. Thus, all the GRMs for f con-
tain the products with the form £* and z522% . GRMs

for f do not contain the products with the form m’{lwgz,

b mg3, nor 23"z 25% | where b’s are binary constants.

4. Basic Idea for Minimization

Definition 7: z% is called a literal of =, where a €

{0,1}.

% = z
x

Lemma 8: Letac {0,1},thenz* =2®a®1=2Da,

and
a
zt =
a

if a=0,
if a=1.

if =0,
if z=1.
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Definition 8: Let f(z1,%2,...,2,) be a function of n
variables. The Boolean difference of f with respect to
ZT; is
df
dl‘i

= f($171'2, .. 7$i—~150)mi+17 e 71‘71)
®f<$17$23' .- 7$i~1)1)wi+17' e 7-7771)-

Lemma 9: [7] For an arbitrary function f(z;,zs,
ey T

df _ df d’f da’f

dCEZ' n d—fi7 da:idmj - dwjdaci’

and if g does not depend on z;, then

dg _, dlag)

da:i o da:i

In order to obtain the minimum GRM of a given
function, we have to solve a system of logic equations.
Such a system is given by

fi(yl;y27--'7yt) :gi(y1>y27~"7yt)7

where, i = 1,2,...,k.
However, these equations are converted into one
equation as follows:

Lemma 10: f; = g; holds for all ¢ (¢ = 0,...,k) iff
GR(f) =1, where

k

GR(f) = /\(fi © g ®1).

=0
4.1 A Naive Method for Optimization

An arbitrary two-variable function can be represented
by a GRM:

b b bs b
1, 22) = ago ® ap1zy* & a0z, & a112° x5, (6)

where the a’s and b’s are binary constants. By setting

(z1,22) to (0,0),(0,1),(1,0) and (1,1) in Eq.(6), we
have
£(0,0) = ago ® ag1b1 ® aiobs ® a11bsbs, (7N
J(0,1) = ago @ ap1b1 ® aiobs ® ar1bsby, )]
f(1,0) = ago ® ao1b1 ® arobs @ a11bsby, 9
F(1,1) = aoo ® ao1by ® a10bz @ a11bsba. (10) -

From Eqgs. (7)—(10) and by Lemma 10, we have

GR(f) = '¢(O>O> . "/}(07 1) . 1[1(1, O) ' ¢(1a 1)
— 1, )

where

$(0,0)

f(0,0) @ ago @ ao1by ® aioby
D 011531—)4 () 1,
¥(0,1) = f(0,1) ® ago ® ao1by D arobs
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®aibsbs ® 1,

$(1,0) = £(1,0) ® ago ® ao1bs © aiobs
@ anbsby ® 1,

¥(1,1) = f(1,1) @ ago @ ao1br @ aiobe
D ay1bsbs ® 1.

Thus, the assignment of a’s and b’s that satisfy
GR(f) in Eq.(11) also satisfies Eq. (6). The minimum
GRM is one that has the fewest products, i.e., a GRM
with the sum of a’s minimum. The number of b’s in
Eq.(6) is four. Thus, a minimum GRM can be found
out of 2*(= 16) different GRMs. However, the expres-
sion in Eq.(11) is very complex, and it is not easy to
obtain the minimum solution.

42 An Efficient Method of Optimization

This method is more complex than the previous method,
but it is more efficient. In Eq.(6), by obtaining the
Boolean difference, and by setting (z1,z2) = (0,0), we
have

d(d d _
da:(lc]lzg = a1, d—cfl = a19 D ay1bs, (12)
d _
ZZL = ap1 @ a11bs. (13)
To

On the other hand, consider the PPRM for the func-
tion:

f(z1,22) = coo ® corz ® c10z1 ® criz1ze.  (14)

By obtaining the Boolean difference of Eq.(14),
and by setting (z1,2z2) = (0,0), we have

d(d, d d
(df) =ci1, d—j:lzclo, E:_cf_z = co1. (15)

dl‘ldfﬂz

From Egs. (12), (13) and (15), we have

¢ = a1, €10 = a0 D airbs, (16)

co1 = a1 @ ar1bs. (17)

In Eqs. (6) and (14), by setting (z1,z2) = (0,0), we
have

coo = oo ® ao1by ® aiobs ® a11bsbs (18)

From Egs. (16)—(18) and Lemma 10, we have

GR(f) = ¢(070) : ¢(Oa 1) ' ¢(1a0) : d’(l’ 1) =1, (19)

where
$(0,0) = coo @ ago ® ao1b1 ® a10by & a11b3bs ® 1,
$(0,1) = co1 ® ap ® a11bz B 1,

0) =
1) =
$(1,0) = c10 D a10 B a11bs @ 1,
(1 1) ci1 Bay @ 1.
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Note that ¢’s of Eq.(19) is simpler than <’s of
Eq.(11): ¢’s contain fewer EXOR and AND opera-
tors than +’s. In Sect.5, we will formulate a method
to solve GR(f) by generating its binary decision dia-
grams (BDDs)[1]. In that case, at first it would be nec-
essary to compute the BDDs of all the ¢’s of Eq.(11)
or all the ¢’s of Eq.(19). Because ¢’s are simpler than
1’s, computation of BDDs for GR(f) using Eq.(19) is
more efficient than using Eq. (11).

4.3 Three-Variable Case

An arbitrary 3-variable function f can be represented
by a GRM:
b b
f(z1,22,23) = aooo @ a001Z3' & A010T3”
bs, b b
®© ao1175°T3* D a100%7
be,.b bs b
@ a1012,° 3" D a110T1° T’
biob11,.b
oy &111%101’ 11333127 (20)
where a’s and b’s are binary constants.
On the other hand, the PPRM for the function f
is:
flz1, @2, 3) = cooo ® Co01Z3 D Co10Z2 D C100%1
@ co11%223 @ C1017173
@ c110Z1%2 D C111T1%2%3, (21)

where ¢’s are binary constants.
Similarly to the two-variable case, we have

GR(f) = ¢(17 1, 1) : ¢(17 150) : ¢(1,0, 1)

=1, (22)
where
$(1,1,1) = c111 D a1 &1,
#(1,1,0) = c110 @ @110 © a111b12 B 1,
#(1,0,1) = c101 ® a101 @ a111b11 B 1,
#(0,1,1) = co11 ® ao11 ® a111bio B 1,
#(1,0, 0) = c100 P 100 @ 10107 B a110by

@ ar1biibz ® 1,
$(0,1,0) = co10 D aoio ® a110bs ® ao11bg
® a111b10b12 @ 1,
$(0,0,1) = coo1 D acor & ao11bs ® a101br
@ ar11brobi1 @1,
= coo0 @ aooo D aoo1b1 ® ao1oba
@ ao11b3bs S a100bs D ar01b6b7
© a110bsbg ® a111b10b11612 1.

4.4 mn-Variable Case

Similar to the two and three-variable cases, we can
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make 2" different equations, and can get the expres-
sion for GR(f) for an n-variable function. An assign-
ment of a’s and b’s that satisfies GR(f) corresponds to
a GRM for the given function f. For n-variable case,
a GRM similar to Eq.(6) contain 2" a’s and n2"~!
b’s, thus, the total number of variables in GR(f) is
2" +n2"! = (n+2)27"1. The minimum GRM corre-
sponds to the assignment of a’s and b’s that makes the
sum of a’s minimum.

-5. An Algorithm Using BDDs
5.1 Minimization Using BDDs

Consider the binary decision diagram (BDD) for
GR(f), where the edges for uncomplemented a’s have
distance one, and other edges (i.e., edges for a’s, b’s and
b’s) have distance zero. Then, each path in the BDD
from the root node to the terminal 1 corresponds to
an assignment of a’s and b’s satisfying Eq.(22). And
the shortest path from the root node to the terminal 1
corresponds to a minimum GRM. Theoretically, it is
possible to obtain a minimum GRM by using the BDD
for GR(f). However, a naive method using the BDD
often requires excessive memory and computation time.
To reduce the size of the BDDs and the computation
time, we use various techniques, which will be shown
in Sects. 5.2-5.5.

5.2 Threshold Function

GR(f) represents all possible GRM:s for a given func-
tion. However, we need only one minimum GRM. Sup-
pose that we have a near minimal GRM for £, and let ¢,
be the number of products in it. Then, we only need to
find a GRM for f that has less than ¢y products. If such
a GRM does not exist, then the near minimal GRM is
also an exact minimum GRM for f.

Definition 9: Let a; € {0,1} for i = 0,1,...,2" — 1,
and t be a positive integer. A function

2™ 1

TH(ao,al,...,azn_l Zt): 1 if 7,;) ai<t7
0 otherwise.
T'H(ag,a1,...,asn_1 : t) is used to represent the

set of GRMs with less than ¢ products.
5.3 Computation of GR(f)

A naive method for computing GR(f) requires exces-
sive memory and computation time. In the case of three-
variable functions, we use the following method:

¢(1, 1, 1) — ¢(1, 1, 1) ' TH(ao,CLl, ceey Qo t),
¢(O> 17 1) — ¢<07 17 1) : ¢(15 1’ 1)7

¢(1>07 1) — ¢(17 07 1) : ¢(17 17 1)7
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¢(1,1,1)
¢(1,1,0) ¢(1,0,1) $(0,1,1)
¢(1,0,0) ¢(0,1,0) #(0, 6,1)
¢(0,0,0)

Fig. 1 Computation of GR(f).

#(1,1,0) «— ¢(1,1,0) - ¢(1,1,1),
#(0,0,1) «+— ¢(0,0,1) - ¢(0,1,1) - ¢(1,0,1),
#(0,1,0) «— ¢(0,1,0) - ¢(0,1,1) - $(1,1,0),
$(1,0,0) — ¢(1,0,0) - ¢(1,0,1) - ¢(1,1,0),
#(0,0,0) «+ ¢(0,0,0) - ¢(0,0,1)

¢(Oa 150) : ¢(1707 0);
GR(f) < 4(0,0,0).

This method drastically reduces the computation
time as well as the memory requirement for generating
the BDD for GR(f). Figure 1 illustrates this multi-
plication method. Extension to the n-variable case is
straightforward.

5.4 Variable Ordering in the BDDs

The ordering of the variables in the BDDs influences the
memory requirement as well as computation time. In
the case of GR(f) for three-variable functions Eq. (22),
we use the following ordering: aj;1 < big < by <
b12<a11o<bg<b9<a101<b6<b7<a011<b3<
by < a0 < bs < ap10 < ba < agor < by < aggo, where
ai11 is the nearest to the root node. Extension to the
n-variable case is straightforward.

5.5 Maximal Variable Sets

Corollary 3 shows the products that will never appear
in the GRMs for a given function. In generating BDDs
for GR(f), we do not use the variables (a’s and b’s)
corresponding to such products.

5.6 Minimization Algorithms

Algorithm 1 (Exact Minimum GRM):

1. Obtain a near minimal GRM by Algorithm 2, and
let ty be the number of products.

2. Construct the BDD for T'H (ag, a1, ... ,agn_1 : to).

3. Construct the BDD for T'H (ag, ay, . . .
GR(f).

yagn_1 : o) -
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4. Find a shortest path to the terminal one for the
BDD computed in step 3.

5. Obtain the corresponding GRM.
Algorithm 2 (Near minimal GRM):

1. Obtain a minimal PSDRM[20] for the function
f(z1,22,...,2,) by the similar algorithm to [20],
and let t; be the number of products.

2. Decompose f into 2"~* sub-functions as

Br—
f = E mflx'gz cee $n7ikkg(mn~k+17w'n—.k+27
-7*’1;71 :,61,62,-.-,,8”_]9)7 (23)

where B’s are 1 or 2, and g(Zn—k+1, Tn—k+25- -
Zn : B1,B2, .-, Bn_k) Tepresents a k-variable sub-
function. For each sub-function, obtain the GRM
by using the table of exact minimum GRMs of k-
variables (k = 3,4 or 5). Let t; be the number of
products in Eq. (23).

3. Obtain the GRM with min{t;,t5} products.
6. Experimental Results

We developed a minimization program, which exten-
sively uses BDDs. The computation time of the pro-
gram depends on the size of the BDDs, and the size
of the BDDs depends on the number of inputs and the
number of the products in the near minimal GRMs ob-
tained from Algorithm 2. The program can minimize
GRMs for all the functions with up to five variables.
We minimized many functions of 6 variables with up to
10 products, and some functions of 7 and 8 variables
with up to 9 products. We also minimized parity func-
tions with up to 9 variables. The minimization program
proved the minimality of the solutions, produced by a
heuristic simplification program[5], for some 6 and 7
variable functions with up to 16 and 11 products, respec-
tively. In the above experiments, we used a Sun Ultral
Model 170 workstation with 256 megabytes main mem-
ory. We generated all the 1,228,158 representative func-
tions for NP-equivalence classes of five or fewer vari-
ables, and minimized each function. On the average, a
five-variable function could be minimized in 25 seconds
by an Hewlett Packard Model 715/50 workstation with
64 megabytes main memory. We also developed min-
imization programs for FPRMs and SOPs. Tables 1
and 2 show the number of four- and five-variable func-
tions requiring ¢ products, respectively. For five-variable
functions, on the average, GRMs require 6.230 products
while SOPs require 7.463 products. Thus, we verified
that Conjecture 1 is correct for n = 4 and 5.

7. Conclusion and Comments

In this paper, we presented three classes of AND-EXOR
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expressions: PPRM, FPRM and GRM. Among these
classes, GRMs have easily testable realizations, and a
GRM never require more products than the correspond-
ing PPRM or FPRM. Thus, the optimization problem
for GRMs is important, especially in FPGAs, where the
EXORs have the same costs as ORs. We presented some
properties of GRMs, and showed an exact minimization
algorithm. The minimization program can minimize
GRMs for all the functions up to five variables, and
some functions with more inputs. We have completed
the table of minimum GRMs with up to five-variable
functions. Thus, the minimum GRMs with up to five
variables can be found in a table look-up method. The
table of minimum GRMs is also useful in a heuristic op-
timization program for GRMs with six or more inputs.
An exact minimization algorithm is useful to test the
minimality of the solutions produced by a heuristic min-
imization algorithm[5]. In addition, we obtained the
statistical data for the minimum expressions for other
classes of expressions up to five variables. On the aver-
age, GRMs require 6.230 products while SOPs require
7.463 products for five-variable functions. We conjec-
ture that GRMs, on the average, require fewer products
than SOPs for the functions with more inputs. This re-
sult shows that GRM based design is useful not only
for arithmetic and telecommunication circuits but also
for general circuits. Recently, another GRM minimiza-
tion algorithm based on BDDs were published [11]. We
think, the performance of [11] is comparable to ours.
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