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Abstract—This paper proposes minimization algorithms for the
memory size and the average path length (APL) of heterogeneous
multivalued decision diagrams (MDDs). In a heterogeneous MDD,
each multivalued variable can take different domains. To rep-
resent a binary logic function using a heterogeneous MDD, we
partition the binary variables into groups with different numbers
of binary variables and treat the groups as multivalued variables.
Since memory size and APL of a heterogeneous MDD depend
on the partition of binary variables as well as the ordering of
binary variables, the memory size and the APL of a heteroge-
neous MDD can be minimized by considering both orderings and
partitions of binary variables. The experimental results show that
heterogeneous MDDs can represent logic functions with smaller
memory sizes than free binary decision diagrams (FBDDs) and
smaller APLs than reduced ordered BDDs (ROBDDs); the APLs
of heterogeneous MDDs can be reduced by half of the ROBDDs
without increasing memory size; and heterogeneous MDDs have
smaller area–time complexities than MDD(k)s.

Index Terms—Area–time complexity, MDD(k), average path
length (APL), FBDD, heterogeneous MDD, logic simulation,
memory size, representation of logic functions, ROBDD.

I. INTRODUCTION

B INARY decision diagrams (BDDs) [5] and multivalued
decision diagrams (MDDs) [16] are extensively used in

logic synthesis [9], logic simulation [1], [13], [19], software
synthesis [2], [15], [26], etc. To reduce memory sizes and
runtime for these applications, proper optimizations of decision
diagrams (DDs) are very important. For example, in logic
simulation using DDs [1], [13], [19], minimization of the
average path length (APL) of DDs reduces the evaluation time
of logic functions, since the evaluation time depends on the path
length of DDs. In software synthesis using DDs [2], [15], [26],
which automatically generates program codes from a functional
specification, minimization of both memory size and APL of
DDs makes program codes compact and faster, since the code
size and the runtime of the generated program codes depend on
the memory size and path length of DDs. Most optimization al-
gorithms for DDs use variable reordering approaches [7]–[11],
[14], [20], [21], [23], [28], [32], [38]. However, when MDDs
are used to represent binary logic functions, we can use an
additional optimization approach, which is a partition of binary
variables [12], [29], [33], [36].
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To represent a binary logic function using an MDD, we
partition the binary variables into groups and treat each group
as a multivalued variable. In many cases, the groups have the
same number of binary variables [12], [19], [33], [36]. On
the other hand, in a heterogeneous MDD [29], the groups can
have different numbers of binary variables. Thus, by optimizing
both orderings and partitions of binary variables, we can obtain
heterogeneous MDDs that have smaller memory sizes and
APLs than ordinary MDDs with the same group size (called
homogeneous MDDs). In [36], the optimizations of both order-
ings and partitions of binary variables for only homogeneous
MDDs are considered.

In this paper, we propose memory size and APL minimiza-
tion algorithms for heterogeneous MDDs that consider both
orderings and partitions of binary variables. For BDDs and
homogeneous MDDs, the APL minimization often increases
memory sizes. On the other hand, for heterogeneous MDDs, the
APLs can be minimized without increasing memory size. The
memory size minimization algorithm for heterogeneous MDDs
can reduce both memory sizes and APLs, and the APL mini-
mization algorithm for heterogeneous MDDs can reduce APLs
without increasing memory size. By experiments, we show that
both memory sizes and APLs of heterogeneous MDDs can be
reduced to 86% and 67% of reduced ordered BDDs (ROBDDs),
respectively, and APLs of heterogeneous MDDs can be reduced
by half of the ROBDDs without increasing memory size.

The rest of the paper is organized as follows. Section II shows
the necessary terminology and theorems. Section III proposes
memory size and APL minimization algorithms for heteroge-
neous MDDs. And Section IV compares memory sizes and
APLs of heterogeneous MDDs for many benchmark functions.

This paper is an extended version of [30] and [31].

II. PRELIMINARIES

This section defines the necessary terminology and shows
theorems. In this paper, we assume that 1) the given logic
function is completely specified and has no redundant variables;
and 2) the reader is familiar with the standard terminology for
BDDs and ROBDDs [5].

A. Free BDD

Definition 2.1: An ROBDD has the same variable order on
all paths. A free BDD (FBDD) is a BDD that allows different
variable orders along different paths in the BDD.

An FBDD is a generalization of an ROBDD, so FBDDs
can be more compact than ROBDDs by considering different
variable orders along each path [10], [11], [38].
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B. MDD

This section provides a brief definition of MDD. Please refer
to [16] for more details.
Definition 2.2: A BDD represents a binary logic function

fb(x1, x2, . . . , xn) : Bn → B, where B = {0, 1}. An MDD
represents a multivalued (p-valued) function fm(X1,X2, . . . ,
Xu) : Pu → P , where P = {0, 1, . . . , p − 1} and p ≥ 3.

Nonterminal nodes in an MDD for the p-valued function
have p outgoing edges while nonterminal nodes in a BDD
have two outgoing edges. As with a BDD, there are two types
of MDD: reduced ordered MDD (ROMDD) and free MDD
(FMDD). This paper considers only ROMDDs.

C. Partitions of Binary Variables

To represent a binary logic function using an ROMDD, we
partition the binary variables into groups and treat each group
as a multivalued variable.
Definition 2.3: Let f(X) be a two-valued logic function,

where X = (x1, x2, . . . , xn) is an ordered set of binary vari-
ables. Let {X} denote the unordered set of variables in X .
Let Xi ⊆ X . If {X} = {X1} ∪ {X2} ∪ · · · ∪ {Xu}, {Xi} �=
φ and {Xi} ∩ {Xj} = φ(i �= j), then (X1,X2, . . . , Xu) is
a partition of X . Xi is called a super variable. If |Xi| =
ki (i = 1, 2, . . . , u) and k1 + k2 + · · · + ku = n, then a two-
valued logic function f(X) can be represented by a multi-
valued input two-valued output function that is a mapping
f(X1,X2, . . . , Xu) : P1 × P2 × P3 × · · · × Pu → B, where
Pi = {0, 1, 2, . . . , 2ki − 1} and B = {0, 1}.

Definition 2.4: A fixed-order partition of X = (x1, x2, . . . ,
xn) is a partition (X1,X2, . . . , Xu), where

X1 = (x1, x2, . . . , xk1)

X2 = (xk1+1, xk1+2, . . . , xk1+k2)

...

Xu =
(
xk1+k2+···+ku−1+1, xk1+k2+···+ku−1+2, . . . , xn−1, xn

)

and |Xi| = ki. That is, in the fixed-order partition of X , the
variable order (x1, x2, . . . , xn) is fixed.

When the variable order is not fixed (i.e., the partition is
not fixed-order partition), we call the partition nonfixed-order
partition. In this paper, a partition means fixed-order partition
unless stated otherwise.
Example 2.1: Consider (X1,X2), which is a fixed-order par-

tition of X , where X = (x1, x2, x3, x4, x5), each xi is a binary
variable, and the variable order (x1, x2, x3, x4, x5) is fixed.
When X1 = (x1, x2) and X2 = (x3, x4, x5), we have k1 = 2,
k2 = 3, P1 = {0, 1, 2, 3}, and P2 = {0, 1, . . . , 7}. Note that
X1 takes four values and X2 takes eight values. So, a five-
variable logic function f(X) can be represented by the mul-
tivalued input two-valued output function f(X1,X2) : P1 ×
P2 → B.

Similarly, we show all possible nonfixed-order partitions of
X into (X1,X2), where k1 = 2 and k2 = 3. Since the variable

order (x1, x2, x3, x4, x5) is not fixed, all possible nonfixed-
order partitions of X can be considered as

X1 = (x1, x2), X2 = (x3, x4, x5)

X1 = (x1, x3), X2 = (x2, x4, x5)

X1 = (x1, x4), X2 = (x2, x3, x5)

X1 = (x1, x5), X2 = (x2, x3, x4)

X1 = (x2, x3), X2 = (x1, x4, x5)

X1 = (x2, x4), X2 = (x1, x3, x5)

X1 = (x2, x5), X2 = (x1, x3, x4)

X1 = (x3, x4), X2 = (x1, x2, x5)

X1 = (x3, x5), X2 = (x1, x2, x4)

X1 = (x4, x5), X2 = (x1, x2, x3).

D. Heterogeneous MDD

Definition 2.5: When X = (x1, x2, . . . , xn) is partitioned
into (X1,X2, . . . , Xu), an ROMDD representing a multivalued
input two-valued output function f(X1,X2, . . . , Xu) is called
a heterogeneous MDD. Specially, when k = |Xi| = |X2| =
· · · = |Xu|, an ROMDD for f(X1,X2, . . . , Xu) is a homoge-
neous MDD and denoted by MDD(k). A heterogeneous MDD
represents a mapping f : P1 × P2 × . . . × Pu → B while an
MDD(k) represents a mapping f : Pu → B, where P =
{0, 1, . . . , 2k − 1}, Pi = {0, 1, . . . , 2ki − 1}, and B = {0, 1}.
An MDD(k) is a special case of heterogeneous MDDs. In a
heterogeneous MDD, nonterminal nodes representing a super
variable Xi have 2ki outgoing edges, where ki denotes the
number of binary variables in Xi. Similarly, in an MDD(k),
nonterminal nodes have 2k outgoing edges.

For n-variable functions f , if n < ku (i.e., n is indivisible
by k), additional redundant binary variables are used to con-
struct MDD(k)s. The set of binary variables with such variables
is {X ′} = {x1, x2, . . . , xn, xn+1, . . . , xku}, where |X ′| = ku.
Note that f is independent of xn+1, xn+2, . . . , xku.

Example 2.2: Consider a logic function f = x1x2x3 ∨
x2x3x4 ∨ x3x4x1 ∨ x4x1x2. Fig. 1(a), (b), (c), and (d) repre-
sents the ROBDD, MDD(2), and heterogeneous MDDs for f ,
respectively. In Fig. 1(a), the solid lines and the dotted lines de-
note 1-edges and 0-edges, respectively. In Fig. 1(b), the binary
variables X = (x1, x2, x3, x4) are partitioned into (X1,X2),
where X1 = (x1, x2) and X2 = (x3, x4). In Fig. 1(c), X1 =
(x1, x2, x3) and X2 = (x4). This partition produces a heteroge-
neous MDD with minimum memory size among heterogeneous
MDDs for f . In Fig. 1(d), X1 = (x1) and X2 = (x2, x3, x4).
This partition produces a heterogeneous MDD with maximum
memory size among heterogeneous MDDs for f .

In this paper, we use shared decision diagrams (SDDs)
[22] to represent multiple-output functions F = (f0, f1, . . . ,
fm−1) : Bn → Bm, where B = {1, 0}, and n and m denote
the number of input and output variables, respectively. In the
following, BDDs and MDDs mean shared BDDs (SBDDs) and
shared MDDs (SMDDs), respectively.



NAGAYAMA AND SASAO: ON THE OPTIMIZATION OF HETEROGENEOUS MDDs 1647

Fig. 1. ROBDD, MDD(2), and heterogeneous MDDs. (a) ROBDD.
(b) MDD(2). (c) Minimum heterogeneous MDD. (d) Maximum heteroge-
neous MDD.

E. Number of Heterogeneous MDDs

This section shows the number of different heterogeneous
MDDs to estimate the complexity of optimization for heter-
ogeneous MDDs.
Theorem 2.1: Let Nnonfix(n) be the number of different

nonfixed-order partitions of X = (x1, x2, . . . , xn). Then

Nnonfix(n) =
n∑

r=1

r∑
i=0

rCi(r − i)n(−1)i.

Proof: See Appendix. �
Therefore, when both orderings and partitions of the binary

variables for an optimization of heterogeneous MDDs are con-
sidered, the number of different heterogeneous MDDs for an
n-variable logic function is given by Nnonfix(n).

Table I compares the numbers of different ROBDDs, het-
erogeneous MDDs, and FBDDs for n-variable logic functions,
where the number of different ROBDDs is equal to the number
of different permutations of variables, that is, n!, and the
number of different FBDDs Sn is given by [38]

Sn = nS2
n−1 =

n∏
k=1

k2n−k

.

The number of different heterogeneous MDDs is larger than
that of ROBDDs. The number of different FBDDs is much
larger than those of ROBDDs and heterogeneous MDDs.

TABLE I
NUMBER OF DIFFERENT DDS FOR n-VARIABLE LOGIC FUNCTIONS

For a naive optimization method that finds an optimum solu-
tion by enumerating all possible ones, we have the following.

1) An optimization of heterogeneous MDDs is more difficult
than that of ROBDDs.

2) Optimizations of heterogeneous MDDs and ROBDDs are
much easier than that of FBDDs.

F. Memory Size of DD

In this section, we define the memory sizes of DDs to
compare the sizes for different types of DDs.
Definition 2.6: In a DD, the number of nodes in the DD,

denoted by nodes (DD), is the sum of all nonterminal nodes.
Definition 2.7: The width of a DD with respect to xi,1

denoted by width(DD, i), is the number of nodes in the DD
corresponding to the variable xi. The number of nodes in the
DD is given by

nodes(DD) =
n∑

i=1

width(DD, i)

where n denotes the number of variables.
Definition 2.8: The memory size of a DD, denoted by

Mem(DD), is the number of words needed to store all nonter-
minal nodes in the DD into a memory, where we assume that a
word is large enough to store a variable index or an edge pointer.

To represent a DD, each nonterminal node in the DD requires
an index and a set of pointers that refer the succeeding nodes.
Since each nonterminal node in a BDD has two pointers, the
memory size of a BDD is given by

Mem(BDD) = (2 + 1) × nodes(BDD). (2.1)

Similarly, since each nonterminal node in an MDD(k) has 2k

pointers, the memory size of an MDD(k) is given by

Mem(MDD(k)) = (2k + 1) × nodes (MDD(k)) .

In a heterogeneous MDD, each super variable can take different
domains. Therefore, the memory size of a heterogeneous MDD

1Note that this definition differs from that of “width of BDDs” in [23].
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is the sum of sizes for the super variables

Mem(heterogeneous MDD)

=
u∑

i=1

(2ki + 1) × width(heterogeneous MDD, i).

where u and ki denote the number of super variables and the
number of binary variables in a super variable Xi, respectively.

Example 2.3: The memory sizes of ROBDD, MDD(2),
and heterogeneous MDDs are as follows: for the ROBDD in
Fig. 1(a), it is 18; for the MDD(2) in Fig. 1(b), it is 15; for
the heterogeneous MDD in Fig. 1(c), it is 12; and for the
heterogeneous MDD in Fig. 1(d), it is 21.
Definition 2.9: Given a logic function f and the order of

input variables, the fixed-order minimum heterogeneous MDD
for the logic function f is the heterogeneous MDD with mini-
mum memory size among the heterogeneous MDDs with fixed-
order partitions of the variables.
Definition 2.10: Given a logic function f , the minimum het-

erogeneous MDD for the logic function f is the heterogeneous
MDD with minimum memory size among the heterogeneous
MDDs with nonfixed-order partitions of the variables.
Theorem 2.2 [27]: Consider an ROBDD and a heteroge-

neous MDD for an n-variable logic function that is not a
constant function. When an order of binary variables is fixed,
for the number of nodes in the ROBDD and the memory size
of heterogeneous MDD obtained by considering only the fixed-
order partitions, the following relation holds:

Mem(heterogeneous MDD) ≥ nodes(ROBDD) + 2.

Theorem 2.3: Consider an ROBDD and a heterogeneous
MDD for an n-variable logic function that is not a constant
function. When an order of binary variables is fixed, for the
memory sizes of ROBDD and heterogeneous MDD obtained
by considering only the fixed-order partitions, the following
relation holds:

Mem(heterogeneous MDD)
Mem(ROBDD)

>
1
3
.

Proof: See Appendix. �
Theorem 2.4: Assume that the number of nodes in an

ROBDD for an n-variable function f is the upper bound [17]

2n−r + 22r − 3

where r is the largest integer satisfying n − r ≥ 2r. Let
Memmin(MDD) be the memory size of the minimum hetero-
geneous MDD for f . Let s = 2r + r − n, where 0 ≤ s ≤ 2r.
When n is large and 2 ≤ s ≤ 2r, the following relation holds:

Memmin(MDD)
Mem(ROBDD)


 2s + 3
3(2s + 1)

.

Proof: See Appendix. �

Corollary 2.1: In Theorem 2.4, when n is sufficiently large
and s = 0 or 9 ≤ s ≤ 2r, the following relation holds:

Memmin(MDD)
Mem(ROBDD)


 0.33.

Proof: See Appendix. �
Property 2.1: Consider a logic function f(X). Let

Memmin(f) be the memory size of a fixed-order minimum
heterogeneous MDD for f . When f is decomposed into f =
g(h(X1),X2), let Memmin(g) and Memmin(h) be the memory
sizes of fixed-order minimum heterogeneous MDDs for g and
h, respectively. For many benchmark functions, the following
two relations hold:

Memmin( f) > Memmin(g)

Memmin( f) > Memmin(h).

G. APL of DD

Definition 2.11: In a DD, a sequence of edges and nonter-
minal nodes leading from the root node to a terminal node is a
path. The number of nonterminal nodes on the path is the path
length.
Definition 2.12: The APL of a DD, denoted by APL(DD),

is the sum of path lengths for all assignments of values to the
variables divided by the number of the assignments.

In this paper, the APL of an SDD for multiple-output
function F = (f0, f1, . . . , fm−1) is the sum of the APLs of
individual DDs for each function fi.

In this paper, we assume the following computational
model.2

1) The logic functions are evaluated by traversing DDs from
the root node to a terminal node according to the values
of the input variables.

2) Encoded input values are available, and their ac-
cess time is negligible. For example, when X1 =
(x1, x2, x3, x4) = (1, 0, 0, 1), X1 = 9 is immediately
available as an input to the algorithm.

3) Most computation time is devoted to accessing nodes.
4) The evaluation times for all DD nodes are the same.

In this case, the average evaluation time of a DD is proportional
to the APL of the DD. Thus, in this model, we use the APL to
compare the evaluation times of different types of DDs.
Example 2.4: The APLs for different DDs are as follows.

For the ROBDD in Fig. 1(a), APL(ROBDD) = 3.125. For the
MDD(2) in Fig. 1(b), APL[MDD(2)] = 1.75. For the heteroge-
neous MDD in Fig. 1(c), APL(heterogeneous MDD) = 1.375.
For the heterogeneous MDD in Fig. 1(d), APL(heterogeneous
MDD) = 2.0.
Theorem 2.5: When the number of nodes in an ROBDD for

an n-variable function f is the upper bound [17]

2n−r + 22r − 3

2This model can be implemented by the dedicated hardware proposed in [13].
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Fig. 2. Exact memory size minimization algorithm for heterogeneous MDDs.

where r is the largest integer satisfying n − r ≥ 2r, there exists
a heterogeneous MDD for f that satisfies

APL(heterogeneous MDD) ≤ 2.0

Mem(heterogeneous MDD) ≤Mem(ROBDD).

Proof: See Appendix. �

III. OPTIMIZATION ALGORITHMS OF

HETEROGENEOUS MDDS

Since memory size and APL of a heterogeneous MDD de-
pend on the partition of binary variables as well as the ordering
of binary variables, the memory size and APL of a heteroge-
neous MDD can be minimized by considering both orderings
and partitions of binary variables.

In this section, we formulate the memory size and APL min-
imization problems of heterogeneous MDDs considering both
orderings and partitions of binary variables. We also present
exact minimization algorithms to solve them and heuristic
minimization algorithms.

A. Memory Size Minimization

We formulate the memory size minimization problem of
heterogeneous MDDs considering both orderings and partitions
of binary variables as follows.
Problem 3.1: Given a logic function f(X), find an ordering

and a partition of X that produce the minimum heterogeneous
MDD for f .

Fig. 2 shows a pseudocode to solve Problem 3.1. It uses
an ROBDD for the given logic function as the internal rep-
resentation. In the second and seventh lines in Fig. 2, min-
imize_memory [29] finds an optimum fixed-order partition
that produces the fixed-order minimum heterogeneous MDD.
The subprocedure minimize_memory is based on dynamic
programming, and its time and space complexities are O(n2N)
and O(N), respectively, where n is the number of binary
variables and N is the number of nodes for the given BDD. This
subprocedure consumes 50% to 80% of the total computation
time for Algorithm 3.1. In the fifth line, Theorem 2.2 is used to

Fig. 3. Heuristic memory size minimization algorithm for heterogeneous
MDDs.

reduce the computation time. This algorithm finds the minimum
heterogeneous MDD by exhaustive search.

However, as shown in Section II-E, when the number of
binary variables is large, finding a minimum heterogeneous
MDD within a reasonable time is difficult. Thus, we developed
a heuristic minimization for heterogeneous MDDs using the
sifting algorithm [32] and the fixed-order partition algorithm
minimize_memory [29]. The sifting algorithm repeatedly per-
forms the following basic steps:

1) Change the variable order;
2) Compute the cost.

Most sifting algorithms for minimizing the number of nodes in
an ROBDD use the number of nodes as the cost. The mem-
ory size minimization algorithm for a heterogeneous MDD,
however, uses the memory size of the heterogeneous MDD as
the cost. The computation of the cost (i.e., minimize_memory)
consumes 50% to 80% of total computation time for this
heuristic approach. Fig. 3 shows a pseudocode for the heuristic
minimization algorithm. In this algorithm, each variable xi is
sifted across all possible positions to determine its best position.
First, xi is sifted in one direction to the closer extreme (top
or bottom). Then, xi is sifted in the opposite direction to the
other extreme. In the tenth line in Fig. 3, Property 2.1 is used
to find useful siftings of xi. The Lmem in the ninth line denotes
the memory size of fixed-order minimum heterogeneous MDD
for logic function g or h obtained by functional decomposition
f(X) = g(h(X1),X2). When xi moves down to the bottom of
the ROBDD, we use h to compute Lmem, where X1 contains
the binary variables that are above the level of xi in the variable
order and X2 contains the remaining ones. If cost ≤ Lmem,
we stop the sifting of xi to the bottom because sifting of
xi further down to the bottom seldom reduces the memory
size due to Property 2.1. Similarly, when xi moves up to the
top of the ROBDD, we use g to compute Lmem, where X2

contains the binary variables that are below the level of xi
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Fig. 4. Exact APL minimization algorithm for heterogeneous MDDs.

in the variable order and X1 contains the remaining ones.
This bounding method is similar to the one shown in [7]
that reduces the computation time of the classical sifting for
node minimization.

B. APL Minimization

For any n-variable logic function f(X), the trivial partition
of X , where X = X1 and |X1| = n, produces a heterogeneous
MDD with the smallest APL (i.e., APL = 1.0), independently
of the variable ordering. However, since the memory size of the
heterogeneous MDD for the trivial partition is nearly 2n, such
a heterogeneous MDD is too large in most cases. Therefore,
an ordering and a partition of X that minimize the APL within
a given memory size limitation are sought. We formulate the
APL minimization problem considering both orderings and
partitions of binary variables as follows.
Problem 3.2: Given a logic function f(X) and a memory

size limitation L, find an ordering and a partition of X that
produce the heterogeneous MDD with the minimum APL and
with memory size equal to or smaller than L.

Fig. 4 shows the pseudocode to solve Problem 3.2. In the sec-
ond and tenth lines in Fig. 4, the subprocedure minimize_APL
[26], [29] finds an optimum fixed-order partition that minimizes
the APL of a heterogeneous MDD. Since it is a recursive pro-
cedure, the top level for ROBDD (i.e., level = 1) is required as
the initial argument. The subprocedure minimize_APL is based
on a branch-and-bound method, and its time and space com-
plexities are O(2n + n2N) and O(N), respectively, where n is
the number of binary variables and N is the number of nodes
for the given BDD. Although the worst case time complexity
for this subprocedure is high, the actual computation time is
short. For example, when n = 256 (for des), the computation
time for this subprocedure is 0.44 CPU seconds (refer to [29]
for more details). This subprocedure consumes 60% to 70%
of the total computation time for Algorithm 3.3. Algorithm
3.3 finds an optimum solution for Problem 3.2 by exhaustive
search.

Fig. 5. Heuristic APL minimization algorithm for heterogeneous MDDs.

As well as the memory size minimization, Algorithm 3.3
is time consuming for functions with many inputs. Thus,
we developed a heuristic APL minimization algorithm for
heterogeneous MDDs using a sifting algorithm [32] and
the fixed-order partition algorithm minimize_APL [26], [29].
The subprocedure minimize_APL consumes 70%–80% of the
total computation time for this heuristic approach. Fig. 5 shows
a pseudocode for the heuristic APL minimization algorithm. In
this algorithm, the APL of a heterogeneous MDD is used as
the cost for the sifting algorithm. The APL of a heterogeneous
MDD can be computed using a method similar to the APL of
ROBDDs in [28]. In the tenth line in Fig. 5, Property 2.1 is
used to find useful siftings of xi. If L ≤ Lmem, we stop the
sifting of xi because the further sifting of xi seldom finds a
smaller memory size than Lmem due to Property 2.1. That is,
in most cases, the further sifting of xi produces heterogeneous
MDDs with larger memory size than the memory size limitation
L when L ≤ Lmem.

IV. EXPERIMENTAL RESULTS

To show the compactness of heterogeneous MDD and the
efficiency of optimization algorithms, we compared heteroge-
neous MDDs with the different types of DDs using benchmark
functions. Experiments were conducted in the following envi-
ronment:

• CPU: Pentium 4 Xeon 2.8 GHz;
• L1 Cache: 32 KB;
• L2 Cache: 512 KB;
• Main Memory: 4 GB;
• Operating System: redhat (Linux 7.3);
• C-Compiler: gcc -O2.
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TABLE II
MEMORY SIZES OF ROBDDS, FBDDS, AND HETEROGENEOUS MDDS FOR ALL FOUR-VARIABLE LOGIC FUNCTIONS

A. Comparison With FBDDs

In this section, we compare heterogeneous MDDs with
FBDDs to show the compactness of heterogeneous MDDs.

We implemented Algorithm 3.1 and compared the min-
imum heterogeneous MDDs with the minimum ROBDDs
and the minimum FBDDs for all four- and five-variable
logic functions. To compare them, we classified all the logic
functions into NPN equivalence classes [24], [35]. For the
four-variable case, 65 536 functions are classified into 222
NPN equivalence classes, and for the five-variable case,
4 294 967 296 functions are classified into 616 126 NPN equiv-
alence classes. Table II compares minimum DD sizes for the
four-variable case. In Table II, the NPN representative func-
tions are grouped into nine rows according to the memory
size of the minimum ROBDD. The column “Mem” denotes
the memory size of each DD. The columns “#class” and
“#function” in Table II denote the number of NPN equivalence
classes and the number of functions included in the classes,
respectively. The bottom row “Avg.” denotes the arithmetic
average of the relative memory sizes for all functions, where
the memory size of ROBDD is set to 1.00. Note that ROBDDs,
FBDDs, and heterogeneous MDDs in this table do not use
complemented edges [3], [22].

For the four-variable case, FBDDs are smaller than ROBDDs
for 5568 functions, 8.5% of all functions, while heterogeneous
MDDs are smaller than ROBDDs and FBDDs for all functions
except for ten degenerate functions (0, 1, xi, and x̄i, where
i = 1, 2, 3, 4). For these ten functions, the memory sizes of
ROBDDs, FBDDs, and heterogeneous MDDs are equal. On
average over all functions, minimum FBDDs require 99%
of the memory size of minimum ROBDDs while minimum
heterogeneous MDDs require 72% of the memory size for
minimum ROBDDs.

For the five-variable case, FBDDs are smaller than ROBDDs
for 1 938 548 576 functions, 45% of all functions, while heter-
ogeneous MDDs are smaller than ROBDDs for 4 294 967 284
functions, 99% of all functions. Also, heterogeneous MDDs are

TABLE III
MEMORY SIZES OF ROBDDS, FBDDS, AND HETEROGENEOUS

MDDS FOR HWB FUNCTIONS

smaller than FBDDs for 4 294 921 204 functions, 99% of all
functions, and for the others, heterogeneous MDDs are equal
in size to FBDDs. There was no function whose FBDD was
smaller than the heterogeneous MDD. On average over all
functions, minimum FBDDs require 96% of the memory size
for minimum ROBDDs while minimum heterogeneous MDDs
require 67% of the memory size for minimum ROBDDs.

Also for the hidden weighted bit (HWB) functions [6], we
compared the memory sizes of DDs. The HWB function is
defined as

HWB(X) =
{

0, when wt(X) = 0
xwt(X), when wt(X) > 0

where X = (x1, x2, . . . , xn) and the weight function wt(X) is
given by

wt(X) = x1 + x2 + · · · + xn

where xi is a binary variable and + denotes the integer addition.
The number of nodes in ROBDDs for the HWB function is an
exponential function of n [6]. Table III compares the memory
sizes of DDs for HWB functions. We took the numbers of nodes
for ROBDDs and FBDDs from [10] and [11] and calculated
the memory sizes of ROBDDs and FBDDs using (2.1) in
Section II-F. The column labeled “n” denotes the number
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TABLE IV
MEMORY SIZES OF ROBDDS, FBDDS, AND HETEROGENEOUS

MDDS FOR MCNC BENCHMARK FUNCTIONS

of binary variables for HWB functions. The column labeled
“MDD” denotes the memory sizes of heterogeneous MDDs.
For n = 4 to 6, the memory sizes of minimum DDs obtained
by exact minimization algorithms are given. For n = 10 to 22,
the memory sizes of DDs obtained by heuristic minimization
algorithms are given, that is, they may not be an exact mini-
mum. The bottom row “Avg.” denotes the arithmetic average of
the relative memory sizes, where the memory size of ROBDD
is set to 1.00. Note that ROBDDs, FBDDs, and heterogeneous
MDDs in this table use complemented edges to make our results
compatible with the results in [10] and [11].

For these functions, on the average, FBDDs require 92%
of the memory size for ROBDDs while heterogeneous MDDs
require 71% of the memory size for ROBDDs.

Algorithm 3.1 could obtain exact minimum heterogeneous
MDDs for functions with up to 12 inputs within a reasonable
computation time while the exact FBDD minimization algo-
rithm [10] can find the minimum one for functions with up to
eight inputs.

Table IV compares heterogeneous MDDs with ROBDDs
and FBDDs for selected MCNC benchmark functions. The
ROBDDs are obtained by the best known variable orders [37],
and the numbers of nodes for FBDDs are taken from [10] and
[11]. Table IV includes the same benchmark functions as the
experiments in [10] and [11] except for alu2. Unfortunately,
the variable order of ROBDD for alu2 is not shown in [37]. The
memory sizes of ROBDDs and FBDDs are calculated by (2.1)
in Section II-F. The columns “In” and “Out” in Table IV denote
the number of inputs and outputs for each benchmark func-
tion, respectively. Column “MDD” denotes the heterogeneous
MDDs obtained by Algorithm 3.2, where the ROBDDs [37]
are used as initial solutions. The DDs in this table may not be
the exact minimum since the algorithms are heuristic methods.
The bottom row “Average of Ratios” denotes the arithmetic
average of the relative memory sizes, where the memory size
of ROBDD is set to 1.00. Note that ROBDDs, FBDDs, and
heterogeneous MDDs in this table use complemented edges
to make our results compatible with the results in [10], [11],
and [37].

Heterogeneous MDDs require smaller memory sizes than
FBDDs for 14 out of 21 benchmark functions in Table IV. Es-
pecially, for C499, dalu, and vda, heterogeneous MDDs require
at most 80% of the memory sizes for the FBDDs.

B. Comparison With ROBDDs

Table V compares the memory sizes and the APLs of
ROBDDs and heterogeneous MDDs for n-variable logic func-
tions. The ROBDDs and heterogeneous MDDs were optimized
using four different algorithms: 1) exact nodes minimization
algorithm for an ROBDD considering only the orderings (col-
umn “MinNodes”); 2) exact APL minimization algorithm for
an ROBDD considering only the orderings of binary variables
(column “MinAPLB”); 3) exact memory size minimization
algorithm for a heterogeneous MDD (Algorithm 3.1) consid-
ering both orderings and partitions of binary variables (column
“MinMem”); and 4) exact APL minimization algorithm for a
heterogeneous MDD (Algorithm 3.3) considering both order-
ings and partitions of binary variables (column “MinAPLM ”).
The memory size limitations L for Algorithm 3.3 were set to the
memory sizes of the ROBDDs in “MinNodes.” The values in
this table are the normalized averages of n-variable logic func-
tions, where the memory sizes and APLs of “MinNodes” are set
to 1.00. Columns “MinAPLB ,” “MinMem,” and “MinAPLM ”
show the relative values of the memory sizes and APLs to
“MinNodes.” Column “#samples” denotes the number of sam-
ple functions used for each n-variable function. Note that the
ROBDDs and heterogeneous MDDs in this table do not use
complemented edges.

For four- and five-variable logic functions, we calculated the
exact averages over all functions. This was done by recognizing
that the minimum memory size and the APL for a function
in one NPN equivalence class [24], [35] are identical to the
minimum memory sizes and APLs for other functions in the
same class. Thus, it is sufficient to consider only one function
from each class and form a sum weighted by the size of each
class. For a larger n, there are too many NPN equivalence
classes. For 6 ≤ n ≤ 10, we generated 1000 pseudorandom
n-variable logic functions with different number of minterms
and calculated the normalized averages for them.

For ROBDDs, APLs can be reduced by up to 97% of
ROBDDs with the minimum nodes but the memory sizes
increase to 108%. On the other hand, for heterogeneous MDDs,
the APLs can be reduced by up to 17% of ROBDDs with the
minimum nodes without increasing memory sizes, and both the
memory sizes and APLs can be reduced by up to 54% and 26%
of minimum ROBDDs, respectively. Table V shows that the
relative values of memory sizes and APLs for heterogeneous
MDDs decrease as the number of binary variables n increases.
Algorithm 3.3 finds exact minimum APLs of heterogeneous
MDDs for functions with up to 11 variables within a reasonable
computation time.

To demonstrate Theorem 2.4, Corollary 2.1, and Theo-
rem 2.5, we randomly generated n-variable functions with
2n−1 minterms for n = 22 to 29. For randomly generated
n-variable functions with 2n−1 minterms, the number of nodes
in ROBDD is nearly equal to the upper bound [25], [34].
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TABLE V
MEMORY SIZES AND APLS OF ROBDDS AND HETEROGENEOUS MDDS FOR n-VARIABLE LOGIC FUNCTIONS

TABLE VI
MEMORY SIZES AND APLS OF ROBDDS AND HETEROGENEOUS MDDS FOR RANDOMLY GENERATED FUNCTIONS

TABLE VII
MEMORY SIZES AND APLS OF ROBDDS AND HETEROGENEOUS MDDS FOR MCNC BENCHMARK FUNCTIONS

Table VI shows the memory sizes and APLs of ROBDDs
and heterogeneous MDDs. The column labeled “r” shows the
largest integer satisfying n − r ≥ 2r. The column “MinMem”
denotes the heterogeneous MDDs obtained by Algorithm 3.2.
The column “MinAPL” denotes the heterogeneous MDDs ob-
tained by Algorithm 3.4. The memory size limitations L for
Algorithm 3.4 are set to the memory sizes of the ROBDDs.
Column “BDD/MDD” shows the values given by

Mem(heterogeneous MDD in “MinMem”)
Mem(ROBDD)

.

The column “γ” denotes the ratio used in Theorem 2.4, i.e.,

γ =
2s + 3

3(2s + 1)

where s = 2r + r − n. Note that the ROBDDs and heteroge-
neous MDDs in this table do not use complemented edges.
The memory sizes and APLs in this table may not be an exact
minimum since the algorithms are heuristic methods.

Table VI shows that for these randomly generated functions
with 2n−1 minterms, Theorem 2.4, Corollary 2.1, and Theo-
rem 2.5 hold; that is, BDD/MDD approaches 0.33 when n is
large, “MinAPL” is smaller than 2.0, and Mem(heterogeneous
MDD) ≤ Mem(ROBDD).

Table VII compares memory sizes and APLs of ROBDDs
and heterogeneous MDDs for the same MCNC benchmark
functions as Table IV. Columns labeled “MinNodes” denote
the ROBDDs obtained by the best known variable orders [37].
These were used as the initial ROBDDs for the algorithms in
this experiment. Columns “MinAPLB” denote the ROBDDs
obtained by the sifting algorithm for the APLs [28]. Columns
“MinMem” denote the heterogeneous MDDs obtained by
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TABLE VIII
CPU TIMES (SECOND) FOR MEMORY SIZE

AND APL MINIMIZATION ALGORITHMS

Algorithm 3.2. And columns “MinAPLM ” denote the hetero-
geneous MDDs obtained by Algorithm 3.4. The memory size
limitations L for Algorithm 3.4 were set to the memory sizes of
the ROBDD in “MinNodes.” In the sifting algorithm [28] and
Algorithm 3.4, the number of rounds of sifting was set to two.
Note that the ROBDDs and heterogeneous MDDs in this table
use complemented edges. The memory sizes and APLs in this
table may not be an exact minimum since the algorithms are
heuristic methods. The row labeled “Average of Ratios” repre-
sents the normalized averages of memory size and APL, where
the memory size and the APL of “MinNodes” are set to 1.00.

The sifting algorithm [28] reduced APLs to 88% of
“MinNodes,” on average, but doubled the memory sizes. Espe-
cially, for C880, C1908, i10, and too_large, the sifting algo-
rithm increased the memory sizes significantly. On the other
hand, by considering both orderings and partitions of binary
variables, Algorithm 3.2 reduced both memory sizes and APLs
to 86% and 67% of “MinNodes,” respectively. Algorithm 3.4
reduced APLs to 51% of “MinNodes” without increasing the
memory size.

C. Comparison of Computation Time for Algorithms

Table VIII compares the computation times for the sifting
algorithm for the APLs [28], Algorithm 3.2, and Algorithm
3.4. The values in Table VIII show the CPU times needed to
obtain the ROBDDs and heterogeneous MDDs in Table VII, in
seconds.

Although Algorithm 3.2 considers both orderings and par-
titions of binary variables for memory size minimization, its
computation time is as short as that of the sifting algorithm
that considers only variable orderings for APL minimization.
Algorithm 3.4 requires longer computation times than the other
two algorithms since Algorithm 3.4 keeps the memory size
within the limitation as well as minimizes the APL.

D. Comparison With MDD(k)s

Similarly, we compared heterogeneous MDDs with
MDD(k)s.

Tables IX and X compare the memory sizes and APLs
of ROBDDs, heterogeneous MDDs, and MDD(k)s for n-
variable logic functions, respectively. In these tables, MDD(k)s
have the exact fewest nodes. The values in these tables are
the normalized averages of n-variable logic functions, where
the memory sizes and APLs of ROBDD with the fewest
nodes (column “ROBDD”) are set to 1.00. Columns “Min-
Mem,” “MinAPLM ,” “MDD(2)s,” “MDD(3),” “MDD(4),”
and “MDD(5)” show the relative values of the memory sizes
and APLs to “ROBDD.”

From Tables IX and X, it can be seen that: for n-variable
logic functions, heterogeneous MDDs obtained by Algorithm
3.3 have the APLs as small as MDD(5)s. The memory sizes
of MDD(5)s are twice the memory sizes of ROBDDs. On the
other hand, heterogeneous MDDs have smaller memory sizes
than ROBDDs.

Tables XI and XII compare the memory sizes and APLs of
ROBDDs, heterogeneous MDDs, and MDD(k)s for MCNC
benchmark functions, respectively. MDD(k)s in these ta-
bles are obtained by the minimization algorithm in [33].
ROBDDs and heterogeneous MDDs are the same as those
in Table VII.

Tables XI and XII show that in heterogeneous MDDs, APLs
can be reduced to half of the ROBDDs without increasing
memory sizes. On the other hand, in MDD(k)s, to reduce
the APLs to half of the ROBDDs, we need to increase the
memory sizes to 488% of the ROBDDs. The APLs of het-
erogeneous MDDs obtained by the memory size minimiza-
tion algorithm (Algorithm 3.2) are as small as the APLs of
MDD(3)s.

Finally, Table XIII compares the area–time complexities [4],
[6], [39] of ROBDDs, heterogeneous MDDs, and MDD(k)s
for MCNC benchmark functions. The area–time complexity is
the measure of computational cost considering both area and
time. It is defined as

AT = area × time.

In this section, the area A corresponds to the memory size and
the time T corresponds to APL.

Table XIII shows that for these benchmark functions,
area–time complexities of heterogeneous MDDs are half of the
ROBDDs and are much smaller than MDD(k)s.

V. CONCLUSION AND COMMENTS

This paper proposed minimization algorithms for the mem-
ory size and average path length (APL) of heterogeneous multi-
valued decision diagrams (MDDs) that consider both orderings
and partitions of binary variables. The experimental results
show that: 1) heterogeneous MDDs represent logic functions
more compactly than reduced ordered binary decision diagrams
(ROBDD s) and free BDDs. Especially, for all five-variable
logic functions, the minimum heterogeneous MDDs require
67% of the memory sizes for the minimum ROBDDs, on
average. Algorithm 3.1 can find exact minimum heterogeneous
MDDs for functions with up to 12 inputs in a reasonable
computation time, and Algorithm 3.2 can reduce the memory
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TABLE IX
MEMORY SIZES OF ROBDDS, HETEROGENEOUS MDDS, AND MDD(k)s FOR n-VARIABLE LOGIC FUNCTIONS

TABLE X
APLS OF ROBDDS, HETEROGENEOUS MDDS, AND MDD(k)s FOR n-VARIABLE LOGIC FUNCTIONS

TABLE XI
MEMORY SIZES OF ROBDDS, HETEROGENEOUS MDDS, AND MDD(k)s FOR MCNC BENCHMARK FUNCTIONS

TABLE XII
APLS OF ROBDDS, HETEROGENEOUS MDDS, AND MDD(k)s FOR MCNC BENCHMARK FUNCTIONS
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TABLE XIII
AREA–TIME COMPLEXITIES OF ROBDDS, HETEROGENEOUS MDDS, AND MDD(k)s FOR MCNC BENCHMARK FUNCTIONS

size of heterogeneous MDDs as fast as the sifting algorithm
[28]; 2) in heterogeneous MDDs, APLs can be reduced by half
of the corresponding ROBDDs, on average, without increasing
the memory size. And both memory sizes and APLs can be
reduced to 86% and 67% of ROBDDs, respectively. Algorithm
3.3, considering both partitions and orderings of binary vari-
ables, finds heterogeneous MDDs with the minimum APLs for
functions with up to 11 variables within a reasonable time, and
3) in MDD(k)s, to reduce the APLs to half of the ROBDDs,
we need to increase the memory sizes to 488% of the ROBDDs.
Area–time complexities of heterogeneous MDDs are half of the
ROBDDs and are much smaller than MDD(k)s.

APPENDIX

The following lemma is used in the proof of Theorem 2.1.
Lemma A.1 [18]: The number of different distributions of n

objects into r distinct cells is calculated by the formula

a(n, r) =
r∑

i=0

rCi(r − i)n(−1)i

where each cell has at least one object and the order of objects
within a cell is not important.
Theorem 2.1: Let Nnonfix(n) be the number of different

nonfixed-order partitions of X = (x1, x2, . . . , xn). Then

Nnonfix(n) =
n∑

r=1

a(n, r) =
n∑

r=1

r∑
i=0

rCi(r − i)n(−1)i.

Proof: From Lemma A.1, the number of different
nonfixed-order partitions of n binary variables into r super
variables is calculated by

a(n, r) =
r∑

i=0

rCi(r − i)n(−1)i.

Since Nnonfix(n) is the summation of a(n, r) for r =
1, 2, . . . , n, we have the theorem. �

Theorem 2.3: Consider an ROBDD and a heterogeneous
MDD for an n-variable logic function that is not a constant
function. When an order of binary variables is fixed, for the
memory sizes of ROBDD and heterogeneous MDD obtained
by considering only the fixed-order partitions, the following
relation holds:

Mem(heterogeneous MDD)
Mem(ROBDD)

>
1
3
.

Proof: From Theorem 2.2, we have

3 Mem(heterogeneous MDD) ≥ 3 nodes(ROBDD) + 6

= Mem(ROBDD) + 6.

Therefore, we have

Mem(heterogeneous MDD)
Mem(ROBDD)

≥ 1
3

+
2

Mem(ROBDD)
>

1
3
.

�

Theorem 2.4: Assume that the number of nodes in an
ROBDD for an n-variable function f is the upper bound [17]

2n−r + 22r − 3

where r is the largest integer satisfying n − r ≥ 2r. Let
Memmin(MDD) be the memory size of the minimum hetero-
geneous MDD for f . Let s = 2r + r − n, where 0 ≤ s ≤ 2r.
When n is large and 2 ≤ s ≤ 2r, the following relation holds:

Memmin(MDD)
Mem(ROBDD)


 2s + 3
3 (2s + 1)

.

Proof: From (2.1) in Section II-F, we have

Mem(ROBDD) = 3
(
2n−r + 22r − 3

)
.

The memory size of the minimum heterogeneous MDD for f is
given by

Memmin(MDD) = 2n−r′
+ 3 22r′ − 5
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where r′ is the largest integer satisfying n − r′ ≥ 2r′
+

log2 3 [27].
When 2 ≤ s ≤ 2r, the following relation holds:

n − r = 2r + s

2n−r = 2s × 22r

r′ = r.

Then, when n is large, we have

Mem(ROBDD) = 3
(
2s × 22r

+ 22r − 3
)

= 3 (2s + 1)22r − 9


 3 (2s + 1)22r

Memmin(MDD) = 2s × 22r

+ 3 × 22r′ − 5

= (2s + 3)22r − 5


 (2s + 3)22r

.

Therefore, we have the theorem. �
Corollary 2.1: In Theorem 2.4, when n is sufficiently large

and s = 0 or 9 ≤ s ≤ 2r, the following relation holds:

Memmin(MDD)
Mem(ROBDD)


 0.33.

Proof:

1) When s = 0 (i.e., n − r = 2r), 2n−r = 22r
and r′ = r −

1 hold. Then, we have

Mem(ROBDD) = 3 ×
(
22r

+ 22r − 3
)

= 6 × 22r − 9

Memmin(MDD) = 2n−r′
+ 3 × 22r′ − 5

= 2 × 2n−r + 3
(
22r) 1

2 − 5

= 2 × 22r

+ 3
(
22r) 1

2 − 5.

Let b = (22r
)1/2, then

Mem(ROBDD) = 6b2 − 9 
 6b2

Memmin(MDD) = 2b2 + 3b − 5 
 b(2b + 3).

Therefore, when n is large, the following relation holds:

Memmin(MDD)
Mem(ROBDD)


 b(2b + 3)
6b2

=
1
3

+
1
2b


 0.33.

2) From Theorem 2.4, when 9 ≤ s ≤ 2r, the corollary
holds. �

The following lemma is used for proof of Theorem 2.5.
Lemma A.2: Let r and r′ be the largest integers satisfying

{
n − r ≥ 2r

n − r′ ≥ 2r′
+ r′

where n is a nonzero positive integer. Then, for r and r′, the
following relation holds:

r − 1 ≤ r′ ≤ r.

Proof: From n − r ≥ 2r, we have

n = 2r + r + a

where a is an integer satisfying 0 ≤ a ≤ 2r.
Let r′ = r + b, where b is an integer. Then, from n − r′ ≥

2r′
+ r′, we have

n ≥ 2r′
+ 2r′ = 2r+b + 2(r + b)

2r + r + a ≥ 2r+b + 2(r + b)

(1 − 2b)2r − r − 2b + a ≥ 0. (A.1)

1) When b > 0, (A.1) does not hold.
2) When b = 0, (A.1) holds for r ≤ a ≤ 2r.
3) When b < 0, (A.1) holds for 0 ≤ a ≤ 2r.

Since r′ is the largest integer satisfying n − r′ ≥ 2r′
+ r′, b

must be the largest integer satisfying (A.1). Therefore, we have
the following relation:

{
r′ = r (i.e., b = 0), when r ≤ a ≤ 2r

r′ = r − 1 (i.e., b = −1), when 0 ≤ a ≤ r
.

�
Theorem 2.5: When the number of nodes in an ROBDD for

an n-variable function f is the upper bound [17]

2n−r + 22r − 3

where r is the largest integer satisfying n − r ≥ 2r, there exists
a heterogeneous MDD for f that satisfies

APL(heterogeneous MDD) ≤ 2.0

Mem(heterogeneous MDD) ≤Mem(ROBDD).

Proof: When a heterogeneous MDD is represented by
two super variables: X1 = (x1, x2, . . . , xn−r′) and X2 =
(xn−r′+1, xn−r′+2, . . . , xn)

APL(heterogeneous MDD) ≤ 2.0

where for simplicity, we assume that the variable order is
(x1, x2, . . . , xn). In this case, the memory size of the hetero-
geneous MDD is given by

2n−r′
+ 1 +

(
2r′

+ 1
) (

22r′ − 2
)

where r′ is the largest integer satisfying n − r′ ≥ 2r′
+ r′.

From here, we will prove that this memory size is smaller than
or equal to that of ROBDD

2n−r′
+ 1 +

(
2r′

+ 1
) (

22r′ − 2
)
≤ 3

(
2n−r + 22r − 3

)
.
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By Lemma A.2, we have to only consider two cases: r′ = r
and r′ = r − 1.

1) When r′ = r, we have

Mem(ROBDD) = 3
(
2n−r + 22r − 3

)
Mem(heterogeneous MDD)

= 2n−r + 1 + (2r + 1)
(
22r − 2

)
Mem(ROBDD) − Mem(heterogeneous MDD)

= 2
(
2n−r + 22r

+ 2r
)
− 22r+r − 8.

From n − r ≥ 2r + r, we have

2
(
2n−r + 22r

+ 2r
)
− 22r+r − 8

≥ 2
(
2n−r + 22r

+ 2r
)
− 2n−r − 8

= 2n−r + 2
(
22r

+ 2r
)
− 8.

Since n ≥ 1 and r ≥ 0, we have

2n−r + 2
(
22r

+ 2r
)
− 8 ≥ 0.

2) When r′ = r − 1, we have

Mem(ROBDD) = 3
(
2n−r′−1 + 22r′+1 − 3

)

Mem(heterogeneous MDD)

= 2n−r′
+ 1 +

(
2r′

+ 1
) (

22r′ − 2
)

Mem(ROBDD) − Mem(heterogeneous MDD)

= 2n−r′−1 + 3 × 22r′+1 −
(
2r′

+ 1
)

22r′
+ 2r′+1− 8.

From n − r ≥ 2r and r = r′ + 1, we have n − r′ − 1 ≥
2r′+1. Then

2n−r′−1 + 3 × 22r′+1 −
(
2r′

+ 1
)

22r′
+ 2r′+1 − 8

≥ 22r′+1
+ 3 × 22r′+1 −

(
2r′

+ 1
)

22r′
+ 2r′+1 − 8

= 22r′
(
4 × 22r′ − 2r′ − 1

)
+ 2r′+1 − 8.

Since r′ ≥ 0 and (4 × 22r′ − 2r′ − 1) ≥ 6, we have

22r′
(
4 × 22r′ − 2r′ − 1

)
+ 2r′+1 − 8 ≥ 6.

Therefore, the theorem holds. �
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