IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993 621

EXMIN2: A Simplification Algorithm for Exclusive-
OR-Sum-of Products Expressions for Multiple-
Valued-Input Two-Valued-Output Functions

Tsutomu Sasao, Senior Member, IEEE

Abstract—Minimization of AND-EXOR programmable logic
arrays (PLA’s) with input decoders corresponds to minimiza-
tion of the number of products in Exclusive-or Sum-Of-Prod-
ucts expressions (ESOP’s) for multiple-valued-input two-val-
ued-output functions. This paper presents a simplification
algorithm for ESOP’s. It iteratively reduces the number of the
products in ESOP’s as the first objective, and then reduces the
number of the literals as the second objective. Various rules
are used to replace a pair of products with another one. We
simplified many AND-EXOR PLA’s for arithmetic circuits. In
most cases, AND-EXOR PLA’s required fewer products than
AND-OR PLA'’s.

I. INTRODUCTION

N ORDINARY programmable logic array (PLA) has

an AND-OR structure, as shown in Fig. 1. Because
PLA’s can be designed automatically, easily tested, and
easily modified, they are extensively used in modern
LSI’s. By replacing the or array with the EXOR array in
the PLA, we have an AND-ExoOrR PLA shown in Fig. 2.
AND-EXOR PLA’s have several advantages over AND-OR
PLA’s. First, AND-EXOR PLA’s often require fewer prod-
ucts than AND-OR PLA’s. Table I compares the number
of products of various classes of functions [37]. Second,
AND-EXOR PLA’s are easier to test than AND-OR PLA’s.
Similar to AND-OR PLA’s [12], AND-EXOR PLA’s can be
made to be universal testable. However, AND-EXOR PLA’s
require a smaller amount of hardware and shorter test se-
quence [33].

Although AND-EXOR PLA’s have such merits, several
problems must be solved before they are used in practical
designs. The first problem is that EXOR’s are more expen-
sive and slower than or’s. The second problem is that the
design of AND-ExOR PLA’s is more difficult than that of
AND-OR PLA’s.

In this paper, we consider the design problems of AND-
EXOR PLA’s. An AND-OR PLA is represented by a set of
sum-of-products expressions (SOP’s). Similarly, an AND-
EXOR PLA is represented by a set of exclusive-or sum-of-

Manuscript received November 11, 1991; revised May 5, 1992. This
work was supported in part by a Grant in Aid for Scientific Research of the
Ministry of Education, Science, and Culture of Japan. This paper was rec-
ommended by Associate Editor R. K. Brayton.

The author is with the Department of Computer Science and Electronic
Engineering, Kyushu Institute of Technology, lizuka 820, Japan.

IEEE Log Number 9202997.

AND

OR

Fig. 1. AND-OR PLA with 1-bit decoders.

t{>o—
AND

payo

—

EXOR

—

Fig. 2. aND-EXOR PLA with 1-bit decoders.

" products expressions (ESOP’s). In both cases, the number

of products in a PLA is equal to the number of different
products in the expressions. Therefore, in order to mini-
mize the size of PLA’s, it is sufficient to minimize the
number of different products in the expressions.

Minimization of SOP’s has been studied for more than
30 years. Various algorithms have been developed to ob-
tain minimum [21] and near-minimum PLA’s [15], [4],
[31]. However, the minimization of ESOP’s is much more
difficult than that of SOP’s. No efficient method is known
to obtain a minimum ESOP for a given function except
for very small problems [3], [16], [17], [23], [25]. We
have developed simplification algorithms for both SOP’s
and ESOP’s, and designed various PLA’s {37]. Our com-
puter experiments show that ESOP’s require fewer prod-
ucts than SOP’s for most functions. Therefore, AND-EXOR
PLA’s usually require fewer products than AND-OR
PLA’s.

It is well known [30] that AND-OR PLA’s with decod-
ers, as shown in Fig. 3 require fewer products than AND-
orR PLA’s without decoders (or AND-OR PLA’s with 1-bit
decoders), as shown in Fig. 1. By replacing the Or array
with the EXOR array in the PLA in Fig. 3, we have an
AND-EXOR PLA with decoders shown in Fig. 4. This PLA
structure usually requires fewer products than AND-EXOR
PLA’s without decoders (or AND-OR PLA’s with 1-bit de-
coders). Similar to AND-ExOR PLA’s with decoders, AND-
or PLA’s with decoders are represented by ESOP’s for

0277-0070/93$03.00 © 1993 IEEE

622

AND

1
BE:

OR

Fig. 3. AND-0R PLA with 2-bit decoders.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

AND

L
i

EXOR

Fig. 4. AND-EXOR PLA with 2-bit decoders.

TABLE I
NUMBER OF PRODUCTS TO REALIZE VARIOUS FUNCTIONS

AND-OR PLA (SOP)

AND-EXOR PLA (ESOP)

with 1-bit with 2-bit with 1-bit with 2-bit
decoders decoders decoders decoders
- n— ! n—
Arbitrary functions 2n! g-2! go2! 72!
Symmetric functions 2"t 332 Z.3m2 332
Parity functions 2! 322 n n
2
n-bit adders 6-2"-4-n-5 o+ 1 2"+ —) 3@ +3n-2)
XYV X2y,
Voo VX, Y, n n 2" -1 2
(n=2r,nz6)

multiple-valued-input two-valued-output functions [34].
Table I also compares the number of products necessary
to realize various classes of functions by PLA with 2-bit
decoders.

Our recent research has shown that ESOP’s require
fewer products than SOP’s to realize randomly generated
functions and symmetric functions [37], [40]. To realize
an arbitrary function of six variables, an ESOP requires
at most 16 products, whereas an SOP requires 32 products
[17]. As for the four-variable functions, ESOP’s require,
on the average, 3.66 products, whereas SOPs require 4.13
products [16]. Although there exists a class of functions
whose ESOP realizations require more products than
SOP’s [40], we believe that the optimization technique of
ESOP’s will be an important tool in efficient logic design.

Many simplification algorithms for ESOP’s have been
developed for two-valued-input functions [2], [6], [10],
[11], [14], [23], [28], [29], [37], [42], and for multiple-
valued-input functions [24], [35], [38]. In particular, [14]
presents an algorithm and minimization results for various
AND-EXOR PLA’s for multiple-output functions. In [24],
the algorithm was extended to treat AND-ExOR PLA’s with
input decoders. This paper considers the same problem as
[24], but uses a different approach. Preliminary versions
of this paper have been published as [35] and [38].

This paper is organized as follows. In Section II, mul-
tiple-valued-input two-valued-output functions and their
ESOP’s are introduced. Then, the design problem of mul-
tiple-output AND-ExOR PLA’s with input decoders is for-
mulated. In Section III a simplification algorithm for
ESOP’s is presented. In Section IV experimental results
are shown and the performance of EXMIN2 is compared
with [14], [36], [42], and [6]. In Section V some appli-
cations of EXMIN2 are shown. In Section VI conclusion
and comments are presented.

II. ESOP’s FoR MULTIPLE-VALUED-INPUT Two-
VALUED-OuUTPUT FUNCTIONS

2.1. Multiple-Valued-Input Two-Valued-Output
Functions

An AND-OR PLA with r-bit decoders realizes an SOP
of a 2’-valued-input two-valued-output function [34].
Similarly, an AND-EXOR PLA with r-bit decoder realizes
an ESOP of a 2"-valued-input function [35], [24].

Definition 2.1: A multiple-valued-input two-valued-
output function (function for short) is a mapping

f(XI, X2s e

where X; is a multiple-valued variable, P, = {0, 1, - - - ,
pi — 1} is a set of values that this variable may assume,
B={0,1},andp; = 1.

Definition 2.2: Let X be a variable that takes one of the
valuesin P = {0, 1, - - - , p — 1}. For any subset § S
P, X5 is a literal representing the function that

,X): P, X Py X +++ X P, > B,

x5 = L
Os

If P = {0, 1}, then the literals are X{®'} X1 x{1} anq
X®. When all the variables are two-valued, these literals
may be denoted by 1, X, X, and 0, respectively.

Definition 2.3: A product of literals X§' - X - - - X5
is said to be a product term (also called term or product
for short). A sum of product terms

X

51,82, -+ ,Sn)

ifXeS
if X ¢S.

& XP X --, X3 (2.1)
is an exclusive-or sum-of-products expression (ESOP).
When S§; = P;, a literal X' denotes a constant 1, and so

the literal is omitted from the products.

SASAO: EXMIN2: A SIMPLIFICATION ALGORITHM

Theorem 2.1: An arbitrary multivalued-input two-val-
ued-output function can be represented by an ESOP of the
form (2.1).

Proof: Let (ay, a,, * -+ , a,) be an element in B"
such that f(a,, a5, * -+ , a,) = 1. Then f can be repre-
sented by

X exi.xi®... xle
(ar,a2,* -+ ,an)
This expression is an ESOP. Q.E.D.

For a given function, there exist many ESOP’s.

Definition 2.4: For a given function, an ESOP is min-
imum if there exists no ESOP representing the same func-
tion with fewer products.

Example 2.1: Table Il shows a function

fX, X5, X3): PL X P, X P; > B

where P, = {0, 1}, P, = {0, 1,2, 3}, and P; = {0, 1,
2}. Fig. 5 is the map representing a minimum ESOP for
the function:

_ y{0.3} {0} | {2} 0} | {2} , {0}
f=X, ® X, X, e X, X, X5
End of Example

Note that in the case of ESOP, every minterm of f must
be covered by the loop(s) an odd number of times.

2.2. Multiple-Output Functions and Characteristic
Functions

When the circuit has more than two outputs, indepen-
dent minimization does not always produce total minim-
ization. In this section, we consider a minimization
method for multiple-output AND-ExoOR PLA’s.

Definition 2.5: Let an m-output function be f; (X, X;,
-++,X,),whereieM,and M = {0,1, - - - ,m — 1}.
A characteristic function for the multiple-output function
is defined as follows [31]:

F(Xl! XZ’ Tt Xm Xn+1)
m—1 R
=V Xr{ll-)fl .fl:(XZ’ c ,Xn)
i=0

where X, , ; denotes the ith output and assumes a value in
M.

If the combination of inputs and outputs are allowed in
the original multiple-output function, then F = 1, else F
= 0, in the characteristic function.

Example 2.2: Consider the three-input three-output
function (fi, f2, f3) shown in Table III. If x, is replaced
by X,, (x,, x3) is replaced by X,, and the output part is
placed by Xj, then the characteristic function becomes one
shown in Table II. A minimum ESOP for the character-
istic function is

F=x0% o x . x® o x . x0 . xO,
By restricting the above ESOP to X; = 0, X; = 1, and
X; = 2, we have minimum ESOP’s for f}, f;, and f:
_ y{0.3} {0} | {2}
fo=X, ® X, X,

X 2.,@ 1
s [U] q

2 0 t 2'
X,(O)~X§2)-.X§0} ~— —

X3 X3

623

‘l X1=0/ X1=1 X%o,s)
1

Fig. 5. Map for multiple-valued-input two-valued-output function.

X

AND

X, xlom

EXOR h

Fig. 6. AND-EXOR PLA for Table III.

TABLE II
FUNCTION f

>
gq
>
<~

— et et et ok ot bt et et b b = D O OO OO OO OOOO

WWRWRNRNN= = =00 QWWWNNN—=,—~—~QOO
NP‘ON—ONHONF‘ON—ON—ON—CNHO
Ot et Dt et DO O =t e e OO OO OO ==

0,3}
fi = X3

0,3 {0}
£ =x0" e x19.

Fig. 6 shows the PLA realizing the above ES{%P. m
The first decoder generates two outputs: X, and X, "

The second decoder generates four output:

{1,2,3}
X, R

624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

TABLE II1
FuNcTioN (fo, fi, f2)
X, X X3 ﬂ) f 1 f2
0 0 (0 1 1 !
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 ! !
1 0 0 1 ! 0
1 0 1 0 0 !
1 1 0 1 0 !
1 1 1 1 1 0

X;o’ 23} , X ;0’ 1.3} ,and X ;0’ 1'2). If we use ordinary two-val-

ued logic expressions, these outputs are represented as x,
V X3, X3 V X3, X, V X3, and X, V X3, respectively. The first
column of the PLA realizes the product

{0,2,3} {0.1,3 {0,3 . -
X2 .XZ }=X2 }(=X2'X3VX2'X3)

the second column realizes the product
XfO} . X§°‘2’3} . X;o"‘” -X:fo‘]’Z}

0 2 -
=X§}'X§}(=xl'x2'x3)

and the last column realizes the products X{” (= x,).
(End of Example)
From the above example, we can see that each product
of the ESOP for the characteristic function corresponds to
each column of the PLA realizing the multiple-output
function. Thus we have the following.

Theorem 2.2: Suppose that a PLA realizes a multiple-
output function (fy, fi, * * * , f—1)- Then, there exists an
ESOP for characteristic function F with the same number
of the products. Conversely, given an ESOP for the char-
acteristic function for (fy, fi, * * * , f—1). We can realize
a PLA for the multiple-output function with the same
number of the products.

Thus in order to minimize the number of the products
in PLA for (fy, fi, * * * , fm—1), it is sufficient to minimize
the number of the products in the ESOP for the charac-
teristic function.

III. SIMPLIFICATION ALGORITHM
3.1. Outline of the Algorithm

For absolute minimization of ESOP’s, no algorithm is
known except for the exhaustive method [3], [16] or a
method, that is applicable only to small problems [25].
For near-minimum ESOP’s, most algorithms use iterative
improvement methods [11], [10], [14], [24], [37], [38],
[42]. Some of the above algorithms use RME’s [1], [28]
and others use SOP’s of minterms for their initial solu-
tions. However, they require excessive memory space
when the number of the inputs are large.

The algorithm EXMIN?2 is an improved version of EX-
MIN [35], [38], and has the following features

1) It simplifies ESOP’s for multiple-valued-input two-
valued-output functions.

3.2

2 As an initial solution, a disjoint SOP is derived from
a simplified ESOP. This produces an initial solution
of moderate size.

Several rules are iteratively used to reduce the num-

ber of products in ESOP’s.

4) When further reduction of the number of products
becomes impossible in the iterative improvement,
the number of products is temporarily increased.
This process is added in the EXMIN2 version. As
a result the quality of the solutions has become con-
siderably better than that of EXMIN.

5) As for multiple-output functions, the characteristic
function is simplified again after each function is
simplified independently.

6) For problems with many products, the input func-
tion is decomposed into sub-functions with reason-
able size, and each function is simplified indepen-
dently. Afterward, the total function is simplified
again. This routine is also added in EXMIN2 to re-
duce the total computation time for the functions
with many products.

3

~—

Initial Solution

In order to treat large-scale PLA’s, the initial solutions
must be small enough to be stored in a memory of the

- computer. In this algorithm, the initial solutions are dis-

joint SOP’s derived from simplified SOP’s.

Definition 3.1: A SOP in which each pair of products
is disjoint is called a disjoint sum-of-products expression
(DSOP).

In 2 DSOP, the or operators can be replaced with the
EXOR operators without changing the function represented
by the expression. We have developed an algorithm that
converts SOP’s into DSOP’s. Some heuristics are used to
make the resulting DSOP’s have as few products as pos-
sible. [32].

3.3. Simplification Rules for ESOP’s

LetA,B,C,D < P, whereP = {0,1,--- ,p — 1}.
Let U, N, and denote the union, intersection, and com-
plement operations on sets, respectively. We use symbol
@ to denote the exclusive or of the two sets: 4 & B =
(A N B) U (4 N B). The same symbol & is also used
to denote the exclusive-or of two logic functions.

The simplification of ESOP’s depends on the following
two theorems.

Theorem 3.1: X* © X8 = x4°5,
Theorem 3.2:
XAYB ® XCYD — X(AQC)yB ® XCY(BGD)
— XAy(BeD) ® X(A OC)YD‘
Proof: As for the first equation, note that
{X'Y? ® X°Y?} @ {X“°9Y® o XY®°D}
— {XA ® X(AOC)}yB ® XC{YD ® Y(BOD)}
=XY% @ XY = 0.

SASAO: EXMIN2: A SIMPLIFICATION ALGORITHM

Hence, we have the first equation. In a similar way, we
prove the second one. Q.E.D.

Note that these rules are generalization of those used
by [10], [11], and [38]. However, the next theorem shows
that the set of these rules is not sufficient to derive mini-
mum ESOP’s [6].

Theorem 3.3: Suppose that the laws of a commutative
ring (associative, distributive, etc.) hold. A set of rules
cannot generate a minimum ESOP from a certain ESOP
if it satisfies the following conditions:

1) Each rule changes at most two products at a time.

2) Each rule does not increase the number of the prod-
ucts.

An intuitive proof: The ESOP shown in Fig. 12(a)
cannot be minimized by such rules. Q.E.D.

Thus at least one rule that temporarily increases the
number of the products is necessary to derive the mini-
- mum ESOP from a given ESOP. However, the addition
of term-increasing rules tends to increase the computation
time. Therefore, a careful selection of such a rule is very
important. After conducting experiments on benchmark
functions, we found the following rule to be quite effec-
tive in reducing the number of products.

Theorem 3.4: X* = X* ® XA, where A € Pand P =
{0,1,"',P—1}-

3.4. Rules in EXMIN2

The rules of Theorem 3.2 are still too general to be
applied directly. So, the current version of EXMIN2 uses
the following rules:

1) X-MERGE
XA ® XB — X(A @ B)
2) RESHAPE
XAY® @ XCyP = xAy®nD) g xAUO)yD
if(AN C=¢,BDD)
3) DUAL-COMPLEMENT
XAYB ® XCYD = XCy(BnB) ® X(;nc)yB
if(A4C C,BD> D)
4) X-EXPAND-1
XA YB ® XCYD = XA Y(BUD) ® X(AUC)YD
= XAUOyB o xCyBUD)
ifANC=¢,BND=2¢)
5) X-EXPAND-2
XAy8 @ XCYP = XUV OyB g xCy®nD)
ifANC=¢,BD D)

625

6) X-EXPAND-3
XA YB ® XCYD — X(AUC)YB ® XCY(B eD)
= xAyBeD) g x4UOyD
ifANC=¢,BND* ¢)
7) X-REDUCE-1
XAY® @ XCYP = xAanOys o XCy(DﬂE)’
If(4D> C,BCD)
8) X-REDUCE-2
XAyR @ XCyP = xAanOys o XCY(BnE)
= XAy®nD) g X(AHE')YD,
if (4 D> C,BD D)
9) X-REDUCE-3
XAyE @ XCyP = x“ NOyB g x€ y®eD,
if (4D C)
10) SPLIT
X" = x4 e XA
Fig. 7 illustrates the above rules for four-valued-input
functions. Among these rules, only X-MERGE reduces
the number of the products in ESOP’s. The other rules do
not reduce the number of products, but modify the shape
of products to make X-MERGE applicable. RESHAPE is

also used to modify the shape of the products in SOP’s
[15]. Other rules are specific to ESOP’s. For some classes

" of functions, such as parity functions, X-EXPAND-1 and

X-EXPAND-2 are effective to reduce the number of prod-
ucts. X-EXPAND-1 produces two different results, and
DUAL-COMPLEMENT interchanges the two results.
Also, note that if RESHAPE (or DUAL-COMPLE-
MENT) is applied twice to a pair of products, then the
rule produces the original pair. X-EXPAND-3 is a new
rule introduced in EXMIN2. It is useful only for multiple-
valued-input functions. Note that for two-valued func-
tions, this rule is identical either to RESHAPE or X-EX-
PAND-2. X-REDUCE-1, X-REDUCE-2, and X-RE-
DUCE-3 are reverse operations of X-EXPAND-1,
X-EXPAND-2, and X-EXPAND-3, respectively. X-RE-
DUCE-2 produces two different results, and RESHAPE
interchanges the two results. It is clear that (2)-(9) are
special cases of the rules of Theorem 3.2. SPLIT is also
a new rule introduced in EXMIN2. The addition of this
rule increases the total computation time, but reduces the
number of the products for many functions.

The proposed algorithm relies on X-MERGE to reduce
the number of the products. The other rules are used when
X-MERGE is inapplicable. The quality of the solutions is
quite sensitive to the order in which the rules are applied.
However, the current version of the algorithm uses only
a simple heuristic on the order of the rules and products.
In the case of a two-valued-input multiple-output func-
tion, first we decompose it into single-output functions,

626

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

X B X A®B X A c X AuC
Y Y Y Y
N©)) 1] 1)
QO] v l |V —
’ : ’ : P BnTD
W U
A © ¢
@ AUC
X A I X AUucC X A C X
Y Y Y 1 Y w
o o[T D)0/ Sy
9 B 1 ,B 1 m -
B 1 M - _ BnD
BND 1 i _JJI
W 0 S
® (f) ¢
X [X ANC X A X An;
Y Y Y Y
D o
1) — 1\ B D) N Q@
1 R
8 8 BN b C—] D ! .- (1)
Al 1 N LIJ
' () ¢ C
(®)
x A C x Auc X A X Anc
Y Y Y i
=
R 0 Qr) (1] 1) BND 11©)
m BUD 1 B ! P !
’ W 1) 1 b 9
A C ¢
) (h)
A X |
Y 1) Y 1
T |° D
s
B 11 1|1
Y Wit
c

(i)

[

Fig. 7. Examples of simplification rules. (a) X-MERGE. (b) RESHAPE.
(c) DUAL-COMPLEMENT. (d) X-EXPAND-1. (¢) X-EXPAND-2. (f)
X-EXPAND-3. (g) X-REDUCE-1. (h) X-REDUCE-2. (i) X-REDUCE-3.

and then simplify each function independently, and fi-
nally we simplify the characteristic function again. In the
case of a multi-valued-input function, we have to be care-
ful not to fall into a infinite loop of the program. That is,
the successive application of X-EXPAND’s and DUAL-
COMPLEMENT can restore the original cover, and so
the program may never stop.

Example 3.1: Fig. 8 illustrates that the successive ap-

plication of X-EXPAND-2, DUAL-COMPLEMENT:
X-EXPAND-2 and DUAL-COMPLEMENT will produce
the original cover. End of Example

3.5. Rule of EXMIN?2 for Binary Case

Although we consider ESOP’s with multiple-valued in-
puts, the binary versions of the rules will help reader to
understand the meaning of the rules. The following list

SASAO: EXMIN2: A SIMPLIFICATION ALGORITHM

X-EXPAND-2
o (IC T)
C —= [LL[d]
- N
AN DUAL-CONPLENENT N7
1 \ 1
)| < D
L)
X-EXPAND-2

Fig. 8. Example of an infinite loop.

shows the rules for binary cases:

1) X-MERGE: Xo X=
2) RESHAPE: X-Ye
3) DUAL-COMPLEMENT: X o Y
4) X-EXPAND-1: X-Ye
5) X-EXPAND-2: X-Ye
6) X-REDUCE-1: Xo Y=
7) X-REDUCE-2: 1eX
8) SPLIT: 1=X

In [10], four rules X ® X = 1 (Merger), X @ 1 = X
(Exclusion), X-EXPAND-2 (Increase of Order), and
X-EXPAND-1 (Bridging) are used. In [1 1], three rules X
@ 1 = X (Unit Distance Pair merge), X-REDUCE-1 (Two
Distance Pair merge), and RESHAPE (Mixed Unit Dis-
tance Pair merge) are used. This shows that EXMIN used
a much-more-powerful rule set than previously published
ones. However, the XLINK operation introduced by [14]
is not used in EXMIN2. XLINK operation often increases
the number of the products, and is difficult to incorporate
into EXMIN2.

3.6. Volume of Cubes

In order to prevent the program falling into an infinite
loop, we introduce the notion of a volume of an ESOP.

Definition 3.2: Let |S| denote the number of elements
in S. The volume of a product X' - X3* - - - , Xy*is |S)]
- |82| + = ¢, |S,l- The volume of an ESOP is sum of vol-
umes of the products in the ESOP.

In the case of two-valued-input single-output functions,
the greater the volume, the fewer the literals are in the
ESOP’s. So, the increase of the volume is desirable for
the reduction of the circuit cost. The following lemmas
consider the change of the volume of an ESOP in applying
the rules.

Lemma 3.1: X-MERGE does not increase the volume.

Proof: Let the original cubes be X# and X%. The
volume of the original cubes is ¥, = |4| + |B|. The vol-
ume of the cube after X-MERGE is ¥V, = |4| + |B| — |4
N B|. Hence, V) = V. Q.E.D.

Lemma 3.2: RESHAPE does not change the volume.

Proof: Let the original cubes be X*Y® and X€Y”.

~le
]
>l

<l 3l 5

@
.><"”<><

627

The volume of the original cubes is ¥, = |4| - |B| + |C]|
- |D|. The volume of the cubes after RESHAPE is V3 =
|4| - (IB] — D) + ({4 + |C]) - |D|. Hence, V; =
Vs. Q.E.D.
Lemma 3.3: DUAL-COMPLEMENT does not change
the volume for two-valued-input functions, but may de-
crease the volume for multi-valued-input functions.
Proof: The volume of the cubes after DUAL-COM-
PLEMENT is ¥, = |C| - (|IB| — |D]) + (IC| — |4]) -
|B|. So, the difference of the volume is V, — V; =2 {|B|
- |c| = |c] - |DP| = |4| - |B|}. In the case of two-
valued-input functions, |B| = |C| = 2, and |4| = |D| =
1. So, V, = V,. In the case of multivalued-input func-
tions, DUAL-COMPLEMENT may decreases the vol-
ume of the cubes as shown in Fig. 8. Q.E.D.

LXel=XXel=X

- ®
‘eo” ~I e
S

>l
h<
]

Lemma 3.4: X-EXPAND increases the volume.
Proof: 1) Volumes of the cubes after X-EXPAND-1
are

Vs = |A] - (|B| + D)) + (4] + |C]) - |D|
and
Ve = (14| + |C]) - |B| + |C]| - (IB| + |D)).

The differences of the volumes are Vs — V, = 2 - |4] -
|ID| > 0and Vs — V, =2 - |B| - |C| > 0.

2) The volume of the cubes after X-EXPAND-2 is V;
= (|4| +|c]) - |B| + |C| - (|B| — |D|). The difference
of the volume is V;, — V, =2 - |C| - {|B| — |D|} > 0.

3) The volumes of the cubes after X-EXPANDS-3 are

Vs = (14 +|C) - |B| +|C| - (IB|
+ |D| — |B N D))

Vo = |4| - (B| + |D| — |B N D))
+ (4] + |C] - |D}.

The differences of the volumes are Vg — V, = 2 - |B| -
— |4 | + |B N D| > 0. Hence, X-EXPAND increases
the volume of the cubes. Q.E.D.
Lemma 3.5: X-REDUCE decreases the volume.
Proof: X-REDUCE is the reverse operation of
X-EXPAND. So X-REDUCE decreases the volume of the
cubes. Q.E.D.
Example 3.2: Consider the function in Fig. 8. X-EX-
PAND-2 increases the volume, but DUAL-COMPLE-

628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

MENT decrease the volume. This fact implies that the
original ESOP is obtained after applying several rules.
End of Example
As shown in the previous example, the application of
DUAL-COMPLEMENT after X-EXPAND may produce
the original ESOP. In the case of two-valued-input func-
tions, RESHAPE and DUAL-COMPLEMENT do not de-
crease the volume. On the other hand, in the case of mul-
tiple-valued-input functions. DUAL-COMPLEMENT
may decrease the volume. To avoid the danger of an in-
finite loop, volume is calculated when the DUAL-COM-
PLEMENT is applied in the program.

3.7. Simplification Algorithm
Algorithm 3.1: (EXMIN2)

1) Convert a given SOP into a DSOP. Let it be the
initial solution.
2) For a multioutput function, decompose it into sin-
gle-output functions, and simplify each function in-
dependently by the method below. Then simplify
the characteristic function. If the number of prod-
ucts is greater than some specified value p, (say, p;
= 40), then decompose the function, so that each
function has at most p, products. Then, simplify
each function independently by the method below.
Finally, simplify the total set of functions again.
We use the following heuristic to decompose the
function F: Find a variable X and a set A that does
not increase the number of the products or increase
the minimum of the products in X* - Fv X4 - F.
2.1) Rearrange the products such that the number
of 1’s in the positional cube notation [31] is in
ascending order.

2.2) For each pair of products in the ESOP, check
if X-MERGE is applicable. If so, merge them.

2.3) For each pair of products in the ESOP, check
if RESHAPE, volume non-decreasing DUAL-
COMPLEMENT, X-EXPAND-2, X-EX-
PAND-1, and X-EXPAND-3 are applicable in
this order. If so, apply the rule. After this, do
the following: For the products modified by the
above rules, check if X-MERGE is applicable.
If so, merge them.

2.4) For each pair of products in the ESOP, check
if X-MERGE is applicable. If so, merge them.

2.5) If X-EXPAND-1, X-EXPAND-2 or X-EX-
PAND-3 is applied in step (2.3), then go to
2.3).

3) Apply X-REDUCE-1, X-REDUCE-2, and X-EX-
PAND-3 in this order.

4) Simplify the characteristic function by steps (2.1)-
2.5).

5) If the number of products is reduced in step (4),
then go to step (3).

6) In this step, we cannot reduce the number of prod-
ucts by rules 1)-9) of Section 3.4. So, we increase
the number of products by SPLIT: Find a variable

X and a set A4 that increases the minimum number
of the products in X - F @ X* - F. Simplify each
sub-function independently by steps (2) through (5)
of the algorithm. Then, simplify the total function
again. Apply this step as long as the reduction of
the number of products is possible.

7) Reduction of the number of connections (optional):
For each pair of products, check if Theorem 3.2 is
applicable and can reduce the connections. If so,
apply the rule. This step is also newly introduced in
EXMIN2.

8) Verification (optional): Verify that the simplified
ESOP is logically equivalent to the original expres-
s10n.

3.8. Examples of Simplification

In this section, we illustrate the simplification algo-
rithm by using the two-valued-input four-variable func-
tion in Fig. 9. Note that the SOP is already a DSOP. Also,
note that X-MERGE is not applicable. So, the process to
start with in EXMIN2 is step 2.2). Example 3.3 will show
the simplification by EXMIN2, while Example 3.4 will
show the simplification by the same algorithm except that
the order in which the rules are applied is interchanged.

Example 3.3: In the ESOP shown in Fig. 10(a), we
cannot use X-MERGE even if we apply RESHAPE. Be-
cause we cannot apply DUAL-COMPLEMENT, nor
X-EXPAND-1, we try to apply X-EXPAND-2. We have
three pairs of products to which this rule can be applied:
the first pair is (D, (@), the second one is (3), () and
the third one is (3),). If we apply X-EXPAND-2 to the
pair (D, @), we have the ESOP shown in Fig. 10(b). In
this ESOP, we combine (7) and (@) by X-MERGE, and
obtain the ESOP shown in Fig. 10(c). Now, we can com-
bine @) and ®) by X-MERGE, again, and have the ESOP
shown in Fig. 10(d). So, we have an ESOP with three
products. End of Example

Example 3.4: In Fig. 11(a), let us apply X-EXPAND-
1 instead of X-EXPAND-2. We have two options to apply
this rule: one is the pair of products (1), 2)), and the other
is (O, ®). If we apply X-EXPAND-1 to the pair (),
(@), we obtain the ESOP shown in Fig. 10(b). In this
ESOP, we combine (4) and &) by X-MERGE, and have
the ESOP shown in Fig. 11(c). So, we have an ESOP with
four products. End of Example

As shown in the above examples, the order of the rules
in the algorithm affects the quality of the solution. In Ex-
ample 3.3, if we apply X-EXPAND-2 to the pair (3,
(®), we get the same result as Example 3.4.

Example 3.5: In Fig. 12(a), we cannot apply rules 1)
to 9). Now, we try to apply SPLIT. There are four pos-
sibilities to split to ESOP intotwo: X, - F ® x, - F, X, *
Fex; F,x3:Fex;+F,andX, - ® x, * F, and the
numbers of the products after SPLIT are 4, 6, 5, 5, re-
spectively. So, the SPLIT’s that increase the number of
products by the smallest amount are by x; and x4. If we
use x; to split the function, then we have the ESOP’s
shown in Fig. 12(b). Independent simplification produces

SASAO: EXMIN2: A SIMPLIFICATION ALGORITHM

X1X2
00 01 11 10

00 CD@
X3X4 N @ LlJ
10 @

Fig. 9. Map for Examples 3.3 to 3.5.

®
®

®
@D} G

-@

SIQDIY

Slan)
S

(@) (b)

- -;ag:

o W

®
© (C)]
Fig. 10. Simplification by EXMIN2, as in Example 3.3. (a) The original
ESOP. (b) X-EXPAND-2 is applied. (c) X-MERGE is applied. (d)
X-MERGE is applied again, resulting in an ESOP with three products.

OB [e
M Olif
D|W W
Q O,
@ @ @®
(a) (b)

)
D)

-/
Al

(©)
Fig. 11. Simplification by EXMIN2, as in Example 3.4. (a) The original
ESOP. (b) X-EXPAND-1 is applied. (c) X-MERGE is applied, resulting in
an ESOP with four products.

two ESOP’s in Fig. 12(c). By applying RESHAPE to (D
and @), we have an ESOP in Fig. 12(d). By applying
X-MERGE to (® and (¥, we have Fig. 12(e) with three
products, the same result as obtained in Example 3.3.
End of Example
One advantage of ESOP representation is that the com-
plement of a function is easily obtained.

629

X4

L]

ol

(b)

© (d

(e)

Fig. 12. Simplification by SPLIT. (a) The original ESOP. (b) x; used to
split the function. (c) Independent simplification produces two ESOP’s. (d)
RESHAPE is applied. (¢) X-MERGE is applied, resulting in an ESOP with
three products, as in Example 3.3 (Fig. 10).

Example 3.6: Suppose that the SOP F} = x; V x5 V X3
V x4 V x5 is given. First, EXMIN2 converts F into DSOP
with n products:

F,=x & Xx; & X1 X X3 @ X1 XpX3%4 @ X1 X X3X4Xs5.
Then, by X-EXPAND-2,
X1 X X3X4 ® X X3 X3X4X5 = X1 X X3 (x4 ® X4Xs)

is replaced by X, X; X3 (1 @ X,Xs). By X-MERGE, x, x,X; &
X, X, X is replaced by X, %,. Similarly, by X-MERGE, X, x,
® X,X, is replaced by ¥;, and finally, x, X, is replaced
by 1.
Hence, we have F3 = f|22fgf425 o 1.
End of Example

IV. EXPERIMENTAL RESULTS

We coded EXMIN2 in FORTRAN and implemented it
on NEC personal computers as well as on SUN worksta-
tions. EXMIN2 simplifies ESOP’s with multiple-valued-
inputs of arbitrary number of values. We simplified
ESOP’s for various arithmetic functions. Helliwell and
Perkowski developed a simplification algorithm called
EXORCISM and reported its performance in detail [14].
They used ‘primary xlinking’’ and ‘‘secondary xlinking’’
rules to simplify ESOP’s. Saul improved the algorithm,
and developed a program called HERMES [42]. Brand
and Sasao developed a ‘‘non-deterministic’’ simplifica-
tion algorithm (ND) which produces very good solutions
although it is very time-consuming [6].

630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993
TABLE IV
COMPARISON WITH OTHER SYSTEMS
EXORCISM HERMES EXMIN EXMIN2 ND

Data TIME TIME TIME TIME

Name pt (N pt 1) pt 2) pt 2 pt

ADR4 34 98 34 24 34 4.6 31 13.5 31

MLP3 29 2 23 2 18 0.6 18 1.9

MLP4 212 893 92 142 72 163 63 429 61

SQR6 85 28 39 8 39 24 37 150 35

9SYM 142 22 95 217 8 920 53 272

pt number of the products

) cpu seconds by Gould NP1 computer

(2) cpu seconds by SPARCstation 1+

TABLE V
CoMPARISON oF AND-OR witH AND-EXOR FOR ARITHMETIC FUNCTIONS
Number of Products Number of Connections
AND-OR AND-EXOR AND-OR AND-EXOR
1bit 2bit 1bit 2bit
Data
Name 1bit 2bit 1bit 2bit AND OR AND OR AND EXOR AND EXOR
ADR4 75 17 31 11 340 75 82 17 122 40 46 14
LOGS8 128 12 99 92 754 257 963 159 526 164 778 166
MLP4 126 91 63 50 726 159 773 95 311 84 343 69
NRM4 120 75 71 52 708 171 665 105 404 132 431 90
. RDM8 76 51 32 26 322 76 340 51 112 49 138 43

ROTS 57 42 37 26 298 87 312 62 193 64 193 49
SQR8 180 161 112 108 1057 333 1423 222 546 201 852 226
WGTS 255 54 59 25 1774 296 435 55 263 67 131 28

Table IV compares the number of products and com-
putation time for EXORCISM, HERMES, EXMIN,
EXMIN2, and ND. For these arithmetic functions,
EXMIN2 produced the best solutions among EXOR-
CISM, HERMES, EXMIN, and EXMIN2. The data for
EXORCISM and HERMES were obtained by the Gould
NP1 computer [42]. The data for EXMIN and EXMIN2
were obtained by the SPARC Station 1+. EXMIN is
slightly modified from [38], so the results are different
from [38]. The inputs of the ND are ESOP’s simplified
by EXMIN, and the computation time is about 50 times
that of EXMIN. Thus the data of ND indicate how much
room for improvement exists in the solutions if EXMIN2,
which is still immature compared with the inclusive or
SOP minimization.

[24] extended the simplification algorithm for ESOP’s
to treat multiple-valued-input two-valued-output func-
tions. However, the authors did not show experimental
results. So, no experimental data have been published for
the multiple-valued cases except for [35], [38]. Table V
compares the number of products and connections AND-
OR PLA’s and AND-ExOR PLA’s with 1-bit and 2-bit de-
coders for various arithmetic functions [34].

In general, AND-EXOR’s require fewer connections than
AND-OR’s. However, the circuits with 2-bit decoders
sometimes require more connections than those with 1-bit
decoders. We used MINI2 [34] to obtain near-minimum

solutions for AND-OR’s. For the PLA’s with 2-bit decod-
ers, we used a heuristic method to find the near-optimum
input assignments {31]. For the aAND-ExorR PLA’s, we
used EXMIN2 to obtain near-minimum solutions. As for
the number of products in these PLA’s, we have the fol-
lowing results: 4 > B, C > D, A > C, and B > D where

A = # of products in AND-OR PLA’s, with 1-bit decod-
ers,

B = # of products in AND-OR PLA’s, with 2-bit decod-
ers,

C = # of products in AND-EXOR PLA’s, with 1-bit de-
coders, and

D = # of products in AND-EXOR PLA’s, with 2-bit de-
coders.

Also, it was found again that AND-ExoR PLA’s required
fewer products than AND-OR PLA’s.

Table VI shows the number of products and connec-
tions for circuits selected from MCNC and Berkeley
benchmarks [8], [43]. In this case, we observed similar
tendencies as in Table V except for vg2. vg2 requires more
products and connections in the AND-EXOR than the AND~
or. This benchmark function has a pattern similar to the
€Xpression x,x, V x3x, V * * * V X,, _ 1 Xp,, Which requires
2" — 1 products in ESOP’s [40].

We simplified many benchmark circuits and found that
some have similar property as vg2, and others require

SASAO: EXMIN2: A SIMPLIFICATION ALGORITHM

TABLE V1
NUMBER OF PRODUCTS AND CONNECTIONS FOR OTHER BENCHMARK
CIRCUITS
Products Connections
sop ESOP

Data CPU

name SOP ESOP AND OR AND EXOR sec
Sxpl 67 34 266 76 125 61 13
9sym 85 53 510 85 380 53 25
addé6 355 127 2196 355 732 140 430
addm4 192 91 1220 225 521 133 129
b12 41 28 150 53 124 40 4
clip 118 68 616 155 404 113 55
ex7 119 81 754 119 520 81 46
f51m 76 32 322 76 112 49 10
in7 55 35 338 79 274 59 12
intb 629 307 5274 631 2717 319 1353
fife 84 54 672 84 361 54 23
mil81 41 29 150 53 128 41 5
m4 104 84 668 639 488 295 189
max512 137 89 846 212 560 136 Ia!
mlp6 1892 872 17105 2498 7521 1131 29921
rdS3 31 15 140 35 41 19 2
rd73 127 4?2 765 147 165 56 20
rd84 255 59 1774 296 263 67 45
ryy6 112 40 624 112 328 40 13
5202 58 29 432 78 246 62 8
seq 350 259 4493 1668 3398 1907 2797
syml0 210 84 1260 210 667 84 154
3 33 25 218 33 166 43 5
t481 481 13 4752 481 40 13 677
vg2 110 184 804 110 1804 188 163
z4 59 29 252 59 111 34 4

cpu seconds by SPARCstation 1+

almost similar number of products in AND-EXOR’s and in
AND-OR’s. Such circuits are omitted from Table VI. The
most impressive circuit ever found was t481, which re-
quires 481 products in the AND-OR but only 13 products
in the AND-EXOR realization.

V. ApPPLICATIONS OF EXMIN2

EXMIN2 converts AND-OR’s and AND-EXOR’s. Exper-
imental results showed that AND-EXOR’s require fewer
gates and fewer connections than AND-OR’s in many cases.
By using similar techniques to the AND-OR cases [5], we
can design multilevel AND-EXOR circuits [42]. When the
table look-up type field-programmable gate arrays
(FPGA’s) are used to implement the circuits [22], the cost
of or’s and EXOR’s are the same. Thus we may have more
economical realization than AND-OR based circuits.

However, in many cases, EXOR’S are more expensive
than or’s. The cost of a two-input EXOR is 3 to 4 times
more expensive than an inverter when we use CMOS
technology. To solve this problem, we developed an al-
gorithm to convert AND-EXOR’s into AND-OR-EXOR’S.
This algorithm replaces most of the EXOR’s into OR’s with-
out increasing other gates. For arithmetic circuits, the re-
sulting circuits are much more economical than AND-OR’s
even if the cost of a two-input EXOR is four times more
expensive than that of an inverter [41].

631

VI. CoNcLUSION AND COMMENTS

In this paper, we presented a design method for AND-
exor PLA’s with input decoders, and formulated it as a
minimization problem of ESOP’s for multiple-valued-in-
put two-valued-output functions. We developed a simpli-
fication algorithm called EXMINZ2, which uses various
rules. We coded it in a Fortran program, simplified
various functions, and showed that EXMIN2 produces
better solutions than EXORCISM and HERMES. We also
simplified various arithmetic functions and showed that in
most cases, AND-EXOR PLA’s with 2-bit decoders require
fewer products than AND-ExOR PLA’s with 1-bit decod-
ers. Also, we showed that there is a circuit whose ESOP
realization requires more products than SOP realization.
The data in Tables V and VI show that AND-EXOR’s often
require fewer products and connections than AND-OR’s,
especially in arithmetic circuits. EXMIN?2 is currently the
most powerful ESOP simplification tool that can treat
multiple-valued-input functions. However, the current
state of the art is still immature compared with the tech-
nique for SOP minimization. We can improve the quality
of the solutions by iteratively applying EXMIN2.

ACKNOWLEDGMENT

M. Higashida worked on the first version of EXMIN
[35]; Prof. Jon T. Butler helped the author at the Naval
Postgraduate School, Monterey, California [38]; Dr. D.
Brand developed a *‘non-deterministic’’ minimization al-
gorithm [6]; N. Koda developed an exact ESOP minimi-
zation algorithm [16]; Prof. P. W. Besslich carefully read
the manuscript; and Profs. M. Perkowski, J. Muzio, Prof.
M. R. Mukerjee, and M. David sent the author related

papers.
REFERENCES

[1] Ph. W. Besslich, ‘‘Efficient computer method for EXOR logic de-
sign,” in Proc. Inst. Elect. Eng., vol. 130, part E, pp. 203-206,
1983.

[2] Ph. W. Besslich and M. W. Riege, “*An efficient program for logic
synthesis of mod-2 sums expressions,”” in EuroASIC’91, Paris,
France, pp. 136-141, May 1991.

[3] G. Bioul, M. Davio, and J. P. Deschamps, ‘‘Minimization of ring-
sum expansions of Boolean functions,’’ Philips Res. Rep., vol. 28,
pp. 17-36, 1973.

[4] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangio-
vanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Boston, MA: Kluwer, 1984.

[5] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, ““MIS: A multi-level logic optimization systems,”’ IEEE
Trans. Computer-Aided Design, vol. CAD-6, pp. 1062-1081, Nov.
1987.

[6] D. Brand and T. Sasao, “‘On the minimization of AND-EXOR expres-
sions,’’ presented at International Workshop on Logic Synthesis, Re-
search Triangle Park, NC, May 1991.

[7] M. Davio, J.-P. Deschamps, and A. Thayse, Discrete and switching
functions. New York: McGraw-Hill, 1978.

{81 A.J. de Geus, **Logic synthesis and optimization benchmarks for the
1986 Design Automation Conference,’” in Proc. 23rd Design Auto-
mation Conf., pp. 78, 1986.

9} G. Dueck and D. M. Miller, “‘A 4-valued PLA using the MOD
SUM,”’ in Proc. 16th Int. Symp. Multiple-valued Logic, pp. 232-
240, May 1986.

[10] S. Even, L. Kohavi, and A. Paz, *‘On minimal modulo-2 sums of
products for switching functions,”’ IEEE Trans. Electron, Comput.,
vol. EC-16, pp. 671-674, Oct. 1984.

632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

[11] H. Fleisher, M. Tavel, and J. Yeager, ‘‘A computer algorithm for
minimizing Reed-Muller canonical forms,”* IEEE Trans. Comput.,
vol. C-36, pp. 247-250, Feb. 1987.

[12] H. Fujiwara and K. Kinoshita, ‘‘A design of programmable logic ar-
rays with universal tests,”” IEEE Trans. Comput., vol. C-30, pp. 823-
828; also IEEE Trans. Circuits Syst., vol. CAS-28, pp. 1027-1032,
Nov. 1981.

[13} D. H. Green and I. S. Taylor, ‘‘Multiple-valued switching circuit
design by means of generalized Reed-Muller expansions,”’ Digital
Processes, vol. 2, pp. 63-81, 1976.

[14] M. Helliwell and M. Perkowski, ‘‘A fast algorithm to minimize multi-
output mixed-polarity generalized Reed-Muller forms,’” in Proc. 25th
Design Automation Conf., pp. 427-432, 1988.

[15] S. J. Hong, R. G. Cain, and D. L. Ostapko, ‘“MINI: A heuristic
approach for logic minimization,’” IBM J. Res. Develop., pp. 443-
458, Sept. 1974.

[16] N. Koda and T. Sasao, ‘‘Four-variable AND-EXOR minimum expres-
sions and their properties,”’ [in Japanese] IEICE Trans., vol. 174-D-
1, no. 11, pp. 765-773, Nov. 1991.

[17] N. Koda and T. Sasao, ‘‘An upper bound on the number of product
terms in AND-EXOR minimum expressions,”’ [in Japanese] IEICE
Trans., vol. J75-D-1, no. 3, pp. 135-142, Mar. 1992.

[18) A. Mukhopadhyay and G. Schmitz, ‘‘Minimization of exclusive OR
and logical equivalence of switching circuits,”” IEEE Trans. Com-
put., C-19, pp. 132-140, 1970.

[19] M. R. Mukerjee, ‘‘Minimization of ring-sum expansion of mixed po-
larity,”" presented at AMSE Symp. on Modeling and Simulation,
Greensboro, NC, Oct. 1990.

[20] D. E. Muller, ‘‘Application of Boolean algebra to switching circuit
design and to error detection,”” IRE Trans. Electron. Comput., EC-
3, pp. 6-12, 1954,

{21] S. Muroga, Logic design and Switching Theory. New York: Wiley,
1979.

[22] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. San-
giovanni-Vincentelli, ‘‘Logic synthesis for programmable gate ar-
rays,”” in Proc. 27th Design Automation Conf., pp. 620-625, June
1990.

[23] G. Papakonstantinou, ‘‘Minimization of modulo-2 sum of products,’’
IEEE Trans. Comput., C-28, pp. 163-167, 1979.

[24] M. Perkowski, M. Helliwell, and P. Wu, ‘“Minimization of multiple-
valued input multi-output mixed-radix exclusive sum of products for
incompletely specified Boolean functions,”” in Proc. 19th Int. Symp.
Multiple-valued Logic, pp. 256-263, May 1989.

[25] M. Perkowski and M. Chrzanowska-Jeske, ‘‘An exact algorithm to
minimize mixed-radix exclusive sums of products for incompletely
specified Boolean functions,”’ in Proc. ISCAS, pp. 1652-1655, June
1990.

[26] 1. S. Reed, ‘‘A class of multiple-error-correcting codes and the de-
coding scheme,’” IRE Trans. Information Theory, PGIT-4, pp. 38-
49, 1954.

[27] S. M. Reddy, ‘‘Easily testable realization for logic functions,’” IEEE
Trans. Comput., C-21, pp. 1083-1088, 1972.

[28] J. P. Robinson and Chia-Lung Yeh, ‘‘A method for modulo-2 min-
imization,’’ IEEE Trans. Comput., C-31, pp. 800-801, 1982.

[29] K. K. Saluja and E. H. Ong, *‘Minimization of Reed-Muller canonic
expansion,”’ IEEE Trans. Comput., C-28, pp. 535-537, 1979.

[30] T. Sasao, ‘‘Multiple-valued decomposition of generalized Boolean
functions and the complexity of programmable logic arrays,”’ IEEE
Trans. Comput., vol. C-30, pp. 635-643, Sept. 1981.

[31] T. Sasao, “‘Input variable assignment and output phase optimization
of PLA’s,” IEEE Trans. Comput., vol. C-33, pp. 879-894, Oct.
1984, .

{32] T. Sasao, **An algorithm to derive the complement of a binary func-
tion with multiple-valued inputs,’’ IEEE Trans. Comput., vol. C-34,
pp. 131-140, Feb. 1985.

[33] T. Sasao and H. Fujiwara, ‘A design of AND-EXOR PLA’s with uni-
versal tests,’” [in Japanese] IEICE Japan tech. paper, FTS86-25, Feb.
23, 1987.

[34] T. Sasao, ‘‘Multiple-valued logic and optimization of programmable
logic arrays,”” IEEE Computer, vol. 21, no. 4, pp. 71-80, April 1988.

[35} T. Sasao and M. Higashida, ‘‘On a design algorithm for AND-EXOR
PLA’s with input decoders,’’ [in Japanese] presented at the 20th
Workshop on Fault Tolerant Computing, Jan. 1989; also IEICE (Ja-
pan) tech. paper VLD89-84, Dec. 15, 1989.

[36] T. Sasao, ‘‘On the optimal design of multiple-valued PLA’s,”’ IEEE
Trans. Comput., vol. 38, pp. 582-592, Apr. 1989.

[37] T. Sasao and P. Besslich, ‘‘On the complexity of MOD-2 Sum
PLA’s,”” IEEE Trans. Comput., vol. 32, pp. 262-266, Feb. 1990.

[38] T. Sasao, ‘‘EXMIN: A simplification algorithm for exclusive-OrR-sum-
of-products expressions for multiple-valued input two-valued output
functions,” in Proc. Int. Symp. Multiple-Valued Logic, pp. 128-135,
May 1990.

[39] T. Sasao, ‘‘A transformation of multiple-valued input two-valued
output functions and its application to simplification of exclusive-or
sum-of-products expressions,”’ in Proc. Int. Symp. Multiple-Valued
Logic, pp. 270-279, May 1991.

[40] T. Sasao, ‘‘AND-EXOR expressions and their optimization,’’ in Logic
Synthesis and Optimization, T. Sasao, Ed. Boston, MA: Kluwer
Academic Publishers, 1993, pp. 286-312.

[41] T. Sasao, ‘‘Logic synthesis with EXOR gates,’’ in Logic Synthesis and
Optimization, T. Sasao, Ed. Boston, MA: Kluwer Academic Pub-
lishers, 1993, pp. 259-285.

[42] J. M. Saul, ‘‘An improved algorithm for the minimization of mixed
polarity Reed-Muller representation,’” in Proc. ICCD-90, Cam-
bridge, MA., Oct. 1991, pp. 372-375.

{43] S. Yang, ‘‘Logic synthesis and optimization benchmark user guide,
version 3.0," MCNC, Jan. 1991.

Tsutomu Sasao (S’72-M’77-SM’90) received the
B.E., M.E., and Ph.D. degrees in electronic en-
gineering from Osaka University, Osaka, Japan,
in 1972, 1974, and 1977, respectively.

Since 1988, he has been a professor with the
Department of Computer Science and Electronics,
Kyushu Institute of Technology, lizuka, Japan.
From 1977 to 1988, he was on the faculty at Osaka
University, Osaka, Japan. Beginning in February
1982, he spent a year at the IBM T. J. Watson
Research Center, where he developed an AND-OR
PLA minimization system and a multi-level logic synthesis system. In 1990,
he spent three months at the Naval Postgraduate School, Monterey, CA,
where he improved the AND-EXOR minimization program. His research in-
terests include logic design and switching theory, especially the complexity
analysis of logic circuits, design methods for PLA’s, and application of
multiple-valued logic. He was the Asia Area Program Chairman in 1974,
and the Program Chairman in 1992 for the International Symposium on
Multiple-Valued Logic (ISMVL). Also, he was the Organizer and the
Chairman of the International Symposium on Logic Synthesis and Micro-
processor Architecture, lizuka, Japan, in July 1992. He has published five
books on switching theory and logical design, including Logic Synthesis
and Optimization. Boston, MA: Kluwer Academic Publishers, 1993.

Dr. Sasao is a member of the Institute of Electronics, Information, and
Communication Engineers (IEICE), and is an Associate Editor of IEICE
Transactions on Information and Systems. He is also a member of Infor-
mation Processing Society of Japan, and he was Chairman of the Japanese
Research Group on Multiple-Valued Logic during 1989-1991. He received
the NIWA Memorial Award in 1979, and a Distinctive Contribution Award
from the IEEE Computer Society MVL-TC for the paper presented at
ISMVL 1986.

