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Abstract—This paper analyzes complexities of decision diagrams for elementary functions such as polynomial, trigonometric,

logarithmic, square root, and reciprocal functions. These real functions are converted into integer-valued functions by using fixed-point

representation. This paper presents the numbers of nodes in decision diagrams representing the integer-valued functions. First,

complexities of decision diagrams for polynomial functions are analyzed, since elementary functions can be approximated by

polynomial functions. A theoretical analysis shows that binary moment diagrams (BMDs) have low complexity for polynomial functions.

Second, this paper analyzes complexity of edge-valued binary decision diagrams (EVBDDs) for monotone functions, since many

common elementary functions are monotone. It introduces a new class of integer functions, Mp-monotone increasing function, and

derives an upper bound on the number of nodes in an EVBDD for the Mp-monotone increasing function. A theoretical analysis shows

that EVBDDs have low complexity for Mp-monotone increasing functions. This paper also presents the exact number of nodes in the

smallest EVBDD for the n-bit multiplier function, and a variable order for the smallest EVBDD.

Index Terms—Decision diagrams, MTBDDs, EVBDDs, BMDs, elementary functions, kth-degree polynomial functions, Mp-monotone

increasing functions.

Ç

1 INTRODUCTION

ELEMENTARY functions [17] are widely used in various
applications, such as computer graphics, digital signal

processing, communication systems, robotics, astrophysics,
and fluid physics. In these applications, as well as addition
and multiplication, elementary functions are extensively
used as a basic operation. The computation of elementary
functions has been studied for more than 150 years [31],
and various algorithms such as COordinate Rotation
DIgital Computer (CORDIC) [2], [29] have been proposed.
Nowadays, most of high-level programming languages
have a library for elementary functions (e.g., math.h), and
the users can evaluate elementary functions without caring
their computation methods. However, with rapid spread of
digital systems in recent years, hardware accelerators of
elementary functions (elementary function generators)
attract a lot of attention again, and systematic design and
verification methods for elementary function generators
have become important.

For design and verification of typical digital circuits,
systematic methods using decision diagrams (DDs) have
been established. However, DDs are not robust enough to
represent all the functions compactly. The size of DDs
varies drastically, depending on classes of functions. For
example, binary DDs (BDDs) [1], [3], [16] can represent

many practical logic functions compactly but cannot
represent multiplier and hidden weighted bit (HWB)
functions with reasonable size [4]. To compactly represent
integer-valued functions such as adder and multiplier,
many word-level DDs such as arithmetic transform DD
(ACDD) [25], binary moment diagram (BMD) [5], multi-
plicative BMD (*BMD) [5], Kronecker multiplicative BMD
(K*BMD) [8], and Taylor expansion diagram (TED) [6]
have been proposed. However, each of these word-level
DDs can represent some classes of functions compactly
but cannot represent other classes of functions with
reasonable size [10].

Thus, choosing a DD appropriate to a given class of
functions is important, and analyzing complexities of DDs
for various classes of functions is helpful to find an
appropriate DD. Complexities of DDs for various func-
tions have been analyzed before [30]. However, as for
representations of elementary functions, not enough
results have been reported [20], [24], [27]. Hence, in this
paper, we analyze complexities of DDs for elementary
functions to find compact graph-based representations for
them. Since elementary functions include a wide range of
functions, we analyze complexities by two approaches.
First, by using polynomial expansions, we analyze
complexities of DDs for elementary functions. Second,
by using monotonicity, we analyze complexity for mono-
tone elementary functions.

Results of this paper are useful to design elementary
function generators. In fact, based on the results in this
paper, we developed a systematic design method for
elementary function generators [21]. Fig. 1 shows an
architecture for the elementary function generators based
on edge-valued BDD (EVBDD). In an EVBDD, we can
evaluate a function by traversing the diagram and
accumulating the values of traversed edges. Thus, this
architecture consists only of a memory to store an
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EVBDD, an accumulator (an adder and a register) for the
edge values, and a control circuit to traverse the EVBDD.
The complexity of EVBDD presented in this paper
corresponds to the size of memory needed for this
architecture. This architecture realizes various elementary
functions easier and faster than CORDIC, a standard
elementary function generator. Unlike function generators
realizing approximate functions, the developed elemen-
tary function generators directly realize function tables,
and thus, they are accurate and retain characteristics of
elementary functions.

In this paper, we focus on complexities of DDs for
elementary functions. Specifically, by improving the upper
bounds on the number of nodes in DDs in [20] and [24], this
paper derives the exact number of nodes for some functions
and also proves new theorems. The results are useful for
various applications using elementary functions in addition
to the design methods for function generators.

This paper is organized as follows: Section 2 introduces a
fixed-point representation, the arithmetic transform, and
DDs used in this paper. Section 3 analyzes complexities of
DDs for polynomial functions. This section also presents the
number of nodes in the smallest EVBDD for the n-bit
multiplier function and variable orders that produce the
smallest EVBDDs. Section 4 analyzes complexity for
monotone functions. Since many common elementary
functions are monotone functions, this section introduces
an Mp-monotone increasing function to show properties of
elementary functions and presents complexity of EVBDDs
for the Mp-monotone increasing function and its affine
transformations.

2 PRELIMINARIES

2.1 Number Representation

This section defines a number representation and describes
how to convert real functions into integer-valued functions.
First of all, we define various types of functions used in this
paper.

Definition 1. Let B ¼ f0; 1g, Z be the set of the integers, and R
be the set of the real numbers. An n-input m-output logic
function is a mapping: Bn ! Bm, an integer function is
Z ! Z, a (binary-input) integer-valued function is
Bn ! Z, and a real function is R! R.

Definition 2. Elementary function is a real function built from
a combination of constants, a variable, four arithmetic

operations, power functions, exponential functions, logarith-

mic functions, trigonometric functions, and inverse trigono-

metric functions.

To represent real values, we use the following:

Definition 3. A value X represented by the binary fixed-point

representation is denoted by

X ¼ ðxn int�1 xn int�2 . . . x1 x0: x�1 x�2 . . . x�n fracÞ2;

where xi 2 f0; 1g 8i, n int is the number of bits for the integer

part, and n frac is the number of bits for the fractional part of

X. Note that

X ¼
Xn int�1

i¼�n frac

2ixi:

Specially, n-bit fixed-point representation specifies

that n bits are used to represent the value; that is,

n ¼ n intþ n frac. In this paper, an n-bit function fðXÞ
means that the input variable X has n bits. And, fXg denotes

the unordered set of binary variables in X.

By fixed-point representation, we can convert a real

function into an n-input m-output logic function. The logic

function can be converted into an integer-valued function

by considering binary vectors as integers. That is, we can

convert a real function into an integer-valued function:

Bn ! Pm, where Pm ¼ f0; 1; . . . ; 2m � 1g. In this paper,

elementary functions are converted into integer-valued

functions by using fixed-point representation, unless stated

otherwise. Specially, for polynomial functions, coefficients

are also represented by fixed-point representation. And, for

simplicity, x0 denotes the least significant bit in the fixed-

point representation of X.

Example 1. Table 1a is the function table for sinðXÞ. By the

3-bit fixed-point representation, this function is con-

verted into the logic function fbðXÞ in Table 1b. By

representing the output vectors by integers, we have the

integer-valued function fðXÞ in Table 1c. In this paper,

the 3-bit sinðXÞ denotes the integer-valued function fðXÞ
in Table 1c.
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Fig. 1. EVBDD-based elementary function generator.

TABLE 1
Function Table for 3-Bit sinðXÞ

(a) Function table for sinðXÞ. (b) Truth table for logic function fbðXÞ.
(c) Table for integer-valued function fðXÞ.
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2.2 Arithmetic Transform

This section introduces the arithmetic transform and the
arithmetic spectrum [25]. These are fundamentals of BMDs
and are used to analyze complexities of BMDs.

First, define a matrix operation and some notations.

Definition 4. Let AA and BB be ðn� nÞ square matrices, where

AA ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

an1 an2 . . . ann

2
6664

3
7775:

The Kronecker product of AA and BB is the ðn2 � n2Þ matrix:

AA�BB ¼

a11BB a12BB . . . a1nBB
a21BB a22BB . . . a2nBB

..

. ..
. . .

. ..
.

an1BB an2BB . . . annBB

2
6664

3
7775:

Definition 5. Given a matrix MM, the transposed matrix MMtt is
obtained by interchanging the rows and columns. For an n-bit
integer-valued function fðXÞ, the function vector FF is the
column vector of the function values FF ¼ ½fð0Þ; fð1Þ; . . . ;
fð2n � 1Þ�t.
Using these notations, we define the arithmetic trans-

form and the arithmetic spectrum as follows:

Definition 6. Let AðnÞ be the arithmetic transform matrix
defined by

AðnÞ ¼
On
i¼1

Að1Þ; Að1Þ ¼ 1 0
�1 1

� �
;

where the addition and the multiplication are done in integer.
For an integer-valued function f given by the function vectorFF ,
the arithmetic spectrum Af ¼ ½a0; a1; . . . ; a2n�1�t is

Af ¼ AðnÞFF:

Each ai in the spectrum is called the arithmetic coefficient.

Example 2. Consider the 1-bit adder function
fðx1; x2Þ ¼ x1 þ x2. The function vector is FF ¼ ½0; 1; 1; 2�t.
The arithmetic spectrum is

Af ¼ Að2ÞFF ¼

1 0 0 0
�1 1 0 0
�1 0 1 0

1 �1 �1 1

2
664

3
775

0
1
1
2

2
664
3
775 ¼

0
1
1
0

2
664
3
775:

Similarly, we define the inverse arithmetic transform as
follows:

Definition 7. Let A�1ðnÞ be the inverse arithmetic transform
matrix defined by

A�1ðnÞ ¼
On
i¼1

A�1ð1Þ; A�1ð1Þ ¼ 1 0
1 1

� �
:

Definition 8. In a symbolic representation,

A�1ð1Þ ¼ ½ 1 xi �:

Therefore, the inverse arithmetic transform is defined as

f ¼ XXaaAf ; XXaa ¼
On
i¼1

½ 1 xi �:

Example 3. By the inverse arithmetic transform from the

arithmetic spectrum obtained in Example 2, the integer-

valued function f is represented as follows:

f ¼XXaaAf ¼ ½ 1 x2 x1 x1x2 �

0

1

1

0

2
6664
3
7775

¼ x1 þ x2:

From Definitions 7 and 8, we can see that an integer-

valued function fðXÞ can be represented by the arithmetic

spectrum and the inverse arithmetic transform as follows:

Lemma 1. Using A�1ð1Þ and Að1Þ, an integer-valued function f

is represented as follows:

f ¼A�1ð1ÞAð1ÞFF ¼ ½ 1 xi �
1 0

�1 1

� �
f0

f1

� �

¼ ½ 1 xi �
f0

f1 � f0

� �
¼ f0 þ xiðf1 � f0Þ;

ð1Þ

where f0 ¼ fðxi ¼ 0Þ, f1 ¼ fðxi ¼ 1Þ. Equation (1) is the

arithmetic transform expansion (also called A-expansion or

moment decomposition [5]). The arithmetic expression for f

is obtained by the arithmetic transform expansion. The

arithmetic coefficients correspond to coefficients of the

arithmetic expression for f .

2.3 Decision Diagrams

This section defines DDs used in this paper. For more

details on definition and reduction rules of each DD, see [5],

[22], [30], and [32].

Definition 9. A BDD [1], [3], [16] is a rooted directed

acyclic graph (DAG) representing a logic function. The

BDD is obtained by repeatedly applying the Shannon

expansion f ¼ xif0 þ xif1 to the logic function, where

f0 ¼ fðxi ¼ 0Þ, and f1 ¼ fðxi ¼ 1Þ. It consists of two

terminal nodes representing function values 0 and 1,

respectively, and nonterminal nodes representing input

variables. Each nonterminal node has two unweighted

outgoing edges, 0-edge and 1-edge, which correspond to

the values of the input variables. Both terminal nodes have

no outgoing edges. A reduced ordered BDD (ROBDD) is

obtained by fixing the variable order in a BDD and by

applying the following two reduction rules:

1. Share equivalent subgraphs.
2. Delete nonterminal nodes whose both outgoing edges

point to the same node.

In this paper, a BDD means an ROBDD.
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Definition 10. A multiterminal BDD (MTBDD) [7] is an
extension of a BDD and represents an integer-valued
function. In the MTBDD, the terminal nodes are labeled by
integers.

Definition 11. An EVBDD [14] is a variant of the BDD and
represents an integer-valued function. The EVBDD is obtained
by repeatedly applying the expansion f ¼ xif0 þ xiðf 01 þ �Þ to
the integer-valued function, where f0 ¼ fðxi ¼ 0Þ,
f1 ¼ fðxi ¼ 1Þ ¼ f 01 þ �, and � is the constant term of f1.
The EVBDD consists of only one terminal node representing 0
and nonterminal nodes with 1-edges having integer weights �.
In the EVBDD, 0-edges always have zero weights, and the
incoming edge into the root node can have a nonzero weight
that represents the constant term of the original function. In
the EVBDD, the following two reduction rules are applied:

1. Share equivalent subgraphs.
2. Delete nonterminal nodes whose both outgoing edges

point to the same node and whose edge weight is � ¼ 0.

In a reduced EVBDD, each node represents a distinct
subfunction.

Definition 12. A BMD [5] is a rooted DAG representing an
integer-valued function. The BMD is obtained by repeatedly
applying the arithmetic transform expansion f¼f0þxiðf1�f0Þ
to the integer-valued function, where f0 ¼ fðxi ¼ 0Þ, and
f1 ¼ fðxi ¼ 1Þ. f0 and xiðf1 � f0Þ are called the constant
moment and the linear moment, respectively. The BMD
consists of terminal nodes representing the arithmetic coeffi-
cients and nonterminal nodes representing the arithmetic
transform expansions. Each nonterminal node has two edges
corresponding to two terms: constant moment and linear
moment in the arithmetic transform expansion. In the BMD,
the following two reduction rules are applied:

1. Share equivalent subgraphs.
2. Delete nonterminal nodes whose outgoing edge

representing the linear moment points to the terminal
node representing 0.

Example 4. Figs. 2a, 2b, and 2c show the MTBDD, the
EVBDD, and the BMD for the 3-bit sinðXÞ in Table 1c. In
Figs. 2a and 2b, each nonterminal node labeled by an
input variable represents the Shannon expansion with
respect to the input variable. And, each nonterminal
node has two edges: a 0-edge, denoted by a dashed line,
and a 1-edge, denoted by a solid line. Note that the
EVBDD has weighted 1-edges. In Fig. 2c, each node
labeled by “A” represents the arithmetic transform

expansion. And, each node has two edges: an edge for

constant moment, labeled by “1,” and an edge for linear

moment, labeled by an input variable. In the MTBDD, to

evaluate the function, we traverse the MTBDD from the

root node to a terminal node according to the input

values and obtain the function value (an integer) from

the terminal node. In the EVBDD, we obtain the function

value as the sum of the weights for the edges traversed

from the root node to the terminal node. And, in the

BMD, we obtain the function value by computing the

arithmetic transform expansion f ¼ f0 þ xiðf1 � f0Þ re-

cursively at each nonterminal node.

3 COMPLEXITIES OF DESIGN DIAGRAMS FOR

POLYNOMIAL FUNCTIONS

Differentiable elementary functions can be expanded into

polynomial functions such as Taylor series. To analyze

complexities for elementary functions, this section

shows upper bounds on the number of nodes in three types

of DDs for kth-degree polynomial functions ckX
k þ

ck�1X
k�1 þ � � � þ c0, where each coefficient ci is an integer.

By considering scaling factors of Xi 8i as polynomial

coefficients, we can convert fixed-point polynomial functions

into integer polynomial functions. For example, for a 2-bit

polynomial function fðXÞ¼X2þX, when X¼0:75¼ð0:11Þ2,

fð0:75Þ ¼ 1:3125 ¼ ð1:0101Þ2. If the scaling factors are not

considered when converting into an integer polynomial,

then we have X ¼ ð11Þ2 ¼ 3, and fð3Þ¼32þ3¼12¼ð1100Þ2.

It produces a wrong binary vector. To produce a correct

binary vector, we can use an integer polynomial: X2 þ 22X

considering the scaling factors. Thus, in this section, we

analyze complexities for integer polynomial functions.

Example 5. Consider a polynomial function fðXÞ ¼ 5X2 þ
7X þ 2. Fig. 3a shows the function vector FF and the

arithmetic spectrum Af . Figs. 3b, 3c, and 3d show an

MTBDD, an EVBDD, and a BMD for fðXÞ, respectively.

In the MTBDD, terminal nodes represent the function

vector. On the other hand, in the BMD, terminal nodes

represent the arithmetic spectrum, and each path from

the root node to a terminal node represents each term of

the arithmetic expression for f :

320x3x2 þ 160x3x1 þ 80x3x0 þ 376x3 þ 80x2x1

þ 40x2x0 þ 108x2 þ 20x1x0 þ 32x1 þ 12x0 þ 2:

3.1 Complexity of MTBDDs for Polynomial
Functions

Since terminal nodes in an MTBDD represent the distinct

values in the function vector, the number of terminal nodes

is equal to the number of distinct function values. Thus, an

upper bound on the number of nodes in an MTBDD is

derived from the following.

Lemma 2. For an n-bit function fðXÞ, if fðXÞ is an injection,

i.e., the relation � 6¼ � ! fð�Þ 6¼ fð�Þ holds on any � and �,

then the total number of nonterminal nodes and terminal nodes
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Fig. 2. Three types of DDs for 3-bit sinðXÞ. (a) MTBDD. (b) EVBDD.

(c) BMD.
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in the MTBDD for fðXÞ is 2nþ1 � 1 independently of variable

orders.

Proof. The number of distinct values of X is 2n, and the

number of distinct values of fðXÞ is 2n. Thus, the MTBDD

for fðXÞ is the complete binary tree, and the number of

nodes in the tree is 2nþ1 � 1. tu
From Lemma 2, we can see that an MTBDD for the

function fðXÞ ¼ X requires exactly 2nþ1 � 1 nodes. On the

other hand, if there exist two distinct values � and �

satisfying fð�Þ ¼ fð�Þ, then the total number of nodes in the

MTBDD for f is smaller than 2nþ1 � 1. Therefore, for

polynomial functions, we have the following tight upper

bound.

Theorem 1. For an n-bit kth-degree polynomial function

fðXÞ ¼ ckXk þ ck�1X
k�1 þ � � � þ c0, the total number of

nodes in the MTBDD for fðXÞ is at most 2nþ1 � 1. When

ci > 0 8i, the number of nodes in the MTBDD for fðXÞ is

exactly 2nþ1 � 1, independently of variable orders. For also

fðXÞ ¼ Xk, the MTBDD requires exactly 2nþ1 � 1 nodes,

independently of variable orders.

3.2 Complexity of EVBDDs for Polynomial
Functions

In this section, we first analyze the number of nodes in an

EVBDD for the n-bit multiplier function X � Y ðn bits�
n bitsÞ. Then, by using the same approach, we derive the

upper bounds on the number of nodes in EVBDDs forXk and

kth-degree polynomial functions.

To derive the number of nodes in an EVBDD for the n-bit

multiplier function, we partition the EVBDD into two parts:

the upper and the lower parts, as shown in Fig. 4. By

enumerating the number of distinct cofactors for each part,

we derive the exact number of nodes in the EVBDD.
The number of distinct cofactors for the upper part is

obtained by the following:

Lemma 3. For the n-bit multiplier function X � Y , let Pu be an

unordered set of u binary variables arbitrarily chosen from

fXg ¼ fxn�1; xn�2; . . . ; x0g and fY g ¼ fyn�1; yn�2; . . . ; y0g,
where fXg n Pu 6¼ ; and fY g n Pu 6¼ ;. Then, the number of

distinct cofactors with respect to the binary variables in Pu is 2u.

And, the difference between any two cofactors: fi � fj is not a

constant function.

Proof. Let cofactors with respect to two assignments to Pu be

fi ¼ðAþX0ÞðBþ Y 0Þ
¼ABþAY 0 þBX0 þX0Y 0;

ð2Þ

fj ¼ðA0 þX0ÞðB0 þ Y 0Þ
¼A0B0 þA0Y 0 þB0X0 þX0Y 0;

ð3Þ

respectively, where A and A0 are values assigned to

Pu \ fXg; B and B0 are values assigned to Pu \ fY g;
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Fig. 3. Three types of DDs for fðXÞ ¼ 5X2 þ 7X þ 2. (a) Function vector and arithmetic spectrum. (b) MTBDD. (c) EVBDD. (d) BMD.

Fig. 4. Partition of EVBDD for n-bit multiplier function.
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fX0g ¼ fXg n Pu; and fY 0g ¼ fY g n Pu. Then, (2) and (3)

are equal if and only if A ¼ A0 and B ¼ B0 (i.e., two

assignments are identical). Thus, for each assignment,

there exists a distinct cofactor. Since the number of

distinct assignments to Pu is 2u, the number of distinct

cofactors is also 2u. And, it is clear that the difference

between (2) and (3) is not a constant function when

A 6¼ A0 or B 6¼ B0 (i.e., either one pair of assignments is

different). tu
The number of distinct cofactors for the lower part is

obtained by the following:

Lemma 4. For the n-bit multiplier function X � Y , let Pl be an

unordered set of l binary variables arbitrarily chosen from fXg
and fY g, where l � n, and either fXg � Pl or fY g � Pl
holds. If constant terms of cofactors are ignored, then the

number of distinct cofactors with respect to the binary

variables in Pl is 2n � 1.

Proof. We prove only the case where fXg � Pl. (The proof

for the case where fY g � Pl is similar.) Let cofactors with

respect to two distinct assignments to Pl be

AðBþ Y 0Þ ¼ ABþAY 0; ð4Þ

AðB0 þ Y 0Þ ¼ AB0 þAY 0; ð5Þ

respectively, whereA is a value assigned toX,B andB0 are

values assigned to Pl \ fY g, B 6¼ B0, and fY 0g ¼ fY g n Pl.
Then, (4) and (5) are equal if constant terms AB and AB0

are ignored. The number of distinct assignments toX is 2n,

but the cofactor is the constant 0 when X ¼ 0. Therefore,

the lemma holds. tu
From Lemmas 3 and 4, we derive the exact number of

nodes in an EVBDD for a given variable order.

Lemma 5. Given a variable order of EVBDD for the n-bit

multiplier function X � Y , let Pu be the unordered set of u

binary variables from the top (i.e., root) to the uth in the variable

order, where u is the largest integer satisfying fXg n Pu 6¼ ;
and fY g n Pu 6¼ ;. Then, the number of nodes in the EVBDD is

2uþ1 þ ð2n � 1Þf2n� ðuþ 1Þg.
Proof. Suppose that the EVBDD is partitioned into the

upper and the lower parts as shown in Fig. 4,

where the upper part has uþ 1 binary variables. We

begin with the upper part. From Lemma 3, the

number of distinct cofactors for each i of 0 	 i 	 u is

2i. Since each cofactor is represented by a nonterm-

inal node, the upper part has 20 þ 21 þ � � � þ 2u ¼
2uþ1 � 1 nodes.

Next, we consider the lower part. For cofactors in the
lower part, their constant terms are represented as edge

weights in the EVBDD. Thus, from Lemma 4, the number

of distinct cofactors represented by nonterminal nodes is

2n � 1 for each j of uþ 2 	 j 	 2n. Therefore, the lower

part has ð2n � 1Þf2n� ðuþ 1Þg nodes.

By summing the number of nonterminal nodes in
each part and one for the terminal node, we have the

lemma. tu
In Lemma 5, when u ¼ n� 1, the number of nodes in an

EVBDD is the minimum. Thus, by substituting n� 1 into u

in Lemma 5, we have the following theorem.

Theorem 2. For the n-bit multiplier function, the number of

nodes in the smallest EVBDD is 2nðnþ 1Þ � n.

On the number of nodes in an EVBDD for the n-bit

multiplier function, only an asymptotic lower bound has

been presented [30]. As far as we know, the exact smallest

number of nodes in the EVBDD is presented for the first

time in Theorem 2.

As for the orderings of the variables, we have the

following.

Lemma 6. For the n-bit multiplier function, the number of

different orderings of the input variables is ð2nÞ!. They are

partitioned into n groups, where variable orders in each group

produce EVBDDs with the same number of nodes, and

variable orders in different groups produce EVBDDs with

different number of nodes.

Proof. Since Lemma 5 is based on the unordered sets fXg,
fY g, and Pu, the number of nodes in an EVBDD is

invariant under the permutations of the variables in fXg,
fY g, and Pu. It depends only on the value of u (i.e., the

position where binary variables are partitioned into

upper and lower parts in Fig. 4). From Lemma 5, the

range of possible values for u is n� 1 	 u 	 2n� 2, and

thus the number of distinct values of u is n. And, for

different u, the numbers of nodes in the EVBDDs are

different. Therefore, we have the lemma. tu
From Lemma 6, we can find the smallest EVBDD for the

n-bit multiplier function by checking only n variable orders

where the values of u are different. And, the variable orders

satisfying u ¼ n� 1 produce the smallest EVBDD. When

u ¼ n� 1, fXg and fY g are partitioned into upper and

lower parts. In this case, the number of nodes is

independent of the variable order in fXg and the variable

order in fY g. Also, the multiplication is a commutative

operation, and so the results do not change even if X and Y

are interchanged. Thus, we have the following:

Theorem 3. For the n-bit multiplier function, the number of
different variable orders that produce the smallest EVBDD
is 2ðn!Þ2.

One of the variable orders for the smallest EVBDD is
ðxn�1; xn�2; . . . ; x0; yn�1; yn�2; . . . ; y0Þ. On the other hand,
when the variable order is ðxn�1; yn�1; xn�2; yn�2; . . . ; x0; y0Þ,
the number of nodes is the largest.

Similarly to the multiplier function, by enumerating the
number of distinct cofactors, we derive the exact number of
nodes for the function fðXÞ ¼ Xk.

Lemma 7. For the n-bit function fðXÞ ¼ Xk ðk > 1Þ, let Pu be
an unordered set of u binary variables arbitrarily chosen from
fXg, where u < n. Then, the number of distinct cofactors with
respect to the binary variables in Pu is 2u. And, the difference
between any two cofactors: fi � fj is a nonconstant function.
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Proof. Let cofactors with respect to two distinct assignments

to Pu be

fi ¼ðAþX0Þk ¼ Ak þ k

1

� �
Ak�1X0 þ � � � þX0k;

fj ¼ðA0 þX0Þk ¼ A0k þ
k

1

� �
A0k�1X0 þ � � � þX0k;

respectively, where A and A0 are values assigned to Pu,

A 6¼ A0, and fX0g ¼ fXg n Pu. Then, it is clear that these

two cofactors are distinct, and the difference between

them is not a constant function. Thus, for each assign-

ment, there exists a distinct cofactor. Since the number of

distinct assignments to Pu is 2u, the number of distinct

cofactors is also 2u. tu

Theorem 4. For the n-bit function fðXÞ ¼ Xk ðk > 1Þ, the

number of nodes in the EVBDD is 2n and is independent of

variable orders.

Proof. From Lemma 7, the number of distinct cofactors

for each i of 0 	 i 	 n� 1 is 2i. Thus, the EVBDD

consists of 2n � 1 nonterminal nodes and one terminal

node. That is, the total number of nodes in the

EVBDD is 2n. tu

By extending Theorem 4, we derive the tight upper

bound for the polynomial function.

Theorem 5. For an n-bit kth-degree polynomial function

fðXÞ ¼ ckXk þ ck�1X
k�1 þ � � � þ c0, the number of nodes in

the EVBDD is at most 2n. When k > 1 and ci > 0 8i, the

number of nodes in the EVBDD for fðXÞ is exactly 2n and is

independent of variable orders.

Proof. Similarly to the proof for Lemma 7, we can prove

that for polynomial functions, the number of distinct

cofactors with respect to u binary variables is at most

2u, where u < n. Thus, the EVBDD has at most

2n nodes. When ci > 0 8i, polynomial functions are

injections. Thus, when k > 1, the number of distinct

cofactors with respect to u binary variables is exactly

2u, and the number of nodes in the EVBDD is

exactly 2n. tu
Theorem 6. For an n-bit first-degree polynomial function

fðXÞ ¼ c1X þ c0 ðc1 6¼ 0Þ, the number of nodes in the

EVBDD is exactly nþ 1 and is independent of variable orders.

Proof. It is clear from the definitions of fixed-point

representation and EVBDDs. tu

3.3 Complexity of BMDs for Polynomial Functions

Since the terminal nodes in a BMD represent the arithmetic

spectrum, the number of terminal nodes corresponds to the

number of distinct arithmetic coefficients. In this section,

from the number of nonzero arithmetic coefficients, we

derive upper bounds on the number of nodes in BMDs for

Xk and for a kth-degree polynomial function.
First, we derive the exact number of nonzero arithmetic

coefficients for fðXÞ ¼ Xk.

Lemma 8. For the n-bit function fðXÞ ¼ Xk, the number of

nonzero arithmetic coefficients is

Xk
i¼1

n

i

� �
:

Proof. From the property of the arithmetic transform, the

number of nonzero arithmetic coefficients is equal to the

number of terms in the expression that is obtained by

expanding and rearranging the following:

Xk ¼ ð2n�1xn�1 þ 2n�2xn�2 þ � � � þ 21x1 þ 20x0Þk;

where x2
i ¼ xi ði ¼ 0; 1; 2; . . . ; n� 1Þ because xi is a

Boolean variable. In the expanded and rearranged

expression, the number of terms with a single literal

(i.e., terms of xi) is n
1

� 	
. And, the number of terms with

two literals (i.e., terms of xixj ði < jÞ) is n
2

� 	
. Similarly, the

number of terms with k literals is n
k

� 	
. Therefore, the total

number of terms is
Pk

i¼1
n
i

� 	
. tu

Example 6. Consider the 4-bit function fðXÞ ¼ X2. From

X ¼ 8x3 þ 4x2 þ 2x1 þ x0, we have

X2 ¼ð8x3 þ 4x2 þ 2x1 þ x0Þ2

¼ 64x2
3 þ 16x2

2 þ 4x2
1 þ x2

0

� 	
þ 2ð32x2x3 þ 16x1x3 þ 8x0x3

þ 8x1x2 þ 4x0x2 þ 2x0x1Þ
¼ 64x3 þ 16x2 þ 4x1 þ x0 þ 64x2x3 þ 32x1x3

þ 16x0x3 þ 16x1x2 þ 8x0x2 þ 4x0x1:

Note that this is the arithmetic expression for fðXÞ and
has 10 terms. The number of nonzero arithmetic coeffi-
cients obtained by Lemma 8 is 4

1

� 	
þ 4

2

� 	
¼ 4þ 6 ¼ 10,

which is the same as the number of terms in the above
expression.

By adding one for the zero arithmetic coefficient to

Lemma 8, we have an upper bound on the number of

terminal nodes in a BMD for fðXÞ ¼ Xk. For k ¼ 1, it is tight

and exactly nþ 1. However, for k > 1, it is not tight because

arithmetic coefficients with the same values exist, and they

are represented by the same terminal node due to the

reduction rule for BMDs. To derive the exact number of

terminal nodes, enumeration of the number of distinct

nonzero arithmetic coefficients is necessary. Improving

Lemma 8, we derive the following three theorems for X2,

X3, and X4.

Theorem 7. For the n-bit function fðXÞ ¼ X2, when n � 2, the

number of distinct nonzero arithmetic coefficients is 2ðn� 1Þ.
Proof. We prove the theorem by the mathematical

induction. In this proof, Xn denotes an n-bit variable

X ¼ ðxn�1 xn�2 . . . x0Þ2. When n ¼ 2, we have

X2
2 ¼ ð21x1 þ 20x0Þ2 ¼ 22x1 þ x0 þ 22x1x0;

and so the theorem holds. Next, we assume that the

theorem holds for n ¼ i, and we prove that the theorem

holds for n ¼ iþ 1.

112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Authorized licensed use limited to: Tsutomu Sasao. Downloaded on December 26, 2008 at 02:36 from IEEE Xplore.  Restrictions apply.



When n ¼ iþ 1, fXiþ1g ¼ fxig [ fXig. To focus only
on the product terms including xi, we consider the
following expression:

X2
iþ1 �X2

i ¼ðXiþ1 �XiÞðXiþ1 þXiÞ
¼ 2ixið2ixi þ 2XiÞ ¼ 22ixi þ 2iþ1xiXi

¼ 22ixi þ 2iþ1xið2i�1xi�1 þ 2i�2xi�2

þ 2i�3xi�3 þ � � � þ 20x0Þ
¼ 22ixi þ 22ixixi�1 þ 22i�1xixi�2

þ 2i�12i�1xixi�3 þ � � � þ 2i�122xix0:

From this expression, it is clear that when n ¼ iþ 1, two
distinct nonzero arithmetic coefficients, 22i and 22i�1,
appear as new coefficients. From the hypothesis of the
mathematical induction, when n ¼ i, the number of
distinct nonzero arithmetic coefficients is 2ði� 1Þ. Thus,
when n ¼ iþ 1, the number of distinct nonzero arith-
metic coefficients is 2ði� 1Þ þ 2 ¼ 2fðiþ 1Þ � 1g. There-
fore, the theorem holds for n � 2. tu

Theorem 8. For the n-bit function fðXÞ ¼ X3, when n � 3, the
number of distinct nonzero arithmetic coefficients is

n2 þ 7n� 16

2
:

Proof. We prove the theorem by the mathematical induc-
tion. When n ¼ 3, we have

X3
3 ¼ð22x2 þ 21x1 þ 20x0Þ3

¼ 26x2 þ 23x1 þ x0

þ 3fð25 þ 24Þx2x1 þ ð24 þ 22Þx2x0 þ ð22 þ 2Þx1x0g
þ 6 � 23x2x1x0;

and the number of distinct nonzero arithmetic coeffi-
cients is 7. Since

32 þ 7� 3� 16

2
¼ 7;

the theorem holds when n ¼ 3. Next, we assume that the
theorem holds for n ¼ i, and we prove that the theorem
holds for n ¼ iþ 1.

To focus only on the product terms including xi, we
consider the following expression:

X3
iþ1 �X3

i ¼ðXiþ1 �XiÞ X2
iþ1 þXiþ1Xi þX2

i

� 	
¼ 2ixi ð2ixi þXiÞ2 þ ð2ixi þXiÞXi þX2

i

n o
¼ 2ixi 22ixi þ 3 � 2ixiXi þ 3X2

i

� 	
¼ 23ixi þ 3 � 22ixiXi þ 3 � 2ixiX2

i

¼ 23ixi þ 3


ð23i�1 þ 23i�2Þxixi�1

þ ð23i�2 þ 23i�4Þxixi�2

þ � � � þ ð22i þ 2iÞxix0

�
þ 6ð23i�3xixi�1xi�2 þ 23i�4xixi�1xi�3

þ � � � þ 2iþ1xix1x0Þ:

From this expression, it is clear that when n ¼ iþ 1, all
the coefficients of product terms with a single literal or

two literals newly appear as distinct nonzero arithmetic
coefficients. As for the coefficients of product terms with
three literals, only three coefficients larger than 6 � 23i�6

newly appear. This is because coefficients not larger than
6 � 23i�6 ¼ 6 � 23ði�1Þ�3 already appear for n ¼ i. In total,
iþ 4 distinct nonzero arithmetic coefficients newly
appear. Thus, when n ¼ iþ 1, the number of distinct
nonzero arithmetic coefficients is

i2 þ 7i� 16

2
þ iþ 4 ¼ ðiþ 1Þ2 þ 7ðiþ 1Þ � 16

2
:

Therefore, the theorem holds for n � 3. tu
Similarly to Theorems 7 and 8, we have the following:

Theorem 9. For the n-bit function fðXÞ ¼ X4, when n � 4, the
number of distinct nonzero arithmetic coefficients is

n3 þ 29n� 90

6
:

Next, we consider the number of nonterminal nodes.

Lemma 9. For the n-bit function fðXÞ ¼ Xk, the number of
nonterminal nodes in the BMD is at most

�ðn; kÞ ¼
Xk
i¼1

n

i

� �
:

Proof. From the proof for Lemma 8, it is clear that the
arithmetic expression for Xk consists of terms with at
most k literals. All the terms in the arithmetic expression
for Xk can be represented by a binary tree structure.

Let �ðn; kÞ be the number of nodes in the tree. Then,
�ðn; kÞ satisfies the following relation:

�ðn; kÞ ¼ 1þ �ðn� 1; kÞ þ �ðn� 1; k� 1Þ; ð6Þ

where 1 is the number of root node, and �ðn� 1; kÞ and
�ðn� 1; k� 1Þ are the numbers of nodes in the left
subtree and the right subtree, respectively.

We show that �ðn; kÞ satisfies the relation (6), i.e.,

1þ �ðn� 1; kÞ þ �ðn� 1; k� 1Þ

¼ 1þ
Xk
i¼1

n� 1

i

� �
þ
Xk�1

i¼1

n� 1

i

� �

¼
Xk
i¼1

n� 1

i

� �
þ
Xk�1

i¼0

n� 1

i

� �

¼
Xk
i¼1

n� 1

i

� �
þ n� 1

i� 1

� �� �
¼
Xk
i¼1

n

i

� �
¼ �ðn; kÞ:

Therefore, we have the lemma. tu
Lemma 9 just gives an upper bound, because it considers

only the second reduction rule for BMDs in Definition 12
(the rule for zero suppression). To prove that this upper
bound is tight, we show the necessary and sufficient
condition to share nonterminal nodes.

Lemma 10. Consider an arithmetic expression of an integer-
valued function. Let p and q be two distinct terms with the
same arithmetic coefficient. Let xi be a common variable in p
and q. And, let p ¼ xip0 and q ¼ xiq0. In a BMD, nonterminal
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nodes can be shared if and only if there exists at least one xi
that yields p0 and q0 with the same arithmetic coefficient.

Proof. In a BMD, terminal nodes represent arithmetic

coefficients, and paths from the root node to terminal

nodes represent terms in an arithmetic expression. Thus,

the following two conditions are equivalent:

1. Arithmetic coefficients of p and q are equal, and
arithmetic coefficients of p0 and q0 are equal.

2. Nonterminal nodes for xi can be shared.

tu
Using Lemma 10, we have the exact number of

nonterminal nodes for X, X2, X3, and X4.

Theorem 10. For the n-bit functions fðXÞ ¼ Xk where

k ¼ 1; 2; 3; 4, the numbers of nonterminal nodes in the BMDs

are independent of variable orders and are

Xk
i¼1

n

i

� �
:

Proof. Since it is clear that the theorem holds for k ¼ 1, we

prove that there is no xi satisfying the condition of

Lemma 10 for k ¼ 2; 3; 4.
When k ¼ 2, terms have at most two literals. When

both p and q have only one literal, it is clear that no
common literal xi exists in p and q. When p has one literal
and q has two literals, p0 that is produced by removing xi
from p is a constant term, and q0 has a literal. Since the
constant term for X2 is zero and arithmetic coefficient of
q0 is nonzero, there is no xi satisfying the condition of
Lemma 10 in these terms. When both p and q have two
literals, both p0 and q0 have one literal. The arithmetic
coefficients of p0 and q0 are equal if and only if p0 ¼ q0, that
is, p ¼ q. Therefore, when k ¼ 2, there is no xi satisfying
the condition of Lemma 10.

When k ¼ 3, as shown in the proof of Theorem 8, all
terms with one or two literals have distinct arithmetic
coefficients. Therefore, when k ¼ 3, there is no xi
satisfying the condition of Lemma 10.

When k ¼ 4, similarly to k ¼ 3, all terms with one,
two, or three literals have distinct arithmetic coefficients.
Therefore, when k ¼ 4, there is no xi satisfying the
condition of Lemma 10.

From the above, for k ¼ 1; 2; 3; 4, no nonterminal
nodes are shared, and thus Xk is represented by a binary
tree. Since this proof is independent of the order of
variables, we have the theorem. tu

For k � 5, we generated many BMDs for Xk with various

number of bits and variable orders. All the generated BMDs

had the same number of nonterminal nodes as Lemma 9.

Therefore, we have the following.

Conjecture 1. For the n-bit function fðXÞ ¼ Xk for any k � 1,

the number of nonterminal nodes in the BMD is independent

of variable orders and is

Xk
i¼1

n

i

� �
:

From Lemma 8 and Theorems 7, 8, 9, and 10, we obtain

the following:

Corollary 1. For the n-bit functions fðXÞ ¼ Xk, where

k ¼ 1; 2; 3; 4, the total numbers of nodes in the BMDs are

independent of variable orders and are exactly

2nþ 1 ðwhen k ¼ 1Þ;
n2 þ 5n� 2

2
ðwhen k ¼ 2 and n � 2Þ;

n3 þ 3n2 þ 26n� 42

6
ðwhen k ¼ 3 and n � 3Þ;

ðn� 2Þðn3 þ 4n2 þ 19nþ 168Þ
24

ðwhen k ¼ 4 and n � 4Þ;

respectively.

In [12], a similar problem has been considered. However,

it shows only an upper bound and is not tight. On the other

hand, Theorem 10 and Corollary 1 give the exact numbers.
Similar to the analysis for Xk, we derive upper bounds

on the numbers of nonzero arithmetic coefficients and BMD

nodes for kth-degree polynomial functions.

Lemma 11. For an n-bit kth-degree polynomial function

fðXÞ ¼ ckXk þ ck�1X
k�1 þ � � � þ c0, the number of nonzero

arithmetic coefficients is at most

Xk
i¼0

n

i

� �
:

When ci > 0 8i, the number of nonzero arithmetic coefficients

is exactly

Xk
i¼0

n

i

� �
:

Proof. From the proof of Lemma 8, it is clear that the sets
of terms obtained by expanding and rearranging Xi

ði ¼ 1; 2; . . . ; k� 1) are proper subsets of the set of terms
for Xk if coefficients of the terms are ignored. When
c0 6¼ 0, the arithmetic coefficient for the constant term
n
0

� 	
must be considered. Thus, we have the upper

bound. Since all the nonzero arithmetic coefficients for
Xi ði ¼ 1; 2; . . . ; k) are positive, when ci > 0 8i, the
number of nonzero arithmetic coefficients for fðXÞ is
equal to the upper bound. Therefore, Lemma 11 holds.tu

Lemma 12. For an n-bit kth-degree polynomial function

fðXÞ ¼ ckXk þ ck�1X
k�1 þ � � � þ c0, the number of nonterm-

inal nodes in the BMD is at most

Xk
i¼1

n

i

� �
:

Proof. When all terms in the arithmetic expression for fðXÞ
are represented by a binary tree structure, the number of
nonterminal nodes in a BMD is the maximum. In the
tree, terminal nodes represent the nonzero arithmetic
coefficients. In a binary tree, the number of nonterminal
nodes is one less than the number of terminal nodes [11].
Therefore, from Lemma 11, we have the lemma. tu
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By summing up the results of Lemmas 11 and 12, we
obtain the following:

Theorem 11. For an n-bit kth-degree polynomial function

fðXÞ ¼ ckXk þ ck�1X
k�1 þ � � � þ c0, the total number of

nodes in the BMD is at most

2
Xk
i¼0

n

i

� �
� 1:

Example 7. Figs. 5a and 5b compare the upper bounds on
the number of nodes in MTBDDs, EVBDDs, and BMDs
for 16-bit kth-degree polynomial functions and n-bit
third-degree polynomial functions, respectively.

When the number of bits n is fixed, the upper bound on
the number of nodes in BMD for kth-degree polynomial
function increases with k. On the other hand, in an MTBDD
and an EVBDD, when k > 1, the upper bounds on the nodes
are 2nþ1 � 1 and 2n, respectively, independently of k. Thus,
when k is small, the upper bound on the nodes in a BMD is
smaller than those in MTBDD and EVBDD.

When the polynomial degree k is fixed, the upper bound
on the number of nodes in a BMD for n-bit polynomial
function increases more slowly than those in MTBDD and
EVBDD with n. Furthermore, Corollary 1 and Theorem 5
show that the upper bounds for the MTBDD and the
EVBDD are tight when all the coefficients ci are positive.
Thus, when n is large, BMDs require many fewer nodes
than MTBDDs and EVBDDs.

From the above observations, we can see that for
n-bit kth-degree polynomial functions, BMDs tend to re-
quire fewer nodes than MTBDDs and EVBDDs when k is
sufficiently smaller than n.

4 COMPLEXITY OF EVBDDS FOR MONOTONE

FUNCTIONS

In this section, by using monotonicity of functions, we
analyze complexity of EVBDDs for them. Since many
common elementary functions are monotone functions, this
section introduces an Mp-monotone increasing function to

show the properties of elementary functions and derives an
upper bound on the number of nodes in an EVBDD for the
Mp-monotone increasing function.

4.1 Introduction of Mp-Monotone Increasing
Function

We define an Mp-monotone increasing function as follows:

Definition 13. Let I be a set of integers including 0, and let p be
an integer. An integer function fðXÞ : I ! Z such that 0 	
fðX þ 1Þ � fðXÞ 	 p and fð0Þ ¼ 0 is an Mp-monotone

increasing function on I. That is, an Mp-monotone
increasing function fðXÞ satisfies fð0Þ ¼ 0, and the increment
of X by one increases the value of fðXÞ by at most p.

Definition 14. Let fðXÞ be an integer function. Affine

transformation of fðXÞ is defined as afðXÞ þ b, where a
and b are integers.

Example 8. For the 3-bit sinðXÞ ¼ ½0; 1; 2; 3; 4; 5; 5; 6�t, the
increment of X by one increases the function value by at
most p ¼ 1. Thus, this function is an M1-monotone
increasing function. For the 3-bit 1

Xþ1¼½8; 7; 6; 6; 5; 5; 5; 4�
t,

the increment ofX by one decreases the function value by at
most one. Thus, this function is not an M1-monotone
increasing function, but it is an affine transformation of an
M1-monotone increasing function fðXÞ ¼ ½0; 1; 2; 2; 3; 3;
3; 4�t : �1� fðXÞ þ 8. The polynomial function shown in
Fig. 3a is also an affine transformation of an M76-
monotone increasing function gðXÞ¼½0; 6; 17; 33; 54; 80;
111; 147; 188; 234; 285; 341; 402; 468; 539; 615�t :2�gðXÞ þ 2.

Let fðXÞ be an Mp-monotone increasing function. Then,
we have the following relation:

p ¼ max
X2I

fðX þ 1Þ � fðXÞ
ðX þ 1Þ �X

� �
:

This is the maximum average rate of change for the integer
function fðXÞ. Note that the maximum differential coefficient
of the original elementary function ~f is an upper bound on
p. More precisely, we have the following:

Theorem 12. Let ~fðXrÞ and fðXÞ be a real function and its
integer (fixed-point) function, respectively, where fðXÞ and X
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have the same number of fractional bits. When fðXÞ is an
Mp-monotone increasing function, the following holds:

p 	 max
Xr2R

~f 0ðXrÞ
� 	� 


;

where R is a domain of the real variable Xr and corresponds to
the domain I of the integer variable X.

Proof. Assume that fðXÞ and X are represented by fixed-
point numbers. Let n be the number of fractional bits for
fðXÞ and X. Because of the rounding errors [17], we have

~fðXrÞ � fðXÞ
�� �� 	 2�ðnþ1Þ:

Then,

p 	 max
Xr2R

~fðXr þ 2�nÞ þ 2�ðnþ1Þ � ~fðXrÞ þ 2�ðnþ1Þ

2�n

 !

¼ max
Xr2R

~fðXr þ 2�nÞ � ~fðXrÞ
2�n

 !
þ 1:

Note that the rounding errors occur only if

max
~fðXr þ 2�nÞ� ~fðXrÞ

2�n

� �
is not an integer. Thus, we have

p 	 max
Xr2R

~fðXr þ 2�nÞ � ~fðXrÞ
2�n

 !& ’
:

From the mean value theorem on differential coefficient,
there exists Xs such that Xr 	 Xs 	 Xr þ 2�n and that
satisfies the following relation:

~fðXr þ 2�nÞ � ~fðXrÞ
2�n

¼ ~f 0ðXsÞ:

Since max ~f 0ðXsÞ
� 	

	 maxXr2R
~f 0ðXrÞ
� 	� �

, we have the
theorem. tu

Thus, we can estimate the value of p by Theorem 12.

Example 9. Let ~f1ðXrÞ ¼ sinðXrÞ. Then, ~f 01ðXrÞ ¼ cosðXrÞ,
and maxXr2½0;1Þ

~f 01ðXrÞ
� 	� �

¼ 1. Note that sinðXrÞ is mono-

tone increasing for Xr 2 ½0; 1Þ. Thus, sinðXrÞ is converted

into an M1-monotone increasing function.

Let ~f2ðXrÞ ¼ tanðXrÞ. Then, ~f 02ðXrÞ ¼ 1
cosðXrÞ , and

maxXr2½0;1Þ
~f 02ðXrÞ
� 	� �

¼ d3:4255e ¼ 4. Note that tanðXrÞ
is monotone increasing for Xr 2 ½0; 1Þ. Thus, tanðXrÞ is

converted into an M4-monotone increasing function.

When fðXÞ is an affine transformation of an Mp-monotone
increasing function, we have the following relation:

a� pþ fð0Þ ¼ max
X2I

fðX þ 1Þ � fðXÞð Þ;

where a is an integer common factor of all function values
and is negative when fðXÞ is monotone decreasing.

Table 2 shows the relations between various elementary
functions and Mp-monotone increasing functions. As shown
in Table 2, many common elementary functions can be
converted into Mp-monotone increasing functions or their
affine transformations. When the differential coefficient is
large, the value of p is large. In Table 2, sin�1ðXÞ, cos�1ðXÞ,
cosh�1ðXÞ, and tanh�1ðXÞ are such examples.

Before analyzing complexity of EVBDDs, we derive the
number of distinct Mp-monotone increasing functions. To

derive that, we first define a ðpþ 1Þ-valued 0-preserving

function.

Definition 15. A two-valued input multivalued output

function h : Bn ! f0; 1; . . . ; pg such that hð0; 0; . . . ; 0Þ¼0

is a ðpþ1Þ-valued 0-preserving function. This is an

extension of the 0-preserving function for logic function [23].

Lemma 13. The number of distinct n-bit Mp-monotone

increasing functions is ðpþ 1Þ2
n�1.

Proof. Let hðY Þ be an n-bit input ðpþ 1Þ-valued 0-preserving

function, where Y ¼ ðyn�1 yn�2 . . . y0Þ2. For each hðY Þ,
there exists an n-bit Mp-monotone increasing function

fðXÞ ¼
XX
Y¼0

hðY Þ:

Conversely, for any given n-bit Mp-monotone increasing

function fðXÞ, there exists a ðpþ 1Þ-valued 0-preserving

function. The number of different h’s is ðpþ 1Þ2
n�1.

Therefore, we have the lemma. tu
Example 10. Let HH be the function vector of a 2-bit input

two-valued 0-preserving function h. And, let FF be the

function vector of a 2-bit M1-monotone increasing

function f . The following shows all possible FF ’s and

the corresponding HH’s:

As shown above, the number of the different 2-bit

M1-monotone increasing functions is 222�1 ¼ 8.
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TABLE 2
Relations between 16-Bit Elementary Functions and

Mp-Monotone Increasing Functions
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4.2 Complexity of EVBDDs for Mp-Monotone
Increasing Functions

To analyze the complexity of EVBDDs for Mp-monotone
increasing functions, we partition an EVBDD into two parts:
the upper and the lower parts as shown in Fig. 6. To analyze
the lower part, we introduce the following.

Definition 16. A shared EVBDD (SEVBDD) is an extension of
the EVBDD, and it has multiple root nodes to represent multiple
integer functions. The SEVBDD is obtained by sharing
equivalent subgraphs in EVBDDs for the integer functions.

Lemma 14. Let �ðl; pÞ be the number of nonterminal nodes in the
SEVBDD representing all the l-bit Mp-monotone increasing
functions, where the variable order of the SEVBDD is
xl�1; xl�2; . . . ; x0 (from the root nodes to the terminal node).
Then,

�ðl; pÞ ¼
Xl
i¼1

ðpþ 1Þ2
i�1 � l:

Proof. We prove the lemma by the mathematical induction.

When l ¼ 1, the function vectors of all the Mp-monotone

increasing functions are F ¼ ½0; 0�t; F ¼ ½0; 1�t; . . . , and

F ¼ ½0; p�t. SinceF ¼ ½0; 0�t is the constant function 0, there

is no nonterminal node representing it. As for the other p

function vectors, there exists a nonterminal node for each

function vector. Thus, when l ¼ 1, the lemma holds. Next,

we assume that the lemma holds when l ¼ n. And, we

prove that the lemma holds when l ¼ nþ 1.

Each nonterminal node in an EVBDD represents

the following expansion: f ¼ xif0 þ xiðf 01 þ �Þ. When

f0 ¼ f 01 þ �, however, the nonterminal node for xi is

eliminated because of the reduction rules for EVBDD.

Conversely, the nonterminal node for xi is not eliminated

when f0 6¼ f 01 þ �. When f is an ðnþ 1Þ-bit Mp-monotone

increasing function except for the constant function 0,

f0 6¼ f 01 þ � holds in the expansion with respect to xn.

From Lemma 13, the number of different ðnþ
1Þ-bit Mp-monotone increasing functions except for the

constant function 0 is ðpþ 1Þ2
nþ1�1 � 1. Thus, in an

SEVBDD, there exist ðpþ 1Þ2
nþ1�1 � 1 nonterminal nodes

representing the expansions with respect to xn. Since f0’s

and f 01’s produced by these expansions are the

n-bit Mp-monotone increasing functions, from the hy-

pothesis of induction for l ¼ n, we have

�ðn; pÞ ¼
Xn
i¼1

ðpþ 1Þ2
i�1 � n:

Therefore, when l ¼ nþ 1, the number of nonterminal
nodes is

�ðn; pÞ þ ðpþ 1Þ2
nþ1�1 � 1

¼
Xn
i¼1

ðpþ 1Þ2
i�1 � nþ ðpþ 1Þ2

nþ1�1 � 1

¼
Xnþ1

i¼1

ðpþ 1Þ2
i�1 � ðnþ 1Þ ¼ �ðnþ 1; pÞ:

Therefore, the lemma holds. tu
Using this lemma, we derive the upper bound on the

number of nodes as follows:

Theorem 13. For an n-bit Mp-monotone increasing function
fðXÞ, the number of nodes in the EVBDD is at most

2n�l þ
Xl
i¼1

ðpþ 1Þ2
i�1 � l;

where l is the largest integer satisfying 2n�l � ðpþ 1Þ2
l�1, and

the variable order of the EVBDD is xn�1; xn�2; . . . ; x0 (from
the root node to the terminal node).

Proof. Suppose that an EVBDD for fðXÞ is partitioned into
the upper and the lower parts as shown in Fig. 6. In this
case, the lower part represents l-bit Mp-monotone in-
creasing functions, and the upper part represents the
selector function. The upper part has the maximum
number of nodes when it forms a complete binary tree.
That is, the maximum number of nodes in the upper part
is 2n�l � 1. The lower part has the maximum number of
nodes when it represents all the l-bit Mp-monotone
increasing functions. From Lemma 14, the maximum
number of nodes in the lower part is

�ðl; pÞ ¼
Xl
i¼1

ðpþ 1Þ2
i�1 � l:

Thus, the number of nonterminal nodes in the EVBDD
for fðXÞ is at most

2n�l þ
Xl
i¼1

ðpþ 1Þ2
i�1 � l� 1:

By adding one that denotes the terminal node to this, we
have the theorem. The number of Mp-monotone increas-
ing functions that can be represented in the lower part is
ðpþ 1Þ2

l�1. It does not exceed the number of functions
that can be selected by the upper part: 2n�l. Therefore, we
have the relation: ðpþ 1Þ2

l�1 	 2n�l. tu
Next, we prove that this upper bound holds for also

affine transformations of an Mp-monotone increasing
function.

Lemma 15. Let fðXÞ be an Mp-monotone increasing function,
and let gðXÞ be an affine transformation of fðXÞ:
gðXÞ ¼ afðXÞ þ b, where a and b are integers. Then, the
EVBDDs for fðXÞ and gðXÞ have the same number of nodes.

Proof. In EVBDDs, the sum of weights of the traversed
edges shows the function value. Thus, in the EVBDD for
fðXÞ, multiplying each weight by a and adding b to the
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Fig. 6. Partition of EVBDD for Mp-monotone increasing function.
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weight of edge to the root node can produce the EVBDD
for gðXÞ. This conversion of EVBDDs does not change
the number of nodes. tu

Example 11. Table 3 compares the upper bounds on the
number of nodes in MTBDDs and EVBDDs for
n-bit Mp-monotone increasing functions. From Lemma 2,
the upper bound for MTBDDs is 2nþ1 � 1 independently
of p. On the other hand, the upper bound for EVBDDs
increases with p.

5 CONCLUSION

In this paper, we have analyzed the number of nodes of
three types of DDs, MTBDD, EVBDD, and BMD, for
elementary functions by two approaches. First, we analyzed
the number of nodes for n-bit kth-degree polynomial
functions. We showed that when the polynomial degree k
is sufficiently smaller than the number of bits n, BMDs have
low complexity for polynomial functions. Second, we
introduced a new class of integer functions, called
Mp-monotone increasing functions, and analyzed their
complexities. We showed that the smaller p is, the lower
complexity of EVBDDs is. We also derived the exact
number of nodes in the smallest EVBDD for the n-bit
multiplier function and variable orders that produce the
smallest EVBDDs. All complexities derived in this paper are
summarized in Tables 4 and 5.
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