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Easily Testable Realizations
for Generalized Reed-Muller Expressions

Tsutomu Sasao, Fellow, IEEE

Abstract —This paper presents a design method of easily testable
AND-EXOR networks. It is an improvement of Reddy and Saluja-
Reddy’s methods, and has the following features: 1) The network uses
generalized Reed-Muller expressions (GRMs) instead of Positive
Polarity Reed-Muller expressions (PPRMs). The average number of
products for GRMs is less than half of that for PPRMs, and is less than
that of sum-of-products expressions (SOPs). 2) The network consists
of a literal part, an AND part, an EXOR part, and a check part. 3) The
EXOR part can be a tree instead of a cascade. Thus, the network is
faster. 4) The test detects multiple stuck at faults under the assumption
that the faults occur at most one part, either the literal part, the AND
part, the EXOR part, or the check part.

Index Terms —AND-EXOR, testable design, Reed-Muller expression,
circuit complexity, logic minimization, linear circuit.

————————   ✦   ————————

1 INTRODUCTION

AND-EXOR based networks are easily testable [6]. Reddy showed
that only four tests are required to test an EXOR cascade (Fig. 1)
[12]. He combined this idea with the positive polarity Reed-Muller
expressions (PPRMs), and showed that only n + 4 tests are re-
quired to test AND-EXOR realizations, where n is the number of
the input variables (Fig. 2). Although these represent a small num-
ber of tests, networks based on his idea have the following prob-
lems: The first problem is that the network uses a cascade in the
EXOR part. The propagation delay of the cascade tends to be large.
In modern design, the speed of the network is vitally important,
and cascades are unacceptable because of their slow speed. The
second problem is an excessive amount of hardware. PPRMs usu-
ally require more products than other representations (see Tables 1
and 2). The third problem is that the tests cannot detect multiple-
faults.

In this paper, we present an improved network that is easily
testable. Its features are:

1) The network consists of a literal part, an AND part, an
EXOR part, and a check part (Fig. 3).

2) The EXOR part can be a tree instead of a cascade. Thus, the
network is faster.

3) The network uses generalized Reed-Muller expressions
(GRMs) instead of Positive Polarity Reed-Muller expres-
sions (PPRMs). The number of products for GRMs is, on the
average, less than half of that for PPRMs, and is less than
that of sum-of-products expressions (SOPs) (see Tables 1
and 2).

4) The test detects multiple stuck-at-faults under the assump-
tion that the faults occur in at most one part, either the lit-
eral part, the AND part, the EXOR part, or the check part.

2 DEFINITIONS AND BASIC PROPERTIES

2.1 PPRM, FPRM, GRM, and ESOP
In this part, we will define various classes of AND-EXOR expres-
sions [17], [21].

DEFINITION 1. x and x  are literals of a variable x. A logical product
which contains at most one literal for each variable is called a
product term (or a product for short). Product terms combined
with OR operators form a sum-of-products expression (SOP).

DEFINITION 2. A minterm is a logical product containing a literal for
each variable. A minterm implying a function f is called a min-
term of f.

DEFINITION 3. An expression for f is minimum for f if the number of
the products is the minimum.

The following lemma is the basis of the EXOR-based expansion.
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Fig. 1. Test for EXOR cascade.

Fig. 2. Test for PPRM.

Fig. 3. Easily testable GRM realization.
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LEMMA 1. An arbitrary logic function f(x1, x2, º, xn) can be expanded
as follows:

f x f x f= ≈1 0 1 1 , (1)

f f x f= ≈0 1 2 , (2)

and

f f x f= ≈1 1 2 , (3)

where f0 = f(0, x2, º, xn), f1 = f(1, x2, º, xn), and f2 = f0 ≈ f1.

2.1.1 PPRM (Positive Polarity Reed-Muller Expression)
Equations (1), (2), and (3) are called the Shannon expansion, the
positive Davio expansion, and the negative Davio expansion, re-
spectively. In particular, if we apply (2) recursively to a function f,
then we can represent it as follows:

LEMMA 2. An arbitrary n-variable function f(x1, x2, º, xn) can be repre-
sented as

f a a x a x a x

a x x a x x a x x
n n

n n n n

= ≈ ≈ ≈ ≈
≈ ≈ ≈ ≈ ≈- -

0 1 1 2 2

12 1 2 13 1 3 1 1

L

L

LLLLL

≈ a x x x xn n12 1 2 3L L .   (4)

Equation (4) is called a positive polarity Reed-Muller expression
(PPRM). For a given function f, the coefficients a0, a1, a2, º, a12� n
are unique. Thus, PPRM is a canonical representation. Note that all
the literals are positive. Because PPRM is unique for a given func-
tion, we cannot simplify the expression.

2.1.2 FPRM (Fixed Polarity Reed-Muller Expression)

In (4), for each xi (i = 1, 2, º, n), if we use either a positive literal

(xi) or a negative literal ( )xi , then we have a fixed polarity Reed-

Muller expression (FPRM). For each variable xi, there are two ways

of choosing the polarities: positive (xi) or negative ( )xi . Thus, there

are 2n different sets of polarities for an n-variable function. For a
given function and a given set of polarities, there exists a unique

set of coefficients (a0, a1, º, a12�n). Thus, FPRM is a canonical rep-
resentation.

2.1.3 GRM (Generalized Reed-Muller Expression)
In (4), if we can freely choose the polarity for each literal, then we
have a generalized Reed-Muller expression (GRM). A GRM is also
called a canonical restricted mixed polarity form (CRMP) [1]. Note
that some authors use GRMs to represent other classes of expres-

sions [7]. There are 2 2 1n n-
 different sets of polarities for an n-

variable function. This follows the fact that for each of the n2n-1

literal in (4), there are two ways to choose the polarity. For a given

set of polarities of literals, there is a unique set of coefficients (a0,

a1, º, a12�n). Thus, a GRM is a canonical representation for a logic
function. Recently, we have developed an exact minimization al-
gorithm [20] and a simplification algorithm for GRMs [4]. The first
one can minimize any functions up to five variables and some
functions with six variables, and the second one quickly simplifies
the GRM for the functions with more variables. Other algorithms
have also been developed [1].

2.1.4 ESOP (Exclusive or Sum-of-Products Expression)
Arbitrary product terms combined by EXORs is called an exclu-
sive-or sum-of-products expression (ESOP). The ESOP is the most
general AND-EXOR expression. EXMIN2 is a heuristic minimiza-
tion algorithm for ESOPs, and obtains near minimal solutions in a
reasonable computation time [18]. An exact minimization program
is also available, but it is very time and memory consuming [19].

TABLE 1
NUMBER OF PRODUCTS TO REPRESENT VARIOUS FUNCTIONS (n = 2r)

Function PPRM FPRM GRM ESOP SOP

x1 ≈ x2 ≈ � ≈ xn
n n n n 2

n-1

x x x2 n1 L 2
n

1 1 1 1

x x x x x xn n1 2 1 2L L⁄ 2
n - 1 2

r+1 - 2 n 2 2

x1x2 ⁄ x3x4 ⁄ � ⁄ xn-1xn
2

r - 1 2
r - 1 2

r - 1 2
r - 1 r

worst case (n = 5) 32 21 10 9 16

TABLE 2
NUMBER OF FOUR-VARIABLE FUNCTIONS REQUIRING t PRODUCTS

t PPRM FPRM GRM ESOP SOP
0 1 1 1 1 1
1 16 81 81 81 81
2 120 836 2212 2268 1804
3 560 3496 20856 21744 13472
4 1820 8878 37818 37530 28904
5 4368 17884 4512 3888 17032
6 8008 20152 56 24 3704
7 11440 11600 512
8 12870 2336 26
9 11440 240

10 8008 32
11 4368
12 1820
13 560
14 120
15 16
16 1
av 8.00 5.50 3.68 3.66 4.13
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EXAMPLE 1.

1) x1x2x3 ≈ x1x2 is a PPRM.

2) x x x x x1 2 3 2 3≈  is a FPRM, but not a PPRM (x3 has nega-
tive literals).

3) x x x x1 2 1 2≈ ≈  is a GRM, but not a FPRM (x1 has both
positive and negative literals).

4) x x x x x x1 2 3 1 2 3≈  is an ESOP, but not a GRM (it has two

products with the form x x x1 2 3
* * * , where xi

*  denotes either

xi or xi ).

THEOREM 1. Suppose that 3350, )350, *50, and (623 de-
note the set of PPRMs, FPRMs, GRMs, and ESOPs, respectively.
Then, the following relation holds: 3350 Ã )350 Ã *50

Ã (623 (Fig. 4).

Fig. 4. Relations among various classes of AND-EXOR expressions.

2.2 Complexities of PPRMs, FPRMs, GRMs, and ESOPs
Table 2 compares the number of functions requiring a given num-
ber of products in the minimum expressions for n = 4. Note that
PPRMs require, on the average, 8.00 products to realize an arbi-
trary function, while GRMs require only 3.68 products. This table
also shows that, on the average, GRMs require fewer products
than SOPs. Table 1 shows the number of products to represent
various functions. Table 3 shows the number of products to repre-
sent arithmetic functions [4]. GRMs efficiently realize arithmetic
functions. Except for sym9, GRMs require fewer products than
SOPs. ESOPs usually require fewer products than GRMs.

TABLE 3
NUMBER OF PRODUCTS TO REPRESENT ARITHMETIC FUNCTIONS

Data PPRM FPRM GRM ESOP SOP
adr4 34 34 34 31 75
inc8 16 16 15 15 37
log8 253 193 105 96 123
mlp4 97 97 71 61 121
nrm4 216 185 96 69 120
rdm8 56 56 31 31 76
rot8 225 118 51 35 57
sqr8 168 168 121 112 178
sym9 210 173 126 51 84
wgt8 107 107 107 58 255

DEFINITION 4. The number of products in a minimum GRM for f is
denoted by t (GRM : f). The largest number of products to re-
alize function of n variables by a minimum GRM is denoted by
t (GRM : n). The average number of products to realize n-variable
functions by minimum GRMs is denoted by h (GRM : n). Similar
notations are used for other classes of expressions.

LEMMA 3. The number of n-variable functions requiring t products in

PPRMs is 2n

t
F
H

I
K .

PROOF. An arbitrary function f can be represented as (4). Because
PPRM is a canonical representation, for each set of coeffi-

cients (a0, a1, a2, º, a12�n), there exists a unique function.
There are 2n as, and each can be either 0 or 1. Thus, the

number of functions having t nonzero coefficients is 2n

t
F
H

I
K .

Hence, we have the lemma. �

THEOREM 2. h (PPRM : n) = 2n-1.

PROOF. An arbitrary function of n variables can be written as (4).
The average is

h PPRM n

t t

t t

n

n

n

n

n

n

t

n

t

n n

:

.

c h

c h= ◊

= ◊ FHG
I
KJ = =

=

=

- -

Â

Â

1

2

1

2
2 1

2
2 2 2

2
0

2

2
0

2

2

2 1 1

#  of functions requiring  products

�

LEMMA 4. h(GRM : n) £ 2 ◊ h(GRM : n - 1).

PROOF. An arbitrary n-variable function can be expanded as f = f0
≈ xn f2, where f0 and f2 are functions of (n - 1) variables.
Note that if F0 and F2 are GRMs, then F0 ≈ xn ◊ F2 is also a
GRM. Also t(GRM : f) £ t(GRM : f0) + t(GRM : f2). Let )n be
the set of all the n-variable functions.

h

t

t t

h h

h
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THEOREM 3. h(GRM : n) £ (3.68) ◊ 2n-4, when n ≥ 4.

PROOF. From Lemma 4, we have h(GRM : n) £ 2n-4h(GRM : 4). From
Table 2, we have h(GRM : 4) = 3.68. Hence, the theorem. �

COROLLARY 1.

h
h

GRM n

PPRM n

:

:

.

. .
c h
c h £ =

3 68
8 00 0 46 .

The above corollary shows that GRMs require, on the average, at
most half of the products required for PPRMs.

3 EASILY TESTABLE REALIZATION FOR GRMS

3.1 Proposed Scheme
The proposed scheme consists of four parts: the literal part, the
AND part, the EXOR part, and the check part, as shown in Fig. 3.
The literal part has a control input c. During the normal operation,
the control input c is set to one, and the literal part produces the

positive (xi) and the negative ( )xi  literals. During the test for the
AND part, c is set to zero, and all the literal lines produce positive
literals. The AND part consists of AND gates. In order to make the
argument simple, we will use an AND gate even if it has only one
input. Such an AND gate can be deleted without changing the
function. The check part consists of two AND gates and two OR
gates with extra observable outputs. This part is used to test the
literal part. The EXOR part realizes a parity function. We can use
EXOR tree for high speed operation. We assume that “only per-
manent stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) faults occur in at
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most one part: either the literal part, the AND part, the EXOR part,
or the check part. Multiple-faults may occur in each part.”

3.2 Test for the EXOR Part
We will start with the test of the EXOR part, since this is the most
important feature of the method. Although various test methods
are known for the linear (EXOR only) networks [8], [22], most of
them are inapplicable to our scheme. In this paper, we adopt Fuji-
wara’s fault assumption [5] in the EXOR part: The faults change
the function into a different linear function. This assumption is
valid if the EXOR part is realized with EXOR gates, and only
stuck-at-faults occur, in the inputs or the outputs.

THEOREM 4 [5]. For an EXOR network realizing a parity function f = x1

≈ x2 ≈ � ≈ xs, {a0, a1, º, as} is a test, where

( , , , )
( , , , ),
( , , , ),
( , , , ),

( , , , ).

x x xs

s

1 2

0

1

2

0 0 0
1 0 0
0 1 0

0 0 1

K
K
K
K

KK KK KK
K

a
a
a

a

=
=
=

=

For example, for the network realizing f = x1 ≈ x2 ≈ x3 ≈ x4, the
test is {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. When
the EXOR part is realized with EXOR gates and only stuck-at-
faults (s-a-faults) occur, all the multiple faults are detected by this
test. Note that Reddy’s method [12] cannot detect multiple faults.

Although Fujiwara’s method is simple, it is not directly appli-
cable to our scheme. For example, consider the network shown in
Fig. 5. We cannot apply such inputs to the EXOR part, since AND
gates exist between the input terminals and the EXOR part. From
here, we will extend Fujiwara’s result. Before going to the theo-
rem, it is convenient to introduce the terminologies and properties
of binary matrices by using simple examples.

Fig. 5. Test for the EXOR part.

EXAMPLE 2. Consider a binary matrix:

M1

110
011
101

=
L
N
MM

O
Q
PP .

M1 is singular, since mod-2 sum of the first and the second
rows (columns) is equal to the third row (column).

M2

101
110
010

=
L
N
MM

O
Q
PP

is nonsingular, since no rows (columns) can be represented
as a mod-2 sum of other rows (columns). In such a case, the
row (column) vectors are linearly independent. Let,

M2
1

011
001
111

- =
L
N
MM

O
Q
PP .

Note that

M M I2 2
1

101
110
010

011
001
111

100
010
001

- =
L
N
MM

O
Q
PP ◊

L
N
MM

O
Q
PP =

L
N
MM

O
Q
PP = ,

where I is a unit matrix and M2
1-  is called the inverse of M2.

Here, multiplication is AND and addition is mod-2. A ma-
trix A is nonsingular iff the row (column) vectors are line-
arly independent. The determinant of a nonsingular matrix
A is nonzero iff A has the inverse.

THEOREM 5. For an EXOR network of s variables, {a0, a1, a2, º, as} is a
test if A is nonsingular, where a0 = (0, 0, º, 0),

A

s

=

L

N

MMM

O

Q

PPP

a
a

a

1

2
M

,

and ai (i = 0, 1, º, s) are binary vectors with s components.

PROOF. By the fault assumption, the faulty network realizes a lin-
ear function of the form: g = c0 ≈ c1x1 ≈ c2x2 ≈ � ≈ csxs. By
applying a0 = (0, 0, º, 0), we can see the value of c0. Let bi be
the outputs of the faulty network for the test ai (i = 1, 2, º, s).
Then, we have

A

c
c

c

b
b

bs s

1

2

1

2
M M

L

N

MMM

O

Q

PPP
=

L

N

MMM

O

Q

PPP
.

Because A is nonsingular, A-1 exists, and we have

c
c

c

A

b
b

bs s

1

2 1
1

2
M M

L

N

MMM

O

Q

PPP
=

L

N

MMM

O

Q

PPP
- .

This implies that we can identify all the coefficients {c1, c2,
º, cs} by the test {a1, a2, º, as}. �

Thus, the test for the EXOR part need not be the unit vectors.
The set of s vectors that are linearly independent can be used for
the test. The next problem is how to find such a set of vectors. Be-
fore showing the main theorem, we need to prove two lemmas.

DEFINITION 5. Let a = (a1, a2, º, ak) and b = (b1, b2, º, bk) be binary
vectors. a £ b if ai £ bi for i = 1, 2, º, k.

EXAMPLE 3. (0, 1, 0) £ (1, 1, 0) £ (1, 1, 1).

LEMMA 5. Let v(k) be an n-bit binary vector representing an integer k.
Let L(k) (k = 1, 2, º, 2n - 1) be binary vectors with (2n - 1) bits,
where the jth element is one if v(j) £ v(k), and zero otherwise.
Then, the (2n - 1) ¥ (2n - 1) matrix

A
n

=

-

L

N

MMMM

O

Q

PPPP

L
L

L

1
2

2 1

b g
b g

e j
M

is nonsingular.

PROOF. It is sufficient to show that the vectors L(1), L(2), º, and

L(2n - 1) are linearly independent. Suppose that these vec-
tors are linearly dependent, then there exits a binary vector
( , , , )t t t n1 2 2 1

K
-

 that makes the equation
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t t t n
n

1 2 2 1
1 2 2 1 0L L Lb g b g e j≈ ≈ ≈ - =

-
L

true. Let tk be the nonzero with maximum k. Thus,

L(k) = t1L(1) ≈ � ≈ tk-1L(k - 1).             (5)

Since k is the maximum, the kth bit in L(k) is one and the
corresponding bits in L(1), L(2), º, and L(k - 1) are all zeros.
However, this contradicts (5). Thus, we can conclude that
L(1), L(2), º, and L(2n - 1) are linearly independent. �

EXAMPLE 4. For n = 3, the vectors L(k) (k = 1, 2, º, 7) defined in
Lemma 5 are:

001 010 011 100 101 110 111
1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 1 1 1 0 0 0 0
4 0 0 0 1 0 0 0
5 1 0 0 1 1 0 0
6 0 1 0 1 0 1 0
7 1 1 1 1 1 1 1

L
L
L
L
L
L
L

b g
b g
b g
b g
b g
b g
b g

=
=
=
=
=
=
=

( , , , , , , ),
( , , , , , , ),
( , , , , , , ),
( , , , , , , ),
( , , , , , , ),
( , , , , , , ),
( , , , , , , ).

and

Thus, the matrix A is

A =

L

N

MMMMMM

O

Q

PPPPPP

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 1 1 1 1 1

.

This is a triangular matrix whose diagonal elements are all
ones. Thus, its determinant is 1, and A is nonsingular.

LEMMA 6. The matrix that is obtained by recursively deleting the kth
row and kth column from the matrix A defined in Lemma 5 is
nonsingular.

PROOF. As shown in Example 4, the matrix A defined in Lemma 5
is a triangular matrix. The matrix A1 which can be obtained
by deleting the kth row and kth column from A is also trian-
gular and its diagonal elements are all ones. Thus, the de-
terminant of A1 is nonzero. Therefore, A1 is nonsingular. �

THEOREM 6. In an AND-EXOR network realizing a PPRM of n vari-
ables, for each product pi (i = 1, 2, º, s), consider a vector bi = (b1,
b2, º, bn), where bj = 1 if the literal xj appears in pi and bj = 0 other-
wise (j = 1, 2, º, n). Then, {b0, b1, b2, º, bs} is a test for the
EXOR part, where b0 = (0, 0, º, 0).

PROOF. For the input bi, let ai = (a1, a2, º, as) be the output vector
of the AND part (i = 1, 2, º, s). Note that the matrix

A

s

=

L

N

MMM

O

Q

PPP

a
a

a

1

2
M

is obtained by recursively deleting the kth row and kth col-
umn from the matrix defined in Lemma 5. Matrix A is non-
singular. By Theorem 5, we can see that {a0, a1, a2, º, as} is a
test for the EXOR part. �

EXAMPLE 5. Consider the PPRM realization in Fig. 5. The EXOR
part can be tested by

( , , , )
( , , , ),
( , , , ),
( , , , ),
( , , , ),
( , , , ).

x x x x1 2 3 4

0

1

2

3

4

0 0 0 0
0 1 0 0
1 0 1 1
0 1 1 1
1 1 0 1

b
b
b
b
b

=
=
=
=
=

The output vectors of the AND part are
a
a
a
a
a

0

1

2

3

4

0 0 0 0
1 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1

=
=
=
=
=

( ),
( ),
( ),
( ),
( ).

and

It is clear that [a1, a2, a3, a4]
t is nonsingular. Thus, {b0, b1, b2,

b3, b4} is a test for the EXOR part.

3.3 Test for the AND Part
We will use Saluja-Reddy’s theorem to test the AND part [13].

DEFINITION 6. Îx˚ denotes the integer part of x. The 0-weight of a vector
is the number of zeros in the vector.

THEOREM 7. In a PPRM realization, suppose that the EXOR part and
the literal part are fault free. Then, any t s-a-faults in the inputs or
outputs of AND gates can be detected by applying all input vec-
tors having 0-weight less than or equal to Îlog2 2t˚ .

The proof can be found in [13].

EXAMPLE 6. Consider the PPRM realization of a four-variable
function. Any two or fewer s-a-faults in the AND array can
be detected by the test {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0,
0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 0), (1, 1, 1, 1)}.

In order to test the AND part, the control input is set to zero.
This will make the network realize a PPRM instead of the given
GRM. When the literal part and the EXOR part are fault free, we
can test the AND part by using Theorem 7.

3.4 Test for the Literal Part
To test the literal part, we use two pairs of extra AND and OR
gates, and four extra observable outputs, as shown in Fig. 3. All

the literal lines for xi also connect to the AND gate A and to the OR
gate A. All the literal lines for xi

c  also connect to the AND gate B

and to the OR gate B. S-a-0 faults in the literal lines for xi or xi
c  are

detected as follows: Set (c, x1, x2, º, xn) = (0, 1, 1, º, 1). When the
literal part is fault-free, all the literal lines become one. S-a-0 faults
can be detected by the extra AND gates. S-a-1 faults in the literal

lines xi are detected as follows: Set (c, x1, x2, º, xn) = (0, 0, º, 0),
and the OR gate A produces 1 if the line has an s-a-1 fault. S-a-1

faults in the literal lines xi
c  are detected as follows: Set (c, x1, x2, º, xn)

= (1, 1, º, 1), and the OR gate B produces 1 if the line has an s-a-1

fault. The set {(0, 1, 1, º, 1), (0, 0, 0, º, 0), (1, 1, º, 1)} is also a test
for the EXOR gates in the literal part.

3.5 Test for the Check Part
To test the s-a-1 fault in an input line of the extra AND gates, set it
to 0, and set other lines to 1. To test the s-a-0 fault in the AND
gates, set all the inputs to 1. To test the s-a-0 fault in an input of the
OR gates, set it to 1, and set other inputs to 0. To test the s-a-1 fault
in the OR gates, set all the inputs to 0.

3.6 Size of the Test
In this part, we will consider the total number of the tests for Fig. 3.
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1) Test for the EXOR part:
 s + 1, where s is the number of products in GRM.
2) Test for the AND part:

n
i

i

r F
H

I
K

=
Â

0

,

where r = Îlog2 2t˚ , and t is the number of multiple faults to
consider.

3) Test for the literal part: 3.
4) Test for the check part: 2n + 2.

Because n identical tests appear both in 2 and 4, one identical test
appears in 1, 3, and 4, also in 2 and 4, and some of the other tests
may be identical, the total number of tests is at most

s n n
i

i

r

+ + + F
H

I
K

=
Â4

1

.

EXAMPLE 7. Consider the realization of GRM:

f x x x x x x x x x x= ≈ ≈ ≈2 1 3 4 2 3 4 1 2 4

shown in Fig. 6.

1) Test for the EXOR part.

c x x x x, , , , , , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , .

1 2 3 4 0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 0 1 1 1
0 1 1 0 1

c h c h
c h
c h
c h
c h

=

2) Test for the AND part for two or fewer s-a-faults.

Fig. 6. An example of testable realizations.

TABLE 4
COMPARISON OF EASILY TESTABLE AND-EXOR NETWORKS

Type Fault Linear Test Function
Assumption Part Length Independence

Reddy PPRM Single Cascade n + 4 Yes
IEEE TC 1972 Stuck-at

Saluja-Reddy PPRM Multiple Cascade 4
1

+ F
H

I
K=Â n

ii

r
Yes

IEEE TC 1975 Stuck-at

Pradhan ESOP Multiple Cascade 6 2
0

+ + F
H

I
K=Ân n

ii

u
Yes

IEEE TC 1978 Stuck-at
T. Yamada PPRM Single Cascade n + m + 5 Yes
IECE-Japan Bridge
1983 ESOP Single Cascade 2n + 2m + 7 Yes

Bridge
Sasao-Fujiwara Single
IEICE-Japan ESOP Stuck-at Cascade 2n + 4 Yes
1987 Cross point
Sarabi-Perkowski FPRM Single Cascade n + 4 No
DAC 1992 Stuck-at
Perkowski-Csanky- Single
Sarabi-Schäfer GRM Stuck-at Cascade n + 4 No
ICCD 1992
Sasao GRM Multiple Tree # of products + No

This paper Stuck-at n n
ii

r
+ + F

H
I
K=Â4

1

r = Îlog2 2t˚, t is the number of faults in the AND part.
u: maximum number of literals contained in any product term in the ESOP.
m: number of outputs.
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c x x x x, , , , , , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , .

1 2 3 4 0 1 1 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0

c h c h
c h
c h
c h
c h
c h
c h
c h
c h
c h
c h

=

3) Test for the literal part.

c x x x x, , , , , , , , ,
, , , , ,
, , , , .

1 2 3 4 0 1 1 1 1
0 0 0 0 0
1 1 1 1 1

c h c h
c h
c h

=

4) Test for the check part.

c x x x x, , , , , , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , .

1 2 3 4 0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0

c h c h
c h
c h
c h
c h
c h
c h
c h
c h
c h

=

Note that the first vector in 1 also appears in 3 and 4. The
first vector in 2 also appears in 3 and 4. Four vectors with
weight 3 appear both in 2 and 4. Thus, only 17 tests are nec-
essary to test the network in Fig. 6.

4 COMPARISON WITH OTHER METHODS

Table 4 summarizes the various testable AND-EXOR realizations.
Note that all other methods use cascades in the EXOR part. Prad-
han’s method [10] uses ESOPs, which require fewer products than
GRMs. However, the test length is excessive. When the number of
the minterms of the function is odd, any ESOP for n-variable func-
tions contains a product term of the form x x xn1 2

* * *L  (minterm). This
means the test is exhaustive. We can show that almost all functions
require a test length near 2n, when n is large. Yamada’s method
[23] also uses ESOPs. However, his method requires an additional
EXOR cascade, five extra inputs, and one extra output. Also, his
method cannot detect multiple faults. Sasao-Fujiwara’s method
[15] is for PLAs realizing ESOPs. Sarabi-Perkowski [14] extended
Reddy’s method to FPRMs. Perkowski-Csanky-Sarabi-Schäfer’s
method [9] uses GRMs. Their technique is to decompose a GRM
into several FPRMs, and test the FPRMs by the method similar to
Reddy’s method.

The demerit of the present method is that the test depends on
the functions realized. However, test generation is very easy when
the GRMs are available. Also, the multiple faults in more than one
part cannot be detected.

5 CONCLUSION AND COMMENTS

In this paper, we presented a design of easily testable AND-EXOR
networks. The main features are:

1) The EXOR part can be tree, thus it is faster.

2) It uses GRMs instead of PPRMs, thus the number of the
products is, on the average, less than half.

3) Multiple faults can be detected.

Although, it uses one extra input and four extra outputs, they can
be accessed by the scan path technique [6].

ESOPs require fewer products than GRMs, but they cannot be
used in this scheme. For example, consider the ESOP x x x x x x1 2 3 1 2 3≈ .
This is not a GRM. Thus, it cannot be converted into a PPRM. So,
we cannot test the EXOR part in the scheme. GRMs require a small
number of products and have a good testable property similar to
PPRMs.

After completion of this paper, Prof. Reddy informed the
author that he developed a method to use a tree of EXOR gates
instead of cascades [11]. His method requires (m + 1) extra inputs
and will have a fault detecting set independent of the function
with cardinarity 2m + n, where m is an even number.
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