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Minimization of AND-EXOR
Expressions Using Rewrite Rules

Daniel Brand and Tsutomu Sasao, Senior Member, IEEE

Abstract—This paper considers conditions for generating op-
timal two-level AND—EXOR representations using rewrite rules.
Four results are presented. First, a necessary condition for obtain-
ing minimality is a temporary increase in the size of expressions
during minimization. Second, a sufficient condition for obtaining
minimality consists of adding certain two rules to rule sets
proposed in the literature. Third, we define transformations that
allow the minimization of an expression to proceed by minimizing
a transformed expression instead. Fourth, we determine exper-
imentally that the above three theoretical results lead to better
benchmarks results as well.

Index Terms— EXOR, L-transformation, logic minimization,
nondeterministic algorithm, Reed—Muller expansion, two level
representation.

I. INTRODUCTION

INIMIZATION of AND—OR expressions always played

an important role in logic synthesis. The problem has
been relatively well understood and there are many good min-
imization algorithms [14], [10], [13], [3], [19]. The problem
of minimizing AND—EXOR expressions, on the other hand,
has not been solved to the same degree. Such expressions
are of interest because two-level AND—EXOR representations
are usually smaller than two-level AND—OR representations
[23]. Also many multilevel circuits based on EXOR elements
are more advantageous from area, speed and testability point
of view [12], [16], [8], [20]. Error detecting circuitry is
a typical example, where EXOR’s are heavily used. Such
multilevel circuits can be obtained from two-level AND—EXOR
expressions (which are the subject of this paper) by algebraic
factoring [2]. Furthermore, some technologies allow PLA’s
with optional EXOR elements on their outputs; optimizing such
AND—OR—EXOR structures can be done through optimizing
AND—EXOR expressions [24].

Therefore a lot of work has been done on the minimization
of AND—EXOR expressions [6], [11], [5], [15], [18], [17], [1],
[7], [9]); [21], [22]. This paper analyzes the method of rewrite
rules [6], [17], [7], [21], which has proved to be a successful
heuristic approach generating relatively good solutions in
reasonable time.
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Before rewrite rules can be applied, a given function must
first be converted to some (nonoptimal) two-level AND—EXOR
representation. There are several ways of doing that. For ex-
ample, a two-level AND—OR representation can be modified to
consist of disjoint terms only, and thus can also be considered
an AND—EXOR expression.

From now on we will assume that we are given a two-level
AND—EXOR representation to be minimized. We will use the
symbol @ to denote EXOR, concatenation to denote AND, and
bar to denote negation. Our measure of minimality will be the
number of product terms in the EXOR sum. Some of our results
also apply to other measures, as long as the number of product
terms remains the most important.

Once we have an AND—EXOR representation, it can be
simplified using rewrite rules. One of the earliest rule sets
has been proposed by [6] and we paraphrase it below using
slightly different notation:

rdT—1 (S1)
r®l—= (S2)
zy®y— 1dITy (S3)
TYDLITY - I DY (§4)
TYyPIF— DY (S5)

While the authors did not state so explicitly, it is safe to assume
that their simplifier also contained the rule

191—-0 (S6)

In addition, the laws of commutative rings (associative,
distributive, z @ 0 = z, etc.) are needed in the application
of any rules. To illustrate the use of rewrite rules, consider the
following chain of minimization steps:

(apply (S3) to the first and
second term to get)

TYZ D Yz O Tyz

Z®IYyz d Tyz (apply (S1) to the second and
third term to get)

zZoTy.

The authors of [6] made the following statement about their
rules (S1)-(S6):

“The procedure does not guarantee minimality; it contains
branching points and our experience shows that all branches
lead to fairly economical expressions, but it is unknown
whether at least one chain leads to a minimal expression.”
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The question posed by [6] is the very subject of this paper.
In particular we will answer it for the above set of rules. This
paper considers the following problems:

1) Given a set of rules, is there always a chain leading to

a minimal expression?

2) If the answer to the first question is “no,” what rules
need to be added?

3) If the answer to the first question is “yes,” but not every
chain leads to a minimum, how to find a chain that does
result in a minimal expression?

4) To what extent are these issues relevant in practice?

A set of rules capable of generating a minimal representation
for any given expression will be called “convergent” because
by applying such rules in all possible combinations we could
eventually converge to a minimal representation.

Definition 1.1: A set of rules is convergent iff for any
expression E there is a sequence of expressions E =
Eo,-++,E, (n > 0), where E; | is obtained from E; by one
of the rules, and £,, has the minimal number of product terms.

Please note that our definition of convergence does not
imply termination. Even after finding a minimal expression,
rules may continue to be applied because we do not assume a
procedure determining whether an expression is minimal.

We do not argue that methods guaranteeing optimality are
better than those without such a guarantee. But understanding
the requirements for optimality can help in designing better
methods. The objective of this paper is not an efficient
practical minimizer, but merely an investigation of conditions
for optimality. We implemented the approach only to answer
some theoretical questions.

The paper is organized as follows. Section II considers
problem 1). Section IH considers problem 2). Section IV
considers problem 3). Sections V and VI consider the problem
4). Throughout the paper the subject is described informally
and for binary valued logic only. For a formal treatment and
for extensions to multivalued logic the reader is referred to

[4]-

Il. A NECESSARY CONDITION FOR CONVERGENCE

Most of the published rules for minimizing AND—EXOR
expressions (e.g., rules (81)—(S6)) have one important prop-
erty—their right hand side has no more product terms than
their left hand side. This guarantees that no rule can increase
the number of product terms and thus guarantees that the
final expression has no more product terms than the original
one. Unfortunately this also guarantees that the set of rules
is nonconvergent, because the minimum of some expressions
cannot be obtained without a temporarily increase in the
number of product terms.

The proof of this necessary condition for convergence
proceeds as follows. Given a set of rules which cannot increase
the number of product terms we observe the maximum number
m of terms any rule can change. Then we construct an
expression that cannot be minimized by any set of rules
capable of changing only m terms at a time (without an
increase in the number of product terms). The proof for general
m [4] is rather long and is not reproduced here, but is available

from the authors. For m = 2, which is the size of rules used
in practice, there is a simple proof given below.
Theorem 2.1: A set of rules is nonconvergent if it satisfies:
1) Each rule has at most two product terms on its left hand
side.
2) Each rule has no more product terms on its right than
on its left hand side.

Proof: Consider the 4-variable expression:
TYzw & zZ @ Tw P xyzw H 2.

By exhaustive analysis we can determine that no rule satisfying
properties 1) and 2) applies to the above expression. (It is rel-
atively easy to see by drawing a Karnaugh map.) Nevertheless
the expression is not minimal because there is an equivalent
expression with fewer product terms:

Tyzw ® Tyzw H 1
Q.E.D.

III. SUFFICIENT CONDITIONS FOR CONVERGENCE

This section is concerned with making rules convergent,
and we already know that it has to be done by term-increasing
rules. It is not difficult to design convergent rules; for example,
the following set of rules is convergent:

r®T — 1 (S1)
161—0 (S6)
l—z0z (18)
0—-161. (6S)

To see why this is so, consider any two-level AND—EXOR
expression. It can be converted to a minterm expansion by
repeatedly splitting terms into pairs using (1S) and by elim-
inating duplicates using (S6). Thus {1S, S6} are sufficient
to convert any expression to minterms, and therefore {S1,
6S} are sufficient to convert a minterm expansion into any
equivalent expression. Therefore {S1, 1S, S6, 6S} are capable
of converting any expression to any other.

For practical purposes powerful sets of rules like {S1,
1S, S6, 68} are not desirable because they generate a large
search space. We seek a set of rules that is as weak as
possible, yet sufficiently strong to be convergent. The rule (6S)
is particularly troublesome because it allows the generation
of any pair of identical terms, independently of the given
function. Fortunately the rule (6S) can be replaced by

Z—zol. 2S)
The resulting set of rules is incapable of converting any
expression to any other, but is capable of converting any
expression to a minimal one.

While we talk about a minterm representation of a function,
we are not proposing it as practical, and our implementation
does not try to generate all minterms. Minterms are used only
as a mental tool in our proofs.

Theorem 3.1: The set of rules {S1, 1S, S6, 2S} is conver-
gent,

Outline of Proof: (Formal proof is in [4].)
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Terms to be split into minterms. (b) Redundancy caused by
splitting.

Fig. 1(a).

As noted above {1S, S6} are sufficient to convert any
expression to its minterm expansion. Therefore we will be
done if we can show that {S1, 1S, 2S} are sufficient to convert
a minterm expansion to a minimal expression. We will do that
by considering the inverse problem, namely we will show that
{18, S1, S2} are sufficient to convert any minimal expression
to a minterm expansion.

The rule (1S) alone can generate a minterm expansion, but
the expansion will in general contain duplicate minterms. We
have to avoid duplicate terms because we have no rule capable
of removing them; the rule (S6) cannot be used because that
would imply the use of (6S) when going in the opposite
direction. In general we avoid any set of terms whose exclusive
OR is identically 0; we call such a set a “redundancy” because
it can be deleted without changing the function of the original
expression. The proof shows that given any expression without
any redundancy (for example a minimal expression) we can
keep splitting terms without ever generating a redundancy.

To illustrate what needs to be done consider the expres-
sion ac ® b @ abc & abé & abc shown by the Karnaugh
map of Fig. 1(a), which contains no redundancy. A careless
process of generating minterms might split the term ac into
two, generating Fig. 1(b), which contains the redundancy
{b, abc, abc, abe, abe}.

Therefore we need to split terms carefully. This is how to
split the term ac “carefully.” First we use the rule (S1) to
generate Fig. 2(a). Then we use the rule (S2) to generate Fig.
2(b). Then we use the rule (S2) to generate Fig. 2(c). And
finally use (S2) to generate Fig. 2(d).

In general the following systematic procedure can be used
on any expression E not containing a redundancy. It uses rules
{S1, 1S, S2} to generate a minterm expansion without any
redundancy. (In our example E = ac @ b @ @bc & abe & abe.)

procedure careful_split(E) returns(E)
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Fig.2. (a) Obtained from Fig. 1(a) by rule (S1). (b) Obtained from (a) by rule
(S2). (c) Obtained from (b) by rule (S2). (d) Obtained from () by rule (S2).

1) Choose any term ¢ that is not yet a minterm and any
variable z not in ¢. (In our example ¢ = ac and z = b.)

2) If splitting ¢ into 2t & Tt does not create any redundancy
then make the split and go to step 1.

3) Do not split ¢ along 2 because that would cause a
redundancy. E must contain a set of terms G such that
either G @ zt or G @ It is a redundancy. Suppose
that G @ xt is a redundancy. (In our example G =
b ® abc & abc & abc.)

4) Apply this procedure recursively to G. This will generate
a minterm expansion of G without duplicates. (In our
example it will generate the single minterm abc.)

5) The function of G is identical to xt because in step 3
we assumed G @ zt to be identically 0. Therefore the
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minterm expansion of G covers exactly the cube covered
by xt. Use the rule (S1) to merge all those minterms
into the one term zt.

6) Use the rule S2: 2t @t — zt. Go to step 1.

When no term can be selected in step 1 the procedure
careful_split has generated a minterm expansion. One detail
remains in arguing that the result will have no redundancies.
Suppose that the splitting in step 2 caused more than one
redundancy. Then the remainder of the algorithm would avoid
only one of them, and allow others to exist. The proof in the
Appendix shows that this cannot happen by proving that in
step 3 there is a unique G.

(end of informal proof)

The set of rules {S1, 1S, S6, 2S} is not minimal because
any application of S1 can be replaced by 2S followed by S6.
The resulting set {1S, S6, 2S} is minimal, in the sense that
none of its subsets is convergent:

Theorem 3.2: The set of rules {1S, S6, 2S} is a minimal
convergent set of rules.

Proof: We show that removing any of the three rules
would result in a nonconvergent set.

(1S) cannot be removed because that is the only rule
in {1S, S6, 2S} capable of adding new literals to terms.
This is necessary for convergence as in the example of
Ty & Tz © Yz, whose minimal representation is Tjz @ zyz.
(S6) cannot be removed because that is the only rule in {18S,
S6, 2S} capable of reducing the number of terms. (2S) cannot
be removed because that is the only rule in {1S, S6, 2S}
capable of generating overlapping terms. This is necessary for
convergence as in the example of Z§Z @© z§z ® zy, whose
minimal representation is §Z & z. Q.E.D.

While (2S) cannot be removed from {S1, 1S, S6, 2S}
without losing convergence, it is possible that it could be
replaced by some term nonincreasing rules. This question
is related to the question of a minterm representation of
functions: While an increase in the number of product terms
is necessary when starting from an arbitrary representation of
a function, it may be unnecessary if starting from a minterm
representation. We have not been able to answer this question,
and will refer to it again when talking about experimental
results.

IV. L-TRANSFORMATIONS OF EXPRESSIONS

Now suppose that we have a convergent set of rules and
we want a chain leading to an optimal solution. Even if the
rules are not convergent we may want to find a chain that
simply leads to a good solution. It is not our goal here to
design a simplifier that explores the search space, but rather
to force a given simplifier to do so. For that purpose we use
“L-transformations.” This section introduces the two-valued
version of L-transformation theory, which is special case of
the multivalued results [23]). L-transformations are explained
only to the extend they are used in Section V.

We will use the following notation:

Any time we write an expression Z fo & zf1 ® fo we mean
to imply that

Z fo rtepresents all the terms containing 7 with Z itself
factored out,

x f1 represents all the terms containing z with z itself
factored out, and

fo represents all the terms containing neither = nor Z.

In order to avoid confusion regarding equality between
expressions, we will write f = ¢ to mean that f and g are the
same expressions, while f = g will mean that f and g may
be different expressions, but representing the same function.

Definition 4.1: For a given expression f and for a literal r
(z or z) the L-transformation of f with respect to r, written
[*] ® f for short, is defined as follows.

Express fas f =7Ffo®7f1® fa .

Then [7] © f = 7fo ® fL D rfo.

In other words, the transformation is obtained by deleting
the literal 7 from any term containing it and adding it to every
term containing neither » nor 7.

Example:

[Flo(yerzey) =myezey
Z]lo(eydTzd2) =2y 0220 1.

If we define composition of two transformations in the usual
way as ([r1][r2]) ® f = [r1] ® (Jr2] ® f) then we can see from
the definition that it is associative, and it is commutative for
literals corresponding to different variables. We will abbreviate
[7'1][7'2] tee ['r‘n] as [Tl; T2, Tn]v

We will use the symbol I to denote the identity transfor-
mation, i.e.,

Iof=f

Please note that each transformation is its own inverse, i.e.,
[r,7] = I, and we will write

For a sequence R = [ry, - - - r,] of transformations, if we define
Rl =[r,]7t++-[r1]7! then RR™! = I. In case that all the
transformations in the sequence are pair-wise commutative
then R~! = R.

Theorem 4.2:

Tfo@zfi® fr =790 B g1 @92 €y)]
ifffo@g=Hdn=fHde

Proof: Equation (1) is true iff it is true for both z = 0
and z = 1, ie.,

fo®fo=g0D g )]
and
1@ =019 g0 3)

EXORing both sides of (2) with go@® f2 and eliminating identical
terms

fo®go= f2® g 4)

EXORing both sides of (3) with g, @ f» and eliminating identical
terms

1®g=fo@0. 5)
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The expression (4) is actually equivalent to (2) because we can
get (2) our of (4) by EXORing with go @ fo again. Similarly (5)
and (3) are equivalent. Q.E.D.
Corollary4.3: f=giff [r]Of=[r]og
Proof: Follows immediately by applying the theorem to
both equalities. Q.E.D.
The theorem and its corollary allow the following procedure
to simplify a given expression f:

procedure M(f) returns(f”)
Choose a sequence R of L-transformations.
letg:= RG® f. '
Let ¢’ be obtained by simplifying g.
Let f/:= R '0o4.

The resulting f’ is a simplification of f; moreover, f' has
the minimal number of terms iff ¢’ has. It may be easier to
simplify g instead of f directly because g has many properties
different from f and therefore a heuristic simplifier may
behave quite differently when simplifying g rather than f.

From an expression f containing a variable z we can derive
six distinct expressions: 10 f, [z]© f, [Z]0 f, [z, Z]| O f, [%, z]O
f, and [z,Z,z] ® f. Only the first three are of interest here
because the other three can be obtained from the first three by
the interchange of = and Z, and hence have the same properties
from minimization point of view.

When minimizing an- expression of n variables using the
procedure M, the sequence R can can be chosen in 3™ different
ways. Namely, for each variable x we can chose to put into
R the transformation using I,[z], or [Z]. (Please note that
in this way we ensure that R~ = R.) Many of the 3"
expressions have quite different properties, which will make
the given simplifier generate different chains of rules. We run
a number of the expressions through the simplifier as a way
of partially exploring the search space, for we have found this
to be effective in obtaining better solutions.

An L-transformation can be used as a meta-rule for gen-
erating new rules. Given a set of rules one can apply L-
transformations to both sides of each rule generating new rules.
For examples, transforming (S3) with respect to y we obtain

TRYoyYdEI. (S3%)
We call a set of rules closed under L-transformations iff every
one of the possible L-transformations generates a rule already
present in the original set. Since (S3*) is not present in the
- original set of rules, (S1)—(S6) form an example of rules that
are not closed. For a set of rules that is not closed the procedure
M is particularly beneficial because it may generate solutions
unobtainable by the rules themselves.

V. ALGORITHM

Until now we have discussed methods of improving the
asymptotic behavior of rewrite rules. In order to evaluate the
impact of those methods on short term behavior, we have
implemented them in a way described in this section. Our
implementation is not a substitute for an exact minimizer,
or for a good heuristic minimizer. Its purpose is to evaluate
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the impact of turning an existing set of rewrite rules into a
convergent set by adding term-increasing rules.

As shown in Section II, adding the two term increasing
rules (1S) and (2S) is sufficient for convergence. A problem is
when to apply them. The most liberal solution would allow
their application at arbitrary times; this would guarantee a
branch to an optimum, but also a branch with ever increasing
number of terms. Our solution tries to be as restrictive as
possible without jeopardizing convergence. Since we do not
know a deterministic procedure for obtaining an optimum, our
implementation is nondeterministic. As will be explained later
in this section, our algorithm may fail to find an optimum,
but the probability of failure approaches 0 with increasing
computation time.

For our experiments we have used the simplifier EXMIN
[21], which is known to produce in general very good results,
but not always optimal. It does not increase the number of
terms and therefore is not convergent. It is known to be closed
under L-transformations. Our implementation did not change
EXMIN, but rather treated it as a “black box” and invoked it
repeatedly. (Recently, EXMIN2 [24], an improved version of
EXMIN, has been developed. It uses a term-increasing rule as
well as term-nonincreasing rules to improve the quality of the
solutions. Thus, the solutions are usually better than those of
EXMIN, but the computation time is longer.)

The implementation is based on the following procedure
P(f), which takes an expression f as an argument and returns
a modified expression g. It divides f into two, calls itself
recursively on the two halves and then combines the results
together. When called on the top-most level it is supposed
to return a minimum. However, the recursive calls are not
supposed to return a minimum, not even necessarily a good
solution; they are supposed to return expressions which can
be eventually combined into a minimum. We do not know
how to generate such expressions; therefore the procedure is
nondeterministic.

procedure P(f) returns(g)

1) Possibly let g := f and go to step 6

2) Chose a variable x

3) Let g1 := P(zf),92 := P(2f),9 = 1D g2

4) Operating on g, apply rule (S1) to some pairs of terms,
one from g;, the other from go.

5) Apply the rule (2S) to some terms of g

6) Possibly apply EXMIN to g

7) Return g

The procedure P contains words like “possibly” and “some”
because it is nondeterministic. All the nondeterministic deci-
sions are done randomly, but the probability distributions are
biased toward values that we found experimentally to speed
up convergence.

Now we will explain each step in turn:

1) The procedure calls itself recursively in step 3, and step

1 controls the depth of recursion. For example, we would
go to step 6 if f consisted of minterms only. We also have
to limit the depth of recursion for practicality. However,
to guarantee convergence, we allow larger and larger
depth every once a while.
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2) We chose a variable z randomly, but making sure that
neither z f nor Z f is empty. That is the only requirement
for convergence. To speed up convergence we give
preference to partitions that do split some terms into
two, but do not split too many terms.

3) The expression z f implies that each term of f is ANDed
with z, which may result in the elimination of some
terms and and reduction of others. Step 3 is where the
rule (1S) takes place.

4) Apply the rule (S1) only along the chosen variable z,
but not whenever possible. To guarantee convergence
we must disallow some possible merges because a merge
might prevent something better later.

5) The rule (2S) is applied to some terms of g along
the variables z, possibly followed by more applications
of (25), (1S) and (S1) to newly generated terms. As
mentioned in Section III we do not know whether this
steps is necessary for convergence in the presence of
step 6.

6) EXMIN always returns an expression no larger than its
input. Therefore there is no harm in using it at the highest
level, where we would like P to generate a minimum.
However, in the recursive calls EXMIN is not always
executed.

The procedure P is applied in the following procedure @

to minimize a given expression e.
((f) denotes the number of terms in an expression f.)

procedure Q(e) returns(e)
do forever
f = e /* e is always the best expression so far */
Chose a random sequence R of L-transformations

f=RoOf

f = P(f)

if 7(f) < 7(e) thene:= R71 O f
end

The last step of the procedure @ guarantees that the number
of product terms of e cannot increase. The body of the loop
allows a possibility of decrease, but not a guarantee. Therefore
there exists a possibility of e remaining nonoptimal forever;
however the probability of this happening goes to 0 with an
increasing number of iterations. (The reason is that there is
only a finite number of expressions with any given number
of terms, and for each of the expressions there is a nonzero
probability of being reduced during one iteration.) The result
is the probability of 1 for reaching an optimum, but no bound
on how many iterations it may require. While that is not very
satisfying from a practical point of view it is sufficient for our
experiments. The absence of any bound is expressed by by
the phrase “do forever,” but in our experiments we naturally
stopped the loop after several iterations, as reported in the
next section.

As will be reported in the next section we ran experiments
with various restrictions on term increasing rules. Disallowing
the rule (2S) is achieved by never executing step 5 of the
procedure P. Disallowing both term-increasing rules is done
by always executing step 1 of the procedure P; in addition, in
this case we never update e in the last step of the procedure

@ so that EXMIN always works on a transformation of the
very original input.

V1. EXPERIMENTAL RESULTS

We have run experiments in an effort to answer the follow-
ing two questions:

1) While an increase in the number of terms during simpli-
fication is necessary to obtain the optimum, it may not be
needed to obtain merely good solutions. It is possible that
enlarging the search space by term increasing rules does
not add many good solutions on top of those already
present.

2) We have mentioned that we do not know whether the
rule (2S) is necessary for convergence. While we cannot
answer that question, we can see experimentally whether
it tends to improve the result.

We performed experiments on three classes of functions
because different functions have different simplification be-
havior. The results are reported in Tables I, II, and III.

For each function the number under SIZE gives the smallest
number of terms found by any of the methods described
in this paper. The next three columns indicate percentage
improvement achieved by many iterations of the procedure
P in comparison with one run of EXMIN.

The columns labeled “2” refer to runs where both term-
increasing rules (1S) and (2S) are used.

The columns labeled “1” refer to runs where only the one
term-increasing rule (1S) is used.

The columns labeled “0” refer to runs where no term
increasing rules are used, but only L-transformations and
EXMIN are used.

In order to answer question 1) posed at the beginning of this
section, we compare the columns labeled “1” and “0” for many
iterations of P. While a statistical analysis would be difficult,
we can see to what extent the results are consistent with the
hypothesis that any differences are due to random variations
only. We see that for only one function did column “0”
produce better improvement than column “1,” while column
“1” produced better improvement more than half of the time.
This is not likely to be due to random variations only and
indicates that a temporary increase in the number of terms
does improve the chances of finding better solutions.

To answer question 2) we compare the columns labeled “2”
and “1” for many iterations of P. Here the results are much less
conclusive. While column “2” produced smaller expressions
more often than column “1,” most of the time they were equal.
Based on this data we cannot reject the hypothesis that any
variations are purely statistical.

The purpose of this research is not to implement a good
minimization algorithm for AND—EXOR expression, but to
evaluate some theoretical consideration. However, the non-
deterministic minimizer obtained better solutions than any
other deterministic “minimizer” published to date, although it
required more computation time. In the following table, data
for EXORCISM, HERMES and EXMIN are obtained from
19}, [25), 21}
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TABLE 1
Functions E(n, k) DEFINED IN [20]
FUNCTION | SIZE 30 | TERATIONS
2 1 0
£(6,3) 12 14 14 1
E(6,4) 1" 8 8 8
E(7,2) 15 0 0 0
E(7.3) 21 19 19 "
E(7,4) 22 N 4 4
E(7,5) 15 6 6 6
E(8,2) 20 5 5 H
E(8,3) 32 15 13 13
E(8,4) 32 32 32 n
€(8,5) 34 10 8 8
E(8,6) 20 0 0 0
E(9,2) 24 0 1" 7
£(9,3) 48 12 12 1%
E(9,4) 58 22 19 8
E(9.5) 60 26 22 14
E(9,6) 49 n 9 5
E{9,7) 2k " " 7
E(10,2) 32 9 9 9
£(10,3) 70 1" 10 5
E(10,4) 105 10 15 3
€(10,5) 9 .| W 41 10
£(10,6) 101 2 25 12
€(10,7) 70 0 4 1
€(10,8) 32 1" 1" n
TABLE II
ARITHMETIC FUNCTIONS
FUNCTION | SIZE 50 ITERATIONS
2 1 0
ADRM 31 6 6 6
LG8 96 2 7 b
HLPY 61 8 6 5
NRMY 73 3 3 3
RDMS 3 0 [ 0
ROTB 35 5 3 0
SQRB (311 6 3
wGT8 54 18 1" 0
TABLE III
RANDOM FUNCTIONS
FUNCTION | SIZE 40 ITERATIONS
2 1 0
R(6,8) 6.1 0 0 0
R(6,16) 8.6 3 3 3
R(6,24) 9.6 1" 8 6
R{6,32) 10.3 10 n 8
R(6,40) 10.6 12 12 7
R(6,48) 9.7 20 20 18
R(6,56) 7.0 17 17 13
R(7,16) 1.2 3 3 3
R(7,32) 15.6 7 7 5
R{7,48) 17.3 1 " Y
R(7,64) 18.7 15 15 8
R(7,80) 19.3 1h 15 7
R(7,96) 16.7 27 26 18
R(7,112) | 12.3 17 17 16 .
R(8,32) 20.6 6 5 H
R(8,64) 29.4 7 7 &
R(8,96) 34.3 1 9 &
R{8,128) | 35.6 L] 15 6
R(B,160) | 35.4 17 16 ?
R(8,192) | 29.8 28 28 7
R(8,224) | 21.2 34 3k 32

Table IV is not meant for comparison, because computation
times are not comparable and initial representations are not
identical. Instead Table IV indicates how much room for
improvement exists in the current state of the art, which is still
very immature compared with inclusive-OR sum of products
minimization.
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TABLE IV
RESULTS FOR DIFFERENT MINIMIZATION ALGORITHMS

FUNCTION | EXORCISM | HERMES | EXMIN | non~Deterministic
ADRY4 34 34 32 kLl
MLPL 212 92 66 61
SQR6 he 39 39 35
VII. CONCLUSIONS

We have investigated conditions that make rewrite rules
convergent, i.e., capable of generating optimal AND—EXOR
expressions. We have given one necessary condition for con-
vergence, namely, a temporary increase in the number of terms
during simplification must be allowed.

We have also given a sufficient condition for convergence.
Assuming that a given set of rules already contains the rules
(S1), (86), which is normally the case, the set of rules
can be made convergent by adding (1S) and (2S). We have
also considered the possibility of replacing (2S) by the term
nonincreasing rules of EXMIN, but were not able to prove or
disprove whether this would result in a convergent set of rules.

We have shown how a given expression can be transformed
in various ways so as to explore the search space of a given
simplifier.

We have performed experiments in order to answer the two
questions stated at the beginning of Section VI. From the
experiments we drew these conclusions:

1) Adding the rule (1S) to EXMIN does give better results
in comparison with a more thorough exploration of the
search space.

2) Adding the rule (2S), in addition to (1S) does not
improve the results significantly.

Given the above conditions for convergence of AND—EXOR
expressions, a natural question arises as to what are the
convergence conditions for AND—OR expressions. It is easy
to see that a convergent set of rules can be obtained from the
following two equations by allowing bidirectional application:

z+E=1
1+1=1.

The argument is based on the fact that these rules are capable
of turning any AND—OR expression into a minterm expansion.
However, reverse applications of the two equations increase
the number of product terms, and it is unknown whether
such an increase is necessary for the minimization of AND—OR
expressions.

APPENDIX

Section III contains an informal proof that (S1, S6, 1S,
2S) is a convergent set of rules. The informal proof is not
sufficient for one detail (Lemma A6), for which we need some
formalism.

We assume the usual definitions of variable, literal, product
term, minterm.

Definition A1: An ESOP is a list of product terms, written
as t) @ Dty (n>0).
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We will write copies(t, E) to denote the number of appear-
ances of a term ¢ in an ESOP FE.

Example: Consider the ESOP E = zy @ 2 ® zy & 1. Then

copies(zy, E) = 2,

copies(z,E) = 1,

copies(1, E) = 1,

copies(t, E) = 0 for all other product terms ¢.

Definition A2: For two ESOP’s E and F,

“E = F” if copies(t, E) = copies(t, F') for every term ¢.

“E = F” iff E and F evaluate to the same result for any
values substituted for their variables.

Examples:

tDsPt=sDltDt#£s
tOsPlt=sPtdt=s.

Note: As a result of Definition A2 an ESOP E is uniquely
defined by specifying copies (¢, E) for every term ¢.

Definition A3: 1If ¢ is a term and E, F are ESOP’s then
we define

“t € E” if copies(t, F) > 0

“E C F” iff copies(t, E) < copies(t, F), for every term t.

“E @ F” is defined by copies(¢, E @ F) = copies(t, E)+
copies(t, F'), for every term ¢.

If E C F then “F — E” is defined by copies(t, F ~ E) =
copies(t, F') — copies(t, E), for any term ¢.

“ENF” is delined by copies(t, EN F) = min(copies(t, E),
copies(t, F')) for every term ¢.

The ESOP “0” is defined by copies(¢,0) = 0 for every term
t.

Note: Before we can write an expression £ — F we have to
verify that E¥ C F because otherwise E — F is undefined.

We use the symbol “0” to denote the number 0 as well as
the empty ESOP, as no confusion can arise.

Definition A4: If t is a product term not containing the
variable x then the AND of z and ¢, written zt, is obtained by
including z in ¢. Similarly for zt.

Definition A5: An ESOP E has a redundancy K if

KCEK=0K #0.

Note: A redundancy K consists of terms that can be
removed without changing the function of E.
Lemma A6: Let F be an ESOP, ¢ be a term and x be a
variable satisfying
z does not appear in the term ¢,
F &t has no redundancy, and

F @ xt & Tt has a redundancy.

(100)

Then F' @ zt @ #t has a unique redundancy K. Moreover,
(101)

Proof: We first prove (101) for any redundancy K of
F @ rt @ zt. If K contained neither x¢ nor it then K C F,
violating (100). If K contained both then K — (zt®Zt) @t = 0,
violating (100). This proves (101).
To prove that K is unique assume two redundancies K, L
of F'® xt @ Zt.

Let /[ =KNLK'=K-I1,L'=L-1.

K contains either xt or #t, but not both.

(102)

Since K =L =0
IeK' =Ia L. (103)

EXORing both sides of (103) with 7 & L’ and simplifying
we get

K'elL =o. (104)

From (102), K’ N L’ = 0 and therefore

K'e&L CFortoit (105)
Suppose that
one of K, L contains xt and the other contains Z¢. (106)

Then

KoL —(2toit)@tC Fat (by (105))
KoL - (zt@3t)®t=0 (by (104)).

Thus K'® L' — (zt®Zt) et is a violation of (100). Therefore
(106) cannot be true.

If both K and L contain x¢ then K’ and L’ contain neither
zt nor zt (by (101)),

and therefore K' @ L' C F. (107)

This implies K’ & L' = 0 (by (100), (104), (107) and
Definition AS of redundancy). Therefore K’ = 0 and L' = 0
and hence K = L. The same argument applies if both K and
L contain 7t. Q.E.D.
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