IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

Bounds on the Average Number of Products in
the Minimum Sum-of-Products Expressions for
Multiple-Valued Input Two-Valued Output Functions

Tsutomu Sasao

Abstract—A lower bound Lp(n,u) and an upper bound Up(n, u) on
Sp(n, u) are derived, where Sp(n, u) is the average number of products
in minimum sum-of-products expression for p-valued input two-valued
output functions, n is the number of the inputs, and u is the number of
minterms. The values of Sp(n, u) are obtained by minimizing random],

645

Decoders

1RE

1]

-] &4
generated functions, and they are pared to the calculated values of
Up(n,u) and Lp(n,u). The upper bound is based on the minimization
results of the functions with fewer variables. The lower bound is based
on an assumption, so it is incorrect until the assumption is proven. These
bounds are useful for estimating the size of programming logic arrays.

Index Terms— Complexity, logic minimization, multiple-valued logic,
prime implicants, programmable logic array, sum-of-products expression.

I. INTRODUCTION

A p-valued input two-valued output function f is a mapping
f: p™ — B, where P = {0,1,---,p— 1} and B={0,1}. Itis a
generalization of an ordinary switching function f: B™ — B. A pro-
grammable logic array (PLA) with r-bit decoders shown in Fig. 1
directly realizes a sum-of-products expression (SOPE) of a 2"-
valued input two-valued output function [1]. In Fig. 1, the AND
array generates product terms, and the OR array realizes the desired
functions with sum-of-products forms. The minimization of the
PLA’s can be done by multiple-valued logic minimizers such as
MINI, MINI II, ESPRESSO-MV, QM, and ESPRESSO-EXACT.
Computer experiments show that PLA’s with r-bit decoders (r > 2)
often require smaller arrays than standard PLA’s [1].

This paper deals with the average number of products in the
minimum SOPE’s for p-valued input two-valued output functions.
Especially for p = 2, the problem is to obtain the average number of
products in the minimum SOPE’s for switching functions, which is
equal to the average number of AND gates in minimum AND-OR
two-level logic circuits. Therefore, many researchers have spent
considerable effort [2]. Cobham, Fridshal, and North [3] obtained the
average number of products in minimum SOPE’s for p = 2 of up to
nine variables by computer simulation. Mileto and Putzolu [4] derived
formulas for the average number of prime implicants and essential
prime implicants for p = 2: their formulas give upper and lower
bounds on the average number of products in minimum SOPE’s.
Glagolev [5] obtained a lower bound on the number of products in
minimum SOPE’s for almost all functions for p = 2. Cook and Flynn
[6] investigated the average minimum cost of SOPE’s and attempted
to relate it to the entropy function. This author derived the formula for
the average number of prime implicants for the p-valued case [7], and
also obtained the average number of products in minimum SOPE’s
for p = 2 and p = 4 by computer simulation [8], [9]. Recently,
Bender and Butler [10] improved the upper and lower bounds.

In this paper, we derive an upper and a lower bound on the average
number of products in the minimum SOPE’s. They are tighter than
any other bounds reported to date. The upper bound is obtained by
using the minimization results of functions with fewer variables. The

Manuscript received May 11, 1988; revised April 10, 1989.

The author is with the Department of Computer Science and Electronics,
Kyushu Institute of Technology, lizuka 820, Japan.

IEEE Log Number 9040671.

11

OR

Fig. 1. PLA with t-bit decoders.

lower bound is based on an assumption, so it is incorrect until this
assumption is proven.

11. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1: Let P = {0,1,---,p — 1} be a set of truth values,
and X be a variable which takes a value in P. Let S be a subset of
P, then X° denotes a two-valued function P — B such that

XS:{O (when X ¢ S)
1

(when X € S)
where B = {0,1}. The symbol X ° is called a literal.

Definition 2.2: A product of literals is called a product term (or
product), and a sum of products is called a sum-of-products expression
(SOPE).

Lemma 2.1: An arbitrary p-valued input two-valued output func-
tion f: P™ — B can be represented by the following SOPE:

FX1 Xy, Xa) = Vs, 5550 Xi' - Xa? oo - Xim,

where S; C P, (i=1,2,-+-,n).

A p-valued input two-valued output function is often simply called
a function.

Definition 2.3: An SOPE which represents f is said to be minimum
if the SOPE has the minimum number of products. The number of
products in the minimum SOPE for f is denoted by #(f).

Definition 2.4: The set of inputs which is mapped into 1 by a
function f is denoted by f ~!(1). The number of elements in f ~'(1)
(i.e., the number of the minterms of f) is called a weight of f and
denoted by |f |- The average number of products in minimum SOPE’s
for n-variable p-valued input two-valued output functions with weight
u is denoted by Sp(n,u).

Lemma 2.2: Sp(n,u) < Min{u,p" ™}

Proof: a) An arbitrary function with weight u can be repre-

sented by an SOPE:
F(X1. Xooo, Xn) = VaX{ X520 X7,

where the logical sum is taken for all input combinations @ =
(a1,az,---,a.) such that f(a) = 1. There are u such combinations
and so, we have #(f) < w.

0018-9340/91/0500-0645%01.00 © 1991 IEEE

646

b) An arbitrary function can be represented by an SOPE:

FX1. Xa o, Xn) = Vagp(X1)X22 X o X0 (21)

where the logical sum is taken for all the input combinations of
b = (b2,b3,--+,b,) in p" . Therefore, we have t(f) < p" .
From a) and b), we have the lemma. (Q.ED)

Definition 2.5: A map of an n-variable p-valued input two-valued
output function consists of p™ cells. Cells that contain 1’s are called
I-cells while cells that contain 0’s are called 0-cells.

Example 2.1: Fig. 2 shows a map of a four-valued input two-valued
output function. The SOPE for this function having the form (2.1) is

(X, Xy = x 10023 x2 v x 1023 xly x (ot

xivxitox: (End of example).

Mileto and Putzolu [4] derived formulas for G5 (n, u), the average
number of prime implicants of switching functions with weight u,
and Gj'(n,u), the average number of essential prime implicants of
switching functions with weight u. Because

G3'(n,u) < S2(n,u) < Gy (n,w),

G3(n,u) and Gy'(n,u) are upper and lower bounds on Sz(n,u),
respectively. Unfortunately, when u > 2"~ and n > 10, G4(n,u) is
greater than 2" ™! and Gy'(n, u) is very small compared to Sa(n, v).
(See Fig. 5 for the result of numerical computation). Therefore, in
such cases, these bounds give little information about the value of
Sa(n,u).

III. UpPER BOUND ON THE AVERAGE
NUMBER OF PRODUCTS IN MINIMUM SOPE’s

In this section, we derive U}, (n, u), the upper bound on the average
number of products in minimum SOPE’s for n-variable p-valued
input two-valued output functions with weight u.

There are F(*) = () different functions with weight u, where
w = p". Let f{*) be the ith function with weight v (i = 1,
2,--+, F(")). By the definition of S,(n,u), we have

Fw)

Sp(n,u) = % Zt(ff“’).

Lemma 3.1: An arbitrary n-variable function f can be represented
by an expression

F(X1, Xo,---, Xn) = Vaepn-+ E(a),
where E(a) = ga(X1, Xz, -+, Xi) - X087
XU X

9a(X1, Xo, -+, Xi) = f(X1, Xo, -+, Xk, @hg1,0 0+, An),

3.1

©yln),

anda; €EP (j=k+1,---,n).

a = (Ak41, G2,

E(a) in Lemma 3.1 is called an E-term.

Example 3.1: The function shown in Fig. 3 can be represented by
an expression: (X, Xz, X3, X4) = E(0,0) V E(0,1) V E(1,0) V
E(1,1), where

E(0,0) = (1)75 74,
E(0,1) = (z1 V T2) T3 24,
E(1,0) = (Z122) 23 s,

and E(1,1) = (Z: VT2) 23 4. (End of Example).

By Lemma 3.1, f{*) in (3.1) can be represented as f{*) =
Vaepn—t Ei(a). Therefore, we have

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

1 1 1 1
X 2

2 1 1 1

3 1

Fig. 2. Four-valued input two-valued output function.

(X1,X2)
00 01 11 10

0011 1 1 1

011 1)1
(X3, X4)

mf1 |1 1

10 1

Fig. 3. Four-variable switching function.

t(f}“))g Y t(Eia)).

aepn-k

(32)

Example 3.2: In the expression of Example 3.1, ¢(£(0,0)) = 1,
t(E(0,1)) = 2, t(E(1,0)) = 1, and t(E(1,1)) = 2. Therefore, the
right-hand side of (3.2) is equal to ZaEPz t(E(a))=14+24+1+
2 = 6. On the other hand, the left-hand side of (3.2) is t(f) = 4 as
shown in Fig. 4. (End of example).

By (3.1) and (3.2), we have Sy(n,u) < Up(n,u), where

()

Upnw) = 30y 30 3 H(Eila)).

i=1 gepn—k

By changing the order of the summation, we obtain

Flu)
. 1
Up(nu) = 5oy D D H(Ei(@). (33)
acpn—k i=1
Note that
1 Flw)
o ; t(E:(a)) (3.4)

denotes the average number of products in minimum SOPE’s for the
functions with weight u having Ei(a) = ¢ o(X1, X2, -, Xx) -
X','C’_f]1 . X‘;C’r; - e - X2 as E-terms. ¢ a(X1, X000, X&),
(i=1,2,--, F) are k-variable functions, and have 27" different
patterns. Note that the value of (3.4) does not depend on a. Let
[F*] be the set of all the k-variable functions, then (3.3) can be
represented by the sum with respect to the functions g; € [F*] and
(3.3) is represented as

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

(X1, X2)
00 01 i1l 10

oo [Q [t }f1 D\
Mg
NS
w| |

Fig. 4. Minimum SOPE for Fig. 3.

(X3, X4)

n—k
Upnow) =Ty 3 #E(g)) - Lo(n.gjw).
ij[Fk]
where E(g;) = g;(X1, Xz, Xe) XA XA - -0 - X,

L,(n,gj,u) denotes the number of n-variable functions with weight
u having E(g;) as an E-term.

Let co be an E-term, and the weight of co be |g;|. L,(n,gj.u) is
equal to the number of different functions with weight u, where |g;|
1- cells and (p* — |g;|) O-cells are fixed. Therefore, L, (n,g;,u) =

(o= o I) Because t(E(g;)) = t(g;), we have

-~ R
Upnw) = g 2 "9”'(54\50'
J

(3.5

In order to compute the value of (3.5), we have to obtain the
minimum SOPE’s of all the k-variable functions. This work can be
greatly reduced by considering the representative functions of the
equivalence classes.

Definition 3.1: The relation ~ satisfying the following conditions
is called VP-equivalence relation.

1y f~f.

) If fi = f(-- Xi- . Xj-) and fo = f(X,
Xi,--+), then fi ~ fo. (Permutation of input variables)

3) Letog : P — P bean arbitrary one- to -one mapping If i =
fG-, X o) and fo = f(-- , then fi ~ fo.
(Permutation of values in a vanable)

Especially, when p = 2, VP-equivalence is called NP-equivalence
[11], [12].

Theorem 3.1: Let Up(n,u) be an upper bound on the average
number of products in minimum SOPE’s for n-variable p-valued
input two-valued output functions. Then

n k P pk
Up(n,u) = F(“J ZC(] (u—j)

j=1

where
i)=Y wulg)-tg)
lg:il=s
and g¢1,g2,---, g are representative functions of VP-equivalence

classes, t(gi) is the number of products in a minimum SOPE for g;,
and p(g;) is the number of functions which are VP-equivalent to g;.

647

Proof: By using VP-equivanence relation, we can partition
[Fk} into the VP-equivalence classes. Let g1,g2,--+,9» be the
representative functions of the VP-equivalence classes. Then (3.5)
can be rewritten as

ok A —p*
Up(n,u) = ’ﬁ D tgi) gy (;U, ")

=1 {95
where p(g;) is the number of functions which are VP-equivalent to

g:. Next, by classifying A different equivalence classes by the weight
of the functions, we have

A

w—p _ -p
Zt(gj)'ﬂ(gl (u'lgl)_z (] (u,—j)’
=Y wu

lgil=J

where c(j) - t(gi)

and ¢1.g2,---.gx are representative functions of VP-equivalence
classes. Hence, we have the theorem. (QED)
Example 3.3: Suppose that p = 2 and k = 3. Table I shows the
representative functions of VP (= NP)-equivalence classes of three
variables. There are 22 classes. By minimizing all the representative
functions, we have the coefficients shown in Table II.
(End of example).
Example 3.4: Suppose that p = 2 and k = 4. There are 402
different VP-equivalence classes of 4-variable funcuons. In a similar
way, we have the coefficients ¢(j) shown in Table IIL.
(End of example).
Example 3.5: Suppose that p = 4 and k = 2. There are 192
different representative functions of four-valued input two-valued
output functions. Table III also shows the coefficients ¢(j).
(End of example).
Logic minimization in Examples 3.3-3.5 were done by QM [13], a
modified Quine—McCluskey algorithm for p-valued input two-valued
output functions. The total computation time was within one hour
by using a personal computer. In general, the larger £, the tighter
the upper bound. For p = 2 and k = 5, there are 1 228 158 VP
equivalence classes [12], which may not be impossible to compute
the coefficients. However, for p = 2 and & = 6, the number of
equivalence classes is about 4 x 10'* [12], which is too many to
minimize all the representative functions.

IV. LowER BOUND ON THE AVERAGE
NUMBER OF PRODUCTS IN MINIMUM SOPE’S

In this section, we derive L,(n.u), a lower bound on the average
number of products in minimum SOPE’s for n-variable p-valued
input two-valued output functions with weight u.

Definition 4.1: A product p; = X;' X352 - X3 is an implicant
of fif py < f. A product p; is said to be a prime implicant of f if
there is no product p, such that p; < f, p1 < p2, and p; # p2. Let
there be k; S;’s such that |S;| = j for j = 1.2.---,p. Then, this
product is Sald to be k-cube, where k = (k1. ka2, -+, k).

Example 4.1: Letp = 4and n = 4. X{°*%} X'{“ 1 x“ 2} X“”
is a (1,2, 1, 0)-cube, while X{O 1:2.3) X“ 2} X{Z 31 Y{o ! 2}

a (0,2,1,1)-cube.

Definition 4.2: G,(n.k.u) denotes the average number of prime
k-cubes of n-variable p-valued input two-valued output functions
with weight u.

Theorem 4.1:

c® n(k)
F().Z(- ZAkt (

Gp(n.k.u) = B Zj((::’:;)

648

TABLE 1
REPRESENTATIVE FUNCTIONS OF THREE VARIABLES
Representative Weight | Number of Number of
] Function Functions in | Products in
the class Minimum SOPE
g; lgjl u (g].) t(gj)

1 0 0 1 0
2 abe 1 8 1
3 ab 2 12 1
4 a(be Vbe) 2 12 2
5 a(bVe) 3 24 2
6 a 4 3 1
7| abcVabeV abe 3 8 3
8| abVbcVea 4 8 3
9 abe V abe 2 1 2
10 abc V be 3 24 2
11 acVbe 4 24 2
12| abVacVabe 4 24 3
13 aVbe 5 24 2
14 abV ab 4 6 2
15| abVabVac 5 24 3
16 aVvb 6 12 2
17| a@b@®edI 4 2 4
18 | acV abV be V abe 5 8 4
19| aVbeVbe 6 12 3
20| abVbeVac 6 4 3
21| aVbVe 1 8 3
22 i 8 1 1

TABLE II

C(j) FoR. p = 2 AND k = 2

i e ()

1 8

2 14

3 | 120

4 170

5 | 152

6 72

7 24

8 1

where

F(u):(:), P c(k)z(nz)vﬁ[%(i’)ki}
1+§§} (k)
=1

1

n(k) =3 ai,

1

w(k,t) = E(k) - {

a; = ki(p — 1),

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

TABLE III
@)
e (i)
i| p=2 =4
k=4 =

1 16 16
2 208 192
3 1328 1184
1 5288 4508
5 14720 12336
6 29872 24248
1 46368 36992
8 54992 42720
9 50992 37072
10 36336 24632
11 19856 13056
12 8056 §120
13 2352 1360
14 448 240
15 64 32
16 1 1

i=1 t;
t; <ai(i=1,2,---,p —1). (Proof is available from the author.)

Lemma 4.1: Let V,(n,u) be the average volume of prime cubes.
Then, Vy(n,u) = A/B, where A = Y, w(k) - G;(n,k,u), and
B =3, Gp(n,k,u).

Proof: 1t is easy to see that A denotes the average sum of the
volume of the prime cubes, and that B denotes the average number of
the prime cubes. Hence, A/B denotes the average volume of prime
cubes. (QED)

Now we will make the following:

Assumption 4.1: The average volume of prime cubes in a minimum
SOPE for f is equal to the average volume of all the prime cubes
of f. (Note that, in general, there are many minimum SOPE’s for
a function f.)

By Assumption 4.1, we have the following:

Conjecture 4.1: Sp(n,u) > Ly(n,u), where Ly(n,u) = (u -
B)/A,

t=(ti,tz2, -, tp—1) is a partition of t, A(k,t) =]2, (“’), and

A=) wk) Gy(nk,u), and B=Y Gy(nk,u).
k k

(Explanation supporting the conjecture) There are u minterms in f.
Because the average volume of each cube is V,,(n, u), any SOPE for
f requires at least u/V,(n,u) cubes to cover all the minterms of f.
(End of the explanation).

Example 4.2: Consider the function shown in Fig. 3 where n = 4,

p = 2, and u = 11. The number of prime cubes is 7, and the sum of
volumes of all prime cubes is 22. The average volume of prime cubes
is 22/7 = 3.14. If Assumption 4.1 holds, then the lower bound on
the number of products in minimum SOPE for f is 11/3.14 = 3.5.
Fig. 4 shows a minimum SOPE for f. Note that only two prime
implicants are essential. Therefore, Assumption 4.1 gives a tighter
lower bound than the bound given by the number of essential prime
implicants. (End of example).

EEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

1200 -

1100 4

1000 —

900

800

700 A

600 -

500

Average Number of Product terms

400 —

300 — e

200 — 7z

100 4

G, (10, u)

u: Number of 1's in the function

'BB(10,0)__ —
-

e
'
-

lu, (10,0

132(10,u>

L2(10,u)

Gé(lo,u) \ u

T T ¥

i
o 128, 256 384

‘ . —
512 640 | 188 | 895 |1024

Fig. 5. Upper and lower bounds on the average number of products in the minimum SOPE’s of functions with p = 2 and » = 10 versus the number
of the minterms.

V. EXPERIMENTAL RESULTS

In order to obtain Sy,(n,u), we generated functions by a pseudo-
random number generation algorithm. For v = 128, 256, 384,
512, 640, 768, and 896, we generated ten sample functions, and
minimized each function by QM. Fig. 5 compares the values of
Sa(n,u), Go(n,u), Gy (n,u), Ua(n, u), L2(n,u), and BB(n,) for
n = 10. BB(n, u) is the upper bound derived by Bender and Butler

[10], where

n

BBmm)=u—%;7§:(u%2)

ul =1

This bound was derived by covering all 1’s with implicants consisting
of pairs of 1’s and single 1’s. The highest curve in Fig. 5is G2(10,u),
the average number of prime implicants of ten-variable functions.

650

1100

1000

900

800

700

600 —

500

Average Number of Product terms

400

300

200

100 o

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

G'4(5,u)

u'Number of 1°s in the function

Uy (5,0
84(5,u)

L4(5. u)

u

T T

T
128 256 384

T T T T =

512 640 768 896 1024

Fig. 6. Upper and lower bounds on the average number of products in the minimum SOPE’s of functions with p = 4 and n = 5 versus the number
of the minterms.

Note that G2(10,u) is greater than v when u > 384. The dashed
curve lying mostly below G(10,u) is BB(10,u). The solid curve
below BB(10,u) is U2(10,u), the upper bound obtained in this
paper. U(10,) is better than BB(10,u) when u > 240. However,
for v < 240, BB(10, u) is better than U(10, u).

As for lower bounds, L3(10,u) is much better than G3'(10, u).
Especially, when « > 512, G2(10,u) is very small compared
to L2(10,u). Bender and Butler also obtained a lower bound on
Sz(m,u) by considering all the essential prime implicants plus certain
added implicants. However, there is very little difference between

their bound and G4’ (n,u). So it is omitted from Fig. 5.

Fig. 6 shows the case for p = 4 and n = 5. In this case, however,
G4 (n,u) is omitted because no formula is known for it. We obtained
values of Up(n, u) by the coefficients shown in Table III.

VI. CONCLUSION

In this paper, we derived an upper bound U,(n,u) and a lower
bound L, (n,u) on S,(n, u), the average number of prime implicants
in minimum SOPE’s for n-variable p-valued input two-valued output
functions, where u is the number of minterms. Up(n, u) was derived

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 5, MAY 1991

by using the statistical data of minimum SOPE’s for all k-variable
functions (k < n). On the other hand, L, (n, u) was derived by using
the concept of the average volume of the prime cubes. These bounds
are tighter than any other bounds reported to date, and applicable to
any value of p. Especially for p = 2 and p = 4, we have obtained
the coefficients for the upper bounds. So, we can easily estimate the
average size of standard PLA’s with two-bit decoders by using a
personal computer.

REFERENCES

[1] T. Sasao, “Multiple-valued logic and optimization of programmable
logic arrays,” IEEE Trans. Comput., vol. 21, no. 4, pp. 71-80, Apr.
1988.

[2] C.A. Papachristou, “Characteristic measures of switching functions,”
Inform. Sci., vol. 13, pp. 51-75, 1977.

[3] A. Cobham, R. Fridshal, and J.H. North, “A statistical study of the
minimization of Boolean functions using integer linear programming,”
IBM Res. Rep. RC-756, June 1962.

[4] F. Mileto and G. Putzolu, “Average values of quantities appearing
Boolean function minimization,” IEEE Trans. Electron. Comput.,
vol. EC-13, pp. 87-92, Apr. 1964.

[5] V.V. Glagolev, “Some bounds for disjunctive normal forms of the
algebra of logic,” Problemi Kibernetiki, vol. 19, pp. 74-93, 1970.
(English translation, System Theory Rescarch, Consultants Bureau, New
York).

[6] R.W. Cook, and M.J. Flynn, “Logical network cost and entropy,” JEEE
Trans. Comput., vol. C-22, no. 9, pp. 823826, Sept. 1973.

[7] T. Sasao and H. Terada, “Multi-valued logic and the design of pro-
grammable logic arrays with decoders,” in Proc. ISMVL-79, Bath,
England, May 1979, pp. 27-37.

[8] ——., “On the complexity of shallow logic functions and the estimation
of programmable logic array size,” in Proc. ISMVL-80, Evanston, May
1980, pp. 65-73.

[9] T. Sasao, “Multiple-valued decomposition of generalized Boolean func-

tions and the complexity of programmable logic arrays,” IEEE Trans.

Comput., vol. C-30, no. 9, pp. 635—643, Sept. 1981.

E.A. Bender and J. T. Butler, “On the size of PLA’s required to realize

binary and multiple-valued functions,” IEEE Trans. Comput., vol. 38,

no. 1, pp. 82-98, Jan. 1989.

M. A. Harrison, Introduction to Switching and Automata Theory. New

York: McGraw-Hill, 1965.

S. Muroga, Logic Design and Switching Theory. New York: Wiley,

1979.

T. Sasao, “Input variable assignment and output phase optimization of

PLA’s,” IEEE Trans. Comput., vol. C-33, no. 10, pp. 879-984, Oct.

1984.

[10]

{11]
(12]

[13]

Efficient Replicated Remote File Comparison

John J. Metzner

Abstract— This paper improves on some previous work involving
communication to find the location of disagreements between two or more
large remote data files. Some new procedures are described which permit
a significant reduction in the number of back-and-forth interchanges
and in one version also significantly reduce the total amount of data
transfer required. Suppose the file is divided into 2P pages. The previous
scheme could locate a disagreeing page with an extremely high degree
of confidence after P + 1 interchanges. The new procedures require
at most one back-and-forth interchange for each disagreeing page, often
considerably less, up to a maximum of P +1 interchanges for any
number of disagreeing pages.

Index Terms—Communication efficiency, error location, fault location,
fault recovery, reliable distributed systems, replicated files, tree parity
structure.

651

I. INTRODUCTION

A feature which is becoming increasingly more common in dis-
tributed processing systems is remote replication of large data files.
These are maintained for the joint purposes of convenient local
availability and improved fault recovery. Since the files are supposed
to be identical, it often is important to verify this fact and to resolve
differences. These differences may arise for various reasons. An
important case is where differences arise as a result of revisions and
updatings. Although procedures have been devised for systematically
updating and maintaining consistency in multicopy databases [11-[51,
the problem is difficult and procedures are not always foolproof [4].
Also, faults, system failures, or operator errors may create differences.

When differences are found in large remote file copies, it might be
very costly in communication resources to send the entire file or a
substantial part of it from one location to another in order to resolve
the discrepancy. Often the disagreement is slight, and great savings
in communication are possible by a disagreement location scheme.

A prior paper [6] described a tree parity structure as a mecha-
nism for locating discrepancies with a relatively small amount of
communication between remotely-located supposedly identical large
data files. The files are assumed to be constructed as identical on
a bit-by-bit basis. The procedure may not be applicable without
additional processing if the information, although identical, is stored
in a different way in the two locations. Each file is assumed to
be divided into units, referred to as “pages.” These units could be
of arbitrary size and need not all be the same size. To allow the
comparison technique to be practical, an insertion or deletion within
a page should not directly affect the contents of the other pages;
otherwise, if division was made into fixed size blocks, insertions
or deletions could shift data from one block to another and cause
almost all blocks to be different.

The procedure in [6] works rather efficiently in terms of amount of
bits communicated to locate regions of discrepancy, but tends to have
a large number of information exchanges, which is undesirable due to
the possibly large turnaround overhead. If the disagreement is limited
to a single page or a cluster of pages, more efficient procedures are
possible. Reference [7] shows how to encode so as to locate one page
or a cluster of pages in one exchange using a moderate number of
signature unit transmissions and less parity storage, and [8] shows
how to locate a single disagreeing page in one exchange by sending
only two signature-size units. However, we are seeking here a more
robust procedure which is able to locate any pattern of disagreeing
pages.

This paper will show methods for further significant reductions
both in the number of interchanges and in the total amount of data
transferred.

II. THE BASIC PARITY TREE STRUCTURE

A binary parity sequence or “signature” is derived from each page
of each file. The page size is normally many times larger than the
size of a signature. Let there be 27 pages. The tree then will have
P + 1 levels including the root level, which will be designated
level 0. Fig. 1 illustrates the notation being used for the tree
structure. The page signatures will be at level P at the ends
of the leaves. Page i data will have a C-bit signature S[P,i].
Level k will have 2 nodes, numbered from (k,0) to (k,2* —1).

Manuscript received June 1, 1988. This work was supported by the National
Science Foundation under Grant 8796229.

The author is with the Department of Electrical Engineering, Pennsylvania
State University, University Park, PA 16802.

IEEE Log Number 9040674.

0018-9340/91/0500-0651$01.00 © 1991 IEEE

