262

TABLE 1
LisT OF n, p, r, aND PErIOD FOR m =5, 7, 13, 17, anD 19

period
n P r (order of p) 2"-1)r
annEn M= 5
2 [} L] 18
3 18 13 109
4 1 1 15
BRBRE M = 7
-3 & 126 378
3 87 21 147
4 118 126 1890
S 119 14 434
& 126 2 126
annnn M = {3
2 6 910 2730
3 5040 1638 11466
4 8154 1365 20475
s 7268 8190 253890
6 5086 210 13230
7 4347 8190 1040130
a8 3804 1170 2983%0
9 1123 1638 837018
10 7711 1365 1396399
11 2087 S8%5 1197493
12 1 1 4095
HRERE M = 17
2 & 131070 393210
3 5040 216843 15291%
4 103431 43690 659350
3 6958 43690 1354390
& 45204 43690 27352470
7 85423 131070 16643850
8 25027 1283 327675
L4 41703 43690 22325590
10 113021 43690 44694870
11 104297 218435 44716718
12 117473 4369 17891059
13 20133 13107 107359437
14 52447 2570 42104310
15 64611 131070 4294770690
16 131070 2 131070
HAERE M = 19
2 & 524286 1572858
3 5040 37449 262143
4 354033 87381 1310719
S 64318 262143 8126433
13 135841 262143 16515009
7 142484 27594 3504438
8 315302 87381 22282155
9 124189 87381 444651691
10 406212 262143 268172289
11 202951 262143 836606721
12 282298 174762 715630390
13 494759 524286 4294426626
14 50950% 262143 4294488769
15 194210 524286 17179279362
16 266965 4599 301395469
17 449113 262143 34359345153
18 1 1 262143

An interesting topic for future research is the exponentiation
in extension field G’"El(pm) where p # 2. Using a normal basis
{o, @”, a” ,---,aP } may generate a long sequence of pseudo-
random numbers.
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On the Complexity of Mod-2 Sum PLA’s

TSUTOMU SASAO anp PHILIPP BESSLICH

Abstract—We consider the realization of logic functions by using
PLA’s with an Exclusive-OR (EXOR) array, where a function is rep-
resented by mod-2 (EXOR) sum-of-products (ESOP’s), and both true
and complemented variables are used. First, we propose a new PLA
structure using an EXOR array. Second, we derive upper bounds on the
number of products of this type of PLA, which are useful for estimating
the size of a PLA as well as for assessing the minimality of the solutions
obtained by heuristic ESOP minimization algorithms. Computer simu-
lation using randomly generated functions shows that PLA’s with EXOR
array require, on the average, fewer products than conventional PLA’s.
For symmetric functions, we conjecture that the PLA’s with an EXOR
array require at most as many pr as the con 1 PLA’s. The
proposed PLA’s can be made easily testable by adding a small amount
of hardware.

duct

Index Terms— Complexity, easily testable circuits, Exclusive-oR sum-
of-products, logic minimization, programmable logic array, symmetric
functions.

1. INTRODUCTION

The complexity of various types of programmable logic arrays
(PLA’s) has been studied in detail [1], [2]. Logic design for standard
PLA’s is based on multiple-output (quasi-)minimization of the con-
ventional sum-of-products expression (SOP) of switching functions.
However, there is a conjecture that PLA’s consisting of inverters, an
AND array, and an Exclusive-or (exor) array may offer certain advan-
tages. “It has long been conjectured that the realization of switching
functions as a mod-2 SOP is more economical than the conventional
SOP’s.” This sentence appears at least three times in the literature
[3]-[5]. Since there has been neither an exact minimization method
nor a reliable quasi-minimization procedure, the conjecture has never
been confirmed except for the case of n = 4 variables [3]. In this
paper, we consider the complexity of PLA’s using exor (or mod-2)
SOP’s.

Motivations for this research are twofold: First, there is the chal-
lenge to prove or disprove the conjecture mentioned above. Since
no exact minimization algorithm for exor SOP’s (ESOP’s) exists,
we developed several quasi-minimization algorithms for ESOP’s. In
order to assess the performance of these algorithms, there is a need
for upper bounds on the number of products and for functions for
benchmark testing. The second motivation is to investigate other pos-
sibilities for the realization of switching functions in logic arrays.
There have also been proposals to employ modulo sum addition in
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Fig. 1. anp-exor PLA without input decoders.
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Fig. 2. aND-Exor PLA with input ExoOR’s.

multiple-valued PLA’s [6], [7]. Because of the page limitation, all
the proofs of the theorems are omitted. A full length paper is avail-
able from the authors. A preliminary version of this paper has been
presented as [8].

II. PLA StrucTurRE FOR MOD-2 Sum

A. AND-EXOR PLA Without Input Decorders

An arbitrary switching function can be represented by a mod-
2 SOP of uncomplemented variables [9], [10}. The PLA structure
shown in Fig. 1 (an anp-exor PLA without input decoders) realizes
logic functions based on the positive polarity Reed-Muller canonical
expansion (RME). In this PLA, since only uncomplemented variables
are employed, the number of rows in the anp array is half of those
of a standard PLA (an anp-or PLA with one-bit decoders) shown in
Fig. 4. However, as shown in Lemma 2.2, the number of columns
(or products) of PLA’s having this structure is, on the average, at
least as twice as large as that of standard PLA’s. This is undesirable
for VLSI implementation.

Lemma 2.1: The necessary and sufficient number of products to
realize the function f(x) = XX, ---X, by a PLA shown in Fig. 1 is
2",

Note that a standard PLA requires only one column to realize this
function.

Lemma 2.2: The average number of products to realize n-variable
functions by PLA’s with structure shown in Fig. 1 is 27!,

In the case of standard PLA’s, the average number of products to
realize n-variable functions is less than 272 [1].

B. AND-EXOR PLA with Input EXOR’S

In the PLA structure shown in Fig. 2, each input variable can
either be uncomplemented or complemented. It realizes the fixed
polarity Reed-Muller canonical representation [11], [12]. However,
as Lemma 2.3 shows, this PLA requires more columns than a stan-
dard PLA for simple functions. Therefore, this PLA structure is also
unsuitable for VLSI implementation.

Lemma 2.3: The necessary and sufficient number of products to
realize the function f(x) = xx, - - x, V¥ X, - - - X, by a PLA shown
in Fig. 2,is 2- (2" — 1), where n =2r.

C. AND-ExOoR PLA with One-Bit Decoders

The PLA structure shown in Fig. 3 uses both uncomplemented and
complemented variables. It realizes an ESOP without any restrictions.
As will be shown in Section V, this PLA structure requires, on the
average, fewer columns than standard PLA’s.

Example 2.1: Let f(x) = X1X2X3X4 V X|X,X3X4. The positive
polarity RME for this function requires 15 products. From Lemma
2.3, fixed polarity RME needs six products. If the condition of fixed
polarities in the RME products is dropped (i.e., mixed or free po-
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Fig. 3. AND-EXOR PLA with one-bit decoders.

larity RME {5] is used), we need only four products. Finally, if the
restrictions imposed by the canonical RME’s are disregarded, we
need only two products as follows:

f&) = x1X2x3X4 D X1 X,X3X4. (End of Example)

III. Upper Bounps oN THE NUMBER OF PropucTs
iN ESOP’s

In this section, we show upper bounds on the number of products
in ESOP’s for arbitrary functions, symmetric functions, and adders.
These bounds correspond to the upper bounds on the number of
columns for PLA’s having the structure of Fig. 3.

A. Bound for Arbitrary Functions

Let ¢.(f) be the necessary and sufficient number of products to
represent the function f by an ESOP. Theorem 3.1 shows that PLA’s
with an eExor array require fewer products than conventional PLA’s
to realize arbitrary functions.

Theorem 3.1: Let f, be an arbitrary function of n variables. Then,
te(fn) <3/4-2771 where n > 3.

Note that in order to represent a parity function of n variables by
an SOP, 2"~! products are necessary.

B. Bounds for Symmetric Functions

In this part, we consider upper bounds on the number of products
in ESOP’s of symmetric functions.

Theorem 3.2: Suppose n =2r +1. Let X = (X, Xa,---,X,11)
be a partition of x = (x|, x,, - -,X,), where X; = (xgi—1, X2))(i =
1,2,---,r), and X, = (X2,11). If f,(x) is partially symmetric

with respect to X; (i = 1, 2,---,r), then t.(f,) <3'.

Theorem 3.3: Suppose n = 2r. Let X = (X, X2, --,X,) be
a partition of x = (x;, X5, --,X,), where X; = (X2i_;, X2)(i =
1,2,---,r). If fo() is partially symmetric with respect to X, (i =
1,2,---,r), then £, (f,) <2-3"71.

These bounds are equal to the ones given in [3]. They apply,
however, to a larger class of functions. While Even, Kohavi, and
Paz [3] prove the bounds only for completely symmetric functions,
Theorem 3.3 applies to all functions in which at least two variables
may be interchanged. The number of totally symmetric functions of
n variables is 2"*!, while the number of the partially symmetric
functions of n variables is 2%, where n = 2r.

In order to find a tighter upper bound on the number of products
in ESOP’s, we define another class of functions.

Definition 3.1: Let x = (X1, X2, ,Xn).

Then the functions E%(x) are defined as follows:

El=1

n
B =Y ax
i=1

n
1<€i<j<-<m<n

Ep =Xy -X2:X3- -+ -Xp.
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Fig. 4. anp-exor PLA with one-bit decoders (standard PLA).

Note that E}(a) is 1 iff at least k& of the variables are 1 and the
minterm a is covered an odd number of times.

Let T(n, k) = t.(E}). By Definition 3.1, we have the following.

Theorem 3.4: T(n, k) < (:)

We will show recurrence relations, which derive an upper bound
on the number of products in the minimum ESOP of E} functions.

Theorem 3.5: Tk,0 = 1,Tk,1) = k,Ttk,k — 1) =
k,Ttk,ky=1,and T(n, k) <T(n —1,k)+T(n—1,k —1).

When the upper bounds for E; ' and E} ! are known, Theorem
3.5 provides an upper bound for the E} function. It often gives a
tighter bound than the bound given by Theorems 3.2, 3.3, or 3.4.
This fact makes the E} functions a suitable class of functions for
benchmark testing of heuristic ESOP minimizers.

Example 3.1: Let x = (x|, X3, X3, X4). By Definition 3.1, we
have E4(x) = x1X2 ®X1X3 ® X1 X4 D XoX3 D X2Xs DX3X4.

This function is equivalent to the symmetric function S"2 . Al-
though [3] claimed that this function required six products, it can
be represented by five products: Eg(x) =X1X2 DX X4 DX2X3X4 D
X2X3X4 PX1X3.

Therefore, T(4, 2) < 5. Because T (4, 1) = 4, we have an upper
bound for E3 function as follows: 7'(5,2) <T(4,2)+T@4, 1) =9.
(End of example)

C. Bound for Adders

The number of products to realize an n-bit adder by a standard
PLA (Fig. 4) is 6 -2" —4n — 5 [2]. Theorem 3.6 shows that PLA’s
with Exor array require about one-third as many columns as standard
PLA’s.

Theorem 3.6: The number of products which is sufficient to re-
alize an n-bit adder by a PLA with Exor array (Fig. 3) is 2"*' — 1.

IV. MinimizaTion oF MOD-2 Sums oF ProbucTs

A Pascal program which obtains near minimal ESOP’s of up to 12
variables on a personal computer has been developed. Because we
are only interested in the complexities of PLA’s, we did not try to
reduce computation time.

The minimization program consists of three independent minimiza-
tion algorithms and it chooses the best solution of the three. The first
algorithm detects single-variable Exor patterns by an adaptive filter
operation [13]. An adaptive threshold is introduced to decide whether
or not an extraction of those patterns is rewarding. After extracting
a single-variable Exor pattern, the residual minterms are iteratively
covered by a heuristic Exor covering algorithm. Since these deci-
sions are taken on present state information only, the minimization
is suboptimal. PON’T CARE minterms, if any, wiil be (sub-)optimally
allocated. This algorithm is particularly suitable for functions having
distinct “‘parity function character,” as well as for the type of func-
tions which exhibit “‘smaller” zero-products within “larger” one-
products. The algorithm is essentially based on radix-2 type in-place
processing of data. For a detailed description, refer to [13] and [14].

The second algorithm is based on an iterative improvement of
covering. Several rules are used to replace a pair of products with
another one. By using these rules, the given cover is modified iter-
atively without changing the function represented by the cover. This
algorithm uses both ideas of the program developed by Even, Ko-
havi, and Paz [3], as well as those of MINI [15]. Similar algorithms
have been developed independently [16]-[18].

The third algorithm is same as the second one except that the
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TABLE 1
AVERAGE NUMBER OF PRODUCTS FOR ALL THE FOUR-VARIABLE
FuNCTIONS
MINTERMS i 2 3 4 § [ 1 8
AND-EXOR | 1. 000 1.1733 2.3 2.738 3.132 3.350 3.702 3.696
AND-OR 1. 000 1.7383 2.371 2.905 3.370 3.730 [4.083 |[4.273
MINTERMS 9 10 11 12 13 14 15 16
AND-EXOR | 3.912 3.864 4.088 3.132 3.371 2.733 2.000 1.000
AND-OR 4.457 14.537 4.546 | 4.426 4.200 3.733 [ 4.000 1.000
TABLE 11

MiniMizATION RESULTS OF RANDOMLY GENERATED FUNCTIONS

n==6

d=u/64 1/8 2/8 3/8 4/8 5/8 6/8 7/8
u 8 16 24 32 40 48 56

E (n, u) 5.1 8.8 11.1 1.7 11.6 9.8 7.4

S (n, u) 6.0 9.4 12.9 13.2 13.1 12.2 9.5

n=7

d=u/128 1/8 2/8 3/8 4/8 5/8 6/8 1/8
u 16 32 48 64 80 96 112

E (n, u) 11.0 16.9 20.0 22.1 20. 4 18.1 12.0

S (n.u) 12.1 18.6 21.5 24.2 23.1 21.9 15.8

n=38

d=u/256 1/8 2/8 3/8 4/8 5/8 6/8 1/8
u 32 64 96 128 160 192 224

E (n, u) 21.4 32.6 38. 17 41.6 38. 4 32.2 22.4

S (n, u) 21.5 35.1 40.6 42.8 41.9 37.9 271

n:number of the input variables.

u:number of the minterms.

E (n,u):average number of products in ESOP's.

S (n,u):average number of prime implicants in the minimum SOP's
(the average of ten randomly generated functions)

complement of the function is realized instead of the given function.
The constant 1 is added to obtain the proper output.

V. EXPERIMENTAL RESULTS

A. Minimization of All the Four-Variable Functions

In order to obtain the minimum ESOP’s and SOP’s for all func-
tions of four variables, we minimized each representative function
of the NP-equivalence classes [19], [20]. To find absolute min-
imum ESOP’s, we developed a special program [21], which is
similar to [22]. To find absolute minimum SOP’s, we used the
Quine-McCluskey algorithm. Table I shows the average number of
products in ESOP’s and SOP’s for logic functions with % minterms
(u =1,2,---,16). Table I shows that ESOP’s, on the average, re-
quire fewer products than SOP’s. Note that both ESOP’s and SOP’s
are absolute minimum.

B. Minimization of Randomly Generated Functions

We also obtained statistical data for the functions of n = 6, 7, and
8 variables. We generated ten random functions by a pseudorandom
number generator for each density, where density denotes the fraction
of minterms which are mapped into 1, i.e., d = u/2". Table II com-
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TABLE III
AVERAGE NUMBER OF PRODUCTS TO REALIZE SYMMETRIC
FuNcTiOoNs

n ESOP NUZ

. 375 1.375
. 250 2.625
031 5.156
.69 | 10,125
.093 [ 20.055
418 | 39.563
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TABLE IV
NumBer of PropucTs For E FuncTions OBTAINED BY HEURISTIC
MINIMIZER
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pares the average number of products in ESOP’s to those of SOP’s.
In this case, we used the heuristic minimization program mentioned
in Section IV to obtain ESOP’s, and the Quine-McCluskey algorithm
to obtain SOP’s. Again, this table shows that ESOP’s require, on the
average, fewer products than SOP’s.

C. Minimization of Symmetric Functions

We compared the number of products in ESOP’s and SOP’s for
symmetric functions of n = 2 to 7 variables. Table III shows that
ESOP’s require many fewer products than SOP’s. Note that ESOP’s
are near minimal, but SOP’s are absolute minimum. The surprising
fact is that, for every symmetric function of up to seven variables,
the number of products in an SOP is equal to or greater than that
of the near minimal ESOP. We conjecture this property holds for
n > 8, and have the following.

Conjecture 5.1: Let t,(f) and ¢,(f) be the number of products in
the minimum ESOP and SOP for f, respectively. If f is symmetric,
then £, (f) <t,(f).

D. Minimization of EX Functions

Table IV shows the number of products for E} functions, which
are obtained by the heuristic minimization program. Unfortunately,
we recognize that some of the solutions obtained by the program are
nonminimum.

Example 5.1: We know that some of the solutions obtained by the
heuristic minimization program are not minimum. From Theorem
3.2, we can see that T(7, 3) < 3° = 27. However, the corresponding
entry in Table IV is 29, which shows the heuristic minimizer failed
to produce the optimal solution for Ej. Also, from Table IV, we can
see that 7'(7, 2) < 18 and T'(7, 3) < 29. Therefore, by Theorem 3.5,
we have T'(8, 3) < T(7,2) +T(7, 3) < 47. On the other hand, the
corresponding entry in Table IV is 49, which shows that the heuristic
minimizer failed to obtain the optimal solution for ES. (End of the
Example).

VI. CoNcLusioN

In this paper, we considered the number of products in PLA’s
having inverters, an anNp array, and an exor array. The results of
theoretical and experimental studies are as follows.

1) We conjecture that, on the average, PLA’s with Exor arrays
require fewer products than standard PLA’s. This conjecture is based
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TABLE V
Numaer oF PropucTs To REALIZE Various FUNCTIONS BY THREE
Tyees oF PLA’s

PLA with Standard PLA vith tvo
EXOR array PLA bit decoders
Arbitrary | (3/4) - 271 a1 (1/2) - 271
Functions
Symmetric 2. 971 2n-l 3r-t
Functions
Parity n 2l 2l
Functions
n-bit PLARNS 6+ 2"4n-5 | nl+1
Adders

on a) exhaustive minimization of all the four-variable functions, b)
minimization of randomly generated functions of n = 6, 7, and 8
variables, and c¢) Theorem 3.1.

2) We conjecture that, for symmetric functions, PLA’s with Exor
arrays require many fewer products than standard PLA’s. This con-
jecture is based on d) exhaustive minimization of all the symmetric
functions of # = 2 to 7 variables, and on ¢) Theorems 3.2 and 3.3.

3) Upper bounds on the number of products of PLA’s with Exor
arrays are shown in Table V.

4) We derived a special class of symmetric functions, E} func-
tions, which is useful for assessing the minimality of solutions ob-
tained by heuristic ESOP minimization algorithm.

The experimental results obtained by the heuristic ESOP mini-
mizer confirm the conjecture made in [2]-[4]. Benchmark tests of the
heuristic minimizers show that further improvements of the heuristic
algorithms may be possible.

The disadvantage of the conventional SOP’s (POS’s) of switching
functions is the nonlinear nature of the or (anD) connective, which
may make the testing of circuits rather involved. The test of cir-
cuits using the exor addition (i.e., the compiete system consisting of
AND/Exor/UNITY) is considered to be less expensive [23]. Since the
cost of testing can be a decisive factor in VLSI production, ESOP’s
may be more economical than the usual SOP’s. Recently, it has been
suggested to provide additionally one row, one column, and a cas-
cade of Exor gates to facilitate the testing of PLA’s [24], [25]. These
schemes may be modified so as to use the same Exor gates for com-
bining of products as well as for testing [26].
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On the Design of a Unidirectional Systolic Array for
Key Enumeration

FERNG-CHING LIN aND KUNG CHEN

Abstract—Key enumeration is to compute the rank of each key in a
sequence of keys. This paper introduces a new systolic linear array to
enumerate # keys in 3n — 1 time steps. This array has unidirectional data
flow and achieves maximum data pipelining rate. Modifications of the
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array for solving the closest neighbor problems in computational
geometry are also presented.

Index Terms—Data dependence graph, key enumeration, nearest
neighbor problems, systolic array.

1. INTRODUCTION

The dramatic development of very large scale integration (VLSI)
technology has made it possible to implement algorithms directly in
hardware and hence promoted great interest in designing algorithmi-
cally specialized processing components. Following Kung’s systolic
concept [1]-[3], many computing arrays have been proposed to
handle various compute-bound problems. These array processors
generally consist of a regular array of simple and identical processing
elements (PE’s) in which data are communicated locally and operated
on rhythmically. The simplicity, regularity, and locality of the
systolic arrays render them suitable for VLSI implementation. High
performance is achieved by the concurrent use of a large amount of
PE’s in the arrays.

The purpose of this paper is to introduce a new systolic array for
the problem of key enumeration. The well-known enumeration sort
(sorting by counting) [4] is composed of a ranking process and a
rearranging process. The ranking process inputs a sequence of keys
ki, k2, - -+, k, and outputs a sequence of ranks ry, r,, ** -, r, to
represent that k; is the (r; + 1)th smallest key in the input sequence.
Then in the rearranging process the records are rearranged according
to the ranks of their keys. In this paper, we are only concerned with
the ranking process, i.e., key enumeration.

Yasuura ef al. [5] first proposed a linear array equipped with two
global I/0 buses to compute the ranks. The propagation delay along
the long wires limits the clock speed at which the system can run
reliably. Su [6] later proposed a linear array without global
communication buses. It, however, requires duplication of input data
sequence. Lin and Wu [7] then presented a systolic linear array to
which only one set of input keys is serially fed. The array uses an
extra PE at one end to reverse the flow direction of the data stream. A
bidirectional data move typically cannot achieve maximum data
pipelining rate. In that design, data in the stream have to be separated
by two time units. Recently, Chen and Nussbaum [8] proposed an
array of triangularly connected PE’s with two sets of data moving
orthogonally. Such a two-dimensional structure is area-demanding
and furthermore the problem-size-dependent number of 1/O ports
makes it even more impractical, due to the packaging limitation.

The new systolic array presented in this paper circumvents all the
shortcomings of those previous designs. The way of synthesizing this
array, which will be explained in detail in Sections II and HI, can be
outlined as follows. First, we write down a usual sequential algorithm
to compute the ranks and model it as computation activities on an
abstract index set [9], [10]. From the indexed computations we
identify the data dependencies and represent them as a data
dependence graph. In order to map it into a regularly operated one-
dimensional array in more alternative ways, the data dependence
graph is modified according to a broadcast normalization concept
introduced in [7]. Then a proper space-time transformation is chosen
to map the graph into the desired systolic array.

All-nearest-neighbors and closest-pair problems in computational
geometry are, by nature, closely related to the enumeration problem.
In Section IV, we shall show that the proposed array for key
enumeration can easily be modified to solve these problems effi-
ciently. Some practical considerations for the design will be discussed
in the final section.

II. DATA DEPENDENCE GRAPH
Here is straightforward sequential algorithm to enumerate keys:

Fori:= 1tondo
Forj:= 1tondo
ifk; > kithenryi=r; + I
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