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On the Optima l Design of 
Mu ltiple-Valued PLA’s 

TSUTOMU SASAO, MEMBER,  IEEE 

Abstract-This paper describes the design and analysis of three 
types of multiple-valued PLA’s: ‘lype 1 PLA’s realize functions 
directly in the form of the MAX of MIN of literal functions and 
constants. In Type 2 PLA’s, the body of the PLA is binary and 
the output is encoded as a multiple-valued logic value. ‘fype 3 
PLA’s are the same as 5pe 2 PLA’s except 2-bit decoders and 
a permutation network is used on the input. Using the number 
of columns required to realize a given function as a measure to 
compare PLA’s, it is shown that Type 3 PLA’s are superior to 
Type 2 which, in turn, are superior to Type 1. 

Index Terms-Adder, complexity, input encoding problem, 
logic minimization, multiple-valued logic, output encoding prob 
lem, PLA. 

I. INTRODUCTION 

0 NE of the most pressing problems in present-day two- 
valued systems is interconnection complexity, both in- 

chip and between chips [8]. It is evident that multiple-valued 
logic (MVL) is useful for reducing interconnections. Thus, 
various MVL systems have been proposed for many years. 

When we design multiple-valued VLSI (MV-VLSI), we en- 
counter the same problems as in two-valued systems. The first 
problem is the enormous design complexity of VLSI’s. As the 
number of the elements in a chip increases, design time in- 
creases exponentially. Because logic design of multiple-valued 
systems is usually much more complicated than two-valued 
systems, this problem is more important in MV-VLSI’s. In 
order to reduce the design time and errors, automatic de- 
sign is indispensable in MV-VLSI’s. However, even in two- 
valued systems, automatic design of logic circuit is very dif- 
ficult. Although automatic design systems for random logic 
circuits which produce good circuits are known [3], [4], 
[ 191, they do not always generate optimum circuits. The 
only two-valued circuits which are successfully designed by 
a complete automatic system and whose optimality is guaran- 
teed are programmable logic arrays (PLA’s) [ 181. 

The second problem is the testability of the VLSI’s. In the 
modern VLSI’s, testing cost often dominates the total produc- 
tion cost [2]. In order to overcome the design complexity and 
testability problems, circuits having regular structure such as 
PLA’s ROM’s, and RAM’s are extensively used in many of 
the VLSI’s. For example, recent VLSI microprocessors such 
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as BELLMAC 32A [12] and Motorola MC68020 121 use 
PLA’s extensively in the control part of the processors. PLA’s 
can also be used to implement complex MVL circuits. There- 
fore, PLA’s are the most promising vehicle for implementing 
complex MVL circuits. 

In this paper, the author proposes three types of multiple- 
valued PLA’s (MVPLA’s): ljpe 1 PLA consists of literal 
generators (which convert multiple-valued signals into two- 
valued signals), a MIN array, and a MAX array. Type 2 PLA 
consists of literal generators, an AND array and an OR array, 
and output encoders (which convert two-valued signals into 
multiple-valued signals). Type 3 PLA consists of a permuta- 
tion network and 2-bit decoders in addition to the components 
of Ijpe 2 PLA. Because the AND and OR arrays are the same 
as those of two-valued PLA’s [16], Type 2 and Type 3 PLA’s 
are easily implemented by (static or dynamic) MOSKMOS 
circuits, and they can be designed by various existing PLA 
tools such as MINI [7], MINI-II [ 171, and ESPRESSO-MV 
[ 151. Logical capability and logical complexity analysis show 
that the proposed MVPLA requires much smaller arrays than 
previously published MVPLA’s [ 111, [9]. 

II. PLA WITH MEN AND MAX ARRAYS 
A. Logical Implementation 

An arbitrary p-valued logic function f (Xi, X2, . . . , X,,) 
can be represented by an expression: 

f = 0 - go v 1 * gi v . . . v (p - 1) . gp-i (2.1) 
where V denotes the MAX operator and . denotes the MIN 
operator. gi (i = 0, 1, . . . , p - 1) is a p-valued input function 
which takes only two values 0 and p - 1. They denote the 
input combinations such that f (Xi, XT, . . . , X,) = i. 

In (2.1), go can be omitted. (p - l), which is the largest 
value, can also be omitted from (2.1). Therefore, (2.1) can 
be rewritten as 

f=l*g,V.. .v (P - 2) * gp-2 vgp-1. (2.2) 
Each subfunction gi (i = 1,2, . . . ,p - 1) of (2.2) can be rep- 
resented as the sum-of-products (MAX-of-MIN’s) expression 
of literal functions: 

gi = VXf’ . x,sz . . . , . x> (2.3) 

whereSj CP,andP = {0,1,2,...,p-l}.Aliteralfunc- 
tion (or simply literal) is a one-variable p-valued input two- 
valued output function. A literal X,? takes a value of 0 if 
XeSandavaIue(p-1)ifXES. 

Note that an arbitrary function gi has a sum-of-products 
expression of form (2.3). 
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Fig. 1. p-valued PLA with MIN and MAX array (Type 1 PLA). 

Fig. 1 shows an n-input m-output p-valued PLA with a 
MIN and MAX array. Similar PLA-structures can be found in 
[8] and [ 111. It has n literal generators. Each literal generator 
decodes p-valued variable Xi into literals (twoualued signals). 
There are 2P possible literals, but we need not generate all. 
There are many ways to choose the set of literals. We choose 
the minimum universal set of literals, which can represent 
any other literal by a logical product of some of the literals 
in the set, and contains the minimum number of elements. 
As shown in the Appendix, the minimum universal set of 
literals contains p elements. Because each literal generator 
has p outputs, and (p - 2) different constants are used in the 
MIN array in Fig. 1, the number of rows in the MIN array is 
HI = np + (p - 2). 

Theorem 2.1: Type 1 PLA realizes an arbitrary p-valued 
logic function. Let W be the number of columns necessary 
to realize an n-variable function, then W I [p - 1)p”-’ 1 

Proofi It is clear that each column of Type 1 PLA realizes 
a product (j ) * Xpl * X2 * . . . X$ , where j is a constant 
such that 1 I j I p - 1. Type 1 PLA realizes an arbi- 
trary p-valued function as a MAX-of-MIN’s of the form (2.2). 
The number of columns is equal to the number of products 
in (2.2). Each subfunction gi can be realized with at most 
P n-’ products because gi can be represented by a canoni- 
cal expression gi =VlG(Xi , a)XF * X2 * . . . * X2, where 
G(XI,a =gi(Xl,a~,a3,...,a,),ak~Pandk = 2,...,n. 
Therefore, the total number of products in (2.2) is at most 
(p - l)pn-‘. (Q.E.D.) 

The logic design of a Type 1 PLA can be done as follows. 
Algorithm 2.1: 
1) Obtain a minimum sum-of-products expr&sion for 

gp-1. 
2) For each gk, (k = p - 2, . . . , l), obtain a minimum 

sum-of-products expression for gk. In this case, g,(k + 1 I 
rip-l)canbeusedasnoNYTCARssets.gi(i = l,e..,p-1) 
are p-valued input two-valued output functions and minimiza- 

TABLE I 
TRUTHTABLEFORFOUR-VALUED ADDER 

Fig. 2. Literal generator. 

tion of these expressions can be done by MINI, MINI-II, or 
ESPRESSO-MV. 

Example 2. I: Let us design an adder of four-valued logic 
shown in Table I. In this case, the minimum universal set of 
literals is generated by a literal generator shown in Fig. 2. By 
using the map shown in Fig. 3, we can obtain the minimum 
sum-of-products expressions for sum and carry functions as 
follows: 

Sum = 1 * gl V 2 * g2 V g3, 

where 

and 

Carry = 1 * g4, where 

g4 = x/3I . xp vxy,31 . x;2l 

vxw.31 
1 * xJ3). 

Fig. 4 shows the PLA realizing the adder. Note that 13 prod- 
ucts are used in this PLA. (End of example). 

B. Physical Implementation 
The MAX and the MIN arrays are easily implemented by 

bipolar technology, but they require many transistors if real- 
ized by MOS technology. Therefore, this structure is unsuit- 
able for MOS implementation. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO.4,APRlL 1989 

Fig. 3. 
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III. PLA WITH AND-OR ARRAYS FOLLOWED 
BY OUTPUT ENCODERS 

A. Logical Implementation 
Fig. 5 shows an n-input m-output p-valued PLA with AND- 

OR arrays followed by output encoders. We call this PLA a 
npe 2 PLA. Similar to Type 1 PLA, each p-valued signal 
X; is converted into p liter&. Then, these literals are used in 
the AND and the OR arrays to realize mr two-valued functions 
ho,h,..*, h,,+t , where r = [log, p]. ([log2 p] denotes the 
least integer greater than or equal to log* p.) Finally, these 
two-valued signals are converted into p-dued signals by the 
output encoders. 

For simplicity, suppose that m = 1 and p = 2’. hi (i = 
0,. . .) r - 1) are p-valued input functions which take only 
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Fig. 5. p-valued PLA with output encoders (Type 2 PLA) 

two values 0 and p - 1. The r-tuple of two-valued signals 
(ho,hl,..., h,-l) represents the binary encoding of the p- 
valued signal, i.e., (0, 0, . . . , 0) represents 0, (0, 0, . + . , p - 1) 
represents 1, . . . , and (p - 1,p - 1,. . . ,p - 1) represents 
2’ - 1 = p - 1. In Fig. 5, each column in the AND array 
realizes the product Xis’ * X2 * . . .X$ and each row of the 
OR array realizes the function hj (0 I j I r - 1). The output 
encoder accepts (ho, h 1, + . . , h,-I), and generates a p-valued 
signal according to the binary encoding. The output encoder 
can be realized by a p-input multiplexer shown in Fig. 6(a), 
and it is denoted by the symbol shown in Fig. 6(b). 

Theorem 3.1: Let W be the number of columns necessary 
to realize an arbitrary p-valued function in a Type 2 PLA, 
then W 5 [log, p] .p”-‘. 

Proofi The number of columns of a ‘Iype 2 PLA is 
equal to the total number of the products in the functions 
ho,hl,.-., h,-l . It is ciear that each function hj can be re- 
alized by at most p”-’ products. Hence, we need at most 
r . p”-’ products to represent an arbitrary function.(Q.E.D.) 

Example 3.Z: Let us design the adder of four-valued logic 
shown in Table I. Suppose that the four-valued output signal 
is represented by a pair of two-valued signals as shown in 
Table II. Then the function to be realized by the arrays can be 
represented as Table III. By using the maps shown in Fig. 7, 
we can obtain the minimum sum-of-products expressions for 
st , SO, and CO as follows: 
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Fig. 6. Output encoder. (a) p-input multiplexer. (b) Symbol for output 

encoder. 

TABLE II 
OUTPUT ENCODING FOR FOUR-VALUED ADDER 
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TABLE III 
TRUTH TABLE FOR FOUR-VALUED ADDER 
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Fig. 9. Literal generator. (a) For NAND-NAND structure. (b) for NOR-NOR 

structure. 

Fig. 8 shows the PLA realizing the adder. Note that nine 
products are used in this PLA. (End of example). 

B. Physical Implementation 
The AND and the OR arrays are easily implemented by both 

bipolar and MOS technology. When we realize a large PLA, 
dynamic CMOS circuit is the most attractive technology [ 121. 
In this case, a NOR-NOR structure is used to implement the AND 
and the OR arrays. When we need an extremely low-power 
system, a static CMOS circuit is also feasible [ 141. In this 
case, a NAND-NAND structure is used to implement the AND and 
the OR arrays to take advantage of the n-channel device in the 
serial device path 

For example, when p = 4, Type 2 PLA can be imple- 
mented as follows: 

1) The literal generator is implemented as shown in Fig. 9. 
For the NAND-NAND structure, which is logically equivalent to 
the AND-OR structure, we use Fig. 9(a). While, for the NOR-NOR 
structure, which is logically equivalent to the OR-AND structure, 
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TABLE IV 
INVERTERSWITHV~OUSTH~SHOLDS 
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0 
1 

: 

output 

-b--b- --Do-- 
- 3 3 3 

3 ; 

: 0 : : 0 
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(a) 
Fig. 10. Output encoder (four-valued) (a) CMOS realization. (b) Logic 

symbol. 

every binary signal must be complemented and so we use 
Fig. 9(b). The input-output relations of the inverters having 
different thresholds are shown in Table IV. These inverters 
can be realized either by an ion implantation technique for n- 
MOS [lo] or CMOS [22] or by voltage divider circuits using 
transistors [ 131. 

2) The output encoder using a CMOS circuit is shown in 
Fig. 10(a) and denoted by the symbol shown in Fig. 10(b). For 
all NAND-NAND Stl?.lCture, We Set c,, = o,cl = l,c, = 2, 
and C3 = 3‘, while for a NOR-NOR structure, we set Co = 
3,C1 = 2,CZ = 1, and C, = 0. 
C. Comparison of Type I PLA to l)pe 2 PLA 

Table V compares Type 1 PLA’s to Type 2 PLA’s. Be- 
cause a Type 2 PLA is easily implemented by MOS/CMOS 
technology, it is more suitable for VLSI than Type 1 PLA. 
Boupds on the number of distinct functions realized by both 
types of PLA’s are derived in the Appendix, and summarized 
in the table. Although the result suggests that Type 2 PLA’s 
usually require smaller arrays than Type 1 PLA’s, it needs 
further study to verify it. Indeed, there is a function whose 
Type 1 PLA realization requires smaller arrays than Type 2 
PLA (see Addendum of [21] distributed at ISMVL-84). Com- 
parison of the complexities of these PLA’s is quite interesting. 
Similar study can be found in [l]. 

In the next section, we will consider the design of Type 2 
PLA’s in detail. 

IV. OUTPUT ENCODING PROBLEM 

A. Optimal Output Encoding for Adder 
In Type 2 PLA’s, a p-valued output signal is represented by 

an r-tuple of two-valud signals (ha, hi , . . . , h,- i ), where the 
natural binary encoding is used to relate the p-valued signal to 
binary signals, i.e., (0, 0, . . . , 0) represents 0, (0, 0, . . . ,p - 1) 
represents l,..., and (p - 1,p - l,...,p - 1) represents 
2’ - 1 = p - 1. However, if another encoding is used to 
represent the p-valued signal, the size of the array can often 
be reduced. 

Example 4.2: In realizing the adder in Example 3.1, we 
assign a pair of two-valued signals to represent a four-valued 
signal as shown in Table II. However, if we assign signals as 
shown in Table VI, we have Table VII. By using maps shown 
in Fig. 11, we have the minimum sum-of-products expression 
for hl , ha, and CO as follows: 
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TABLE V 
COMPARISON OF TYPE 1 PLA TO TYPE 2 

TO REALIZE p-VALUED FUNCTIONS 
Type 1 PLA Type 2 PLA 

structure Literal generators Literal generators 
Bin-array, Max-array AND-array, OR-array 

Output encoders 

Signals in array p-valued 1 two-valued 

Technology Bipolar 
static I 

BOS/CBOS/Bipolar 
static/dynamic 

Number of* U B (p-1)‘. t “’ (p-l)W. t “B + 
realizable 
functions LB (p-1)’ * t (n-“)W (p-l)w, t (n-u)w + 

gO can be omitted. gi(i=O.l.....p-I) aye 
gi(i=1.2.....p-2) ape realized by hO,hl,..., 

Design aethod ainiaized by using gs hpml.These expressions 
as don't care sets. are minimized siml- 
(itlss6p-1). taneously. Good optput 

encoding reduce size. 

n: number of the input variables 
a: number of the output functions 
W: number of the columns of PLA 
*: When a=1 

UB: Upper Bound, LB: Lower Bound 

t: p=2’, pt4 
t=2P-I, r=llog2pl, w=p”. 

[al denotes the least Integer equal to or greater than a 

TABLE VI 
OPTIMUM OUTPUT ENCODING OF ADDERS FOR 

TYPE 2 PLA 

(a) Encoding for Sum 

4-w 1 ued 2-a 1 ued 
sional sianals 

(b) Encoding for Carry 

4-ual ued 2-valued 
sianal sianals 

0 
1 

Xl 
2 

3 

TABLE VII 
TRUTH TABLE FOR ADDER (OUTPUT ENCODING 

OPTIMUM) 

Fig. 12 shows the Type 2 PLA for this function. Note 
that the first two terms of CO are shared with ho. In this 
PLA, only seven columns are used to realize the function. 
In this case, we need to permute the connection of con- 
stants in the output encoder to obtain the proper output 
values. (End of Example). 
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Fig. 12. Adder using Type 2 PLA with optimal output encoding. 

C O  
5 
C2 
C3 

I% 

“O l I- 
hi-l I I I 

Fig. 13. Programmable output encoder (four-valued). 

B. Optimal Output Encoding Problem for MVPLA 
As was illustrated in the Example 4.1, different output en- 

codings derive PLA’s with different complexities. Suppose 
that we can use programmable output encoders shown in 
Fig. 13. In such a case, we can use any output encoding for 
each output. 

Definition 4.1: The optimal output encoding of a Type 2 
PLA is a set of encodings which makes the size of the arrays 
minimum. 

For a p-valued single-output function, there are p! different 
ways of encodings. The exhaustive way to find an optimum 
output encoding requires p! minimization. For p = 4, the 
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TABLE VLU 
ESSENTIALLYDIFFERENTOUTPUTENCODINGS 

value #1 #2 X3 #a R5 X6 +I7 W8 W9 Xl0 #ll Xl2 
0 00 00 00 03 03 03 03 03 03 33 33 33 

: 03 30 03 33 33 03 00 30 00 33 30 00 30 33 33 00 33 30 00 03 03 00 03 30 
3 33 30 30 33 30 33 00 30 00 30 30 00 

TABLEIX 
AVERAGENUMBEROF PRODUCTSIN FOUR-VALUED PLA'S 

Type 1 Tvpe 2 PI A  

Fncodina Enco- PI A  
Original Optimum 

n=2 
n=3 2::: 1:*: 1E 
n=a 67.4 6414 61:0 
n=5 251.5 244.3 235.3 

Literal 
Generators 

Two-bit 

L-J I I L 
Permutation 
netuork 

T 
H2=2m 

Proorammeble 
Output Encoders 

Fig. 14. Four-valued PLA with 2-bit decoders and programmable output 
encoders. 

number is 4! = 24. This value can be reduced to 12 by 
considering the permutation of functions ho and hi. Table 
VIII lists the 12 essentially different output encodings. 

As for the optimum output encoding problem for an m- 
output function, the exhaustive search requires (p!/[log ~1)~ 
minimizations, which is impractical for large problems. A 
heuristic method for optimal output phase assignment [ 171 can 
be used to obtain a good encoding if not optimal. The method 
decides which to realize, either the function or its complement 
for each output, so as to make the arrays as small as possible. 
Therefore, this method selects a good encoding out of 2”” 
possible encodings. The encoding shown in Table VI was ob- 
tained by this method. This encoding has been verified to be 
optimum by the exhaustive examination by using a computer. 

C. Computer Simulation 
Table IX compares the numbers of products for Type 1 

PLA’s, Type 2 PLA’s with output encodings nonoptimized, 
and Type 2 PLA’s with optimum output encodings. Randomly 
generated functions were used to compare the complexities of 

PLA’s. For each function the number of input combinations 
which are mapped into i (i = 0, 1,2,3) is equal to 4”-’ , 
where n is the number of the input variables. The optimum 
output encodings were obtained by the exhaustive method. 
Minimization of the expressions were done by QM (modi- 
fied Quine-McClusky method [19]) for n = 2 and 3 and by 
MINI2 for n = 4 and 5. When n = 5, output encoding opti- 
mum PLA’s require on the average 3.7 percent fewer products 
than output encoding original PLA’s. In most cases, ‘ljpe 1 
PLA’s require more products than Type 2 PLA’s with output 
encoding nonoptimized. 

V. MULTIPLE-VALUED PLA WITH 2-Brr DECODERS 

In a two-valued PLA with two-bit decoders, the size of the 
arrays can be reduced by considering the assignment of the 
input variables to the decoders [16], [17]. In an MVPLA hav- 
ing the structure shown in Fig. 14, the size of the array can 
be reduced by using the similar technique. We call this PLA 
a Tjpe3 PLA. 

Example 5.2: Suppose that the adder shown in Table I is 
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Fig. 15. Literal generator. (a) Logic symbol. (b) Circuit realization. 
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Fig. 16. 2-bit decoder. (a) Logic symbol. (b) Circuit realization. 

realized by the PLA having a structure shown in Fig. 14. In 
this case, each literal generator generates two literals as shown 
in Fig. 15. In addition, we use the 2-bit decoder shown in Fig. 
16. Between the literal generators and the 2-bit decoders, we 
use a permutation network. Now, introduce four independent 
two-valued variables y i, y2, y3, and y4, to represent Xi and 
x2. 

Let y, = Xj2’3) ,y2 = X,(“3l ,y3 = Xi2,3), and y4 = 
x{',3) 

2 * 
Then, ~7, = X/O") ,j2 = X:o'2) ,j3 = Xi"") , and j4 = 

x {0,2) 
2 
By using the new variables yi , y2, y3, and y4, the adder 

can be represented as shown in Table X. Next, introduce two 
super variables Yi = (Y19Y3) and y2 = (Y2,Y4). Then, 
Si , SO, and CO can be represented by maps shown in Fig. 
17(a)-(c). From these maps, we have the minimum sum-of- 
products expression: 

so = y2(03.30), 

co = y/33) " y1(03.30) . yz(33). 

The PLA realizing these functions requires only five products. 
By optimizing the output encodings, the size of the PLA is 

TABLE X 
TRUTHTABLEOFADDERFORTYPE~ PLA 

Xl X2 SUKl Carry 
Y3 Ya s1 so Cl co 

0 00 00 

00 

03 
Yl=(Yl,Y,) 

30 

33 
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3 3 3 I3 3 3 3 
3 

00 

03 

30 
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(a) (b) 
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w  03 30 33 
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03 3 
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333333 
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YI’(Yl.Y3) 
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YZ'(YZ. Yd 
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Cc) W 
Fig. 17. Maps for adder with qpe 2 PLA pith 2-bit decoders. (a) S, . (b) 

So. (c) Co. (4 Co. 

TABLE XI 
OPTIMUMOUTPUTENCODING FOR ADDER 

FORTYPE 3 PLA 

(a) Encoding for Sum (b) Encoding for Carry 

tllu,“,apd 2-valued akva 1 ued 2-~ 1 ued 
F1 sienals signal signals 

further reduced. When’ we use the output encodings shown in 
Table XI, we have the PLA with only four columns. In this 
case, Ca is realized instead of Co. As shown in Fig. 17(d), 
CO can be written as 

co = y1(".301 . y2(wo3~30~ " y,(w . 

Fig. 18 shows the PLA realizing a four-valued adder. Note 
that the first term of Co is shared with Si . (End of example). 

Table XII compares the size of the four-valued adders for 
three different PLA’s. Type 2 PLA’s require smaller arrays 
than Qpe 1 PLA’s. And Type 3 PLA’s require smaller arrays 
than Type 2 PLA’s although Type 3 PLA’s require additional 
hardware such as a permutation network and 2-bit decoders. 

VI. CONCLUSION AND COMPARISON TO 
OTHER METHODS 

In this paper, the author proposed three types of PLA’s. 
Because these PLA’s use the minimum universal set of literals, 
they require the minimum number of literal lines. 
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Programmable 
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Fig. 18. 

TABLE XII 
COMPARISONOFSIZEOFADDERS 

S=W* (Ht+Hz) 

The array structure for four-valued logic proposed by [9] 
uses 14 literals for each input. On the other hand, the method 
in this paper uses only four literals. Thus, the height of the 
MIN array in this paper is about 29 percent of [9]. The 
four-valued PLA which can be obtained by extending [l l] 
uses only four literals {X jo} , Xi’) ,X{*) , XI31 }. However, 
the MIN array using these literals cannot be minimized ef- 
fectively, because each column of the MIN array realizes the 
product Xgl X2 . . . X> , where Xj”l may take only five dif- 
ferent patterns, i.e., X(O) , XI’) , Xl’1 , Xf31 , and X{“,‘,2*31 . 
On the other hand, the Type 1 PLA proposed in this paper 
uses the minimum universal set of literals 

and the MIN array can usually be minimized into the half 
of [ll] or even smaller, because each column of the MIN 
array realizes the product of literal functions X,?, where the 
literal may take 15 different patterns. Indeed, Table 2 of [9] 
implies that the number of columns for Type 1 PLA is, on 
the average, 50-60 percent of [ 111. Thus, the Type 1 PLA 
proposed in this paper usually requires much smaller arrays 
than nreviouslv nublished ones I1 11, r91. 

Although, the Type 1 PLA is easy to implement by bipolar 
technology, it is unsuitable for MOS realization. The Type 2 
PLA is suitable for MOSKMOS implementation. Computer 
simulation shows that ‘lype 2 PLA’s are, on the average, 
smaller than Type 1 PLA’s. 

“Qpe 3 PLA’s are suitable for adders although they need 
additional hardware such as permutation network and 2-bit 
decoders. 

APPENDIX 

A. Minimum Universal Set of Literals for MVPLA 3 
Definition A.1: Let L = { Xso, Xsl, . . . , Xsk-l } be a set 

of literals of X. L is said to be universal if any other literal 
of X can be represented by an AND (or a MIN) operation 
among the elements in L. L is said to be minimum if k is 
the minimum. 

Theorem A.1: L = { Xso,Xsl,. . . ,Xsp-l} is the min- 
imum universal set of literals of X, where Si = { 7 } = 
P-{i},i = O,l,... ,p - 1 and P = {O,l,...,p - 1). 

Proof: L is universal: It is sufficient to show that any 
literals XA of X can be represented by the AND operation of 
the elements in L. XA can be represented by 

x* = /\ pi, whereB =k = P-A, 
ieB 

andP= {O,l,...,p-1). (A.l) 

L is the minimum: There are 2P literals including constant 
zero and constant p - 1. In order to represent all the literals in 
the forms of (A. l), we need at least p different elements. To 
show that L is unique, assume, on the contrary, that there is 
another set L’ # L which is a minimum universal set. Thus, 
there is i such that Xsi e’ L’. Since L’ is universal, it realizes 
Si itself (as the products of literals in L’). That is, 

pi = xs; . xs; . . . . . pm where Xsj E L’. 

Because Si = Si fl S; fl. . . nS& and Si = P - {i}, every 
Sj contains all the elements in P - {i }, and at least one Sj, 
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does not contain the element i. But, if follows that Sj, = Si, 
a contradiction. It must be that L is unique. (Q.E.D.) 

B. On the Number of Functions Realized by a PLA with 
W Columns 

Theorem A .2: Let A(n, p , W ) be the number of distinct n- 
variable p-valued single-output functions realized by a 5pe 1 
PLA with W columns. When W = p”, (p - l)w . tW(“-@ 5 
A(n,p, W) I (p - l)W . tnW, where t = 2P - 1. 

Proofi Lower Bound: Consider a function f which can be 
represented by the expression 

f (XI,X2,.‘.rXn) = 

V(Xf’ - X2 - . . .X,“y) - (i)X>gi . . .X,f” (A.2) 
EP” 

where a = (al,...,a,),i = 1,2,...,p - 1, and Sk G  
P(k = u + l,... , n). Note that the total number of prod- 
ucts in (A.2) is W = p“. The number of distinct nonzero 
functions realized by 

(i)Xki * . . . * X2 64.3) 

is (p - 1) * bneU), because for each set (S, + 1, . . . , S,) and 
for each i, there exists a unique function, and there are t = 
2P - 1 possible ways to choose a subset Si of P. The total 
number of distinct nonzero functions realized by (A.2) is at 
least(p-l)W* t We+), because for each a every combination 
of i and &(k = u + l,..., n) in (A.3) will make different 
functions. 

Upper Bound: f can be represented as a MAX-of-MIN’s 
expression: 

f tx1,x2,*-.,m = V (i) - X,S1 - X,sZ . . . . . X2 
6 A-. ,S.) 

(A-4) 

where f (Sl,S2,... ,S,> = iisaconstantand& GP(k = 
1,2,-a., n). It is clear that the number of distinct functions 
realized by (A.4) with W products is at most (p - l)W * 
tnw. (Q.E.D.) 

Lemma A.Z: Let B(n,p, W) be the number of distinct 
n-variable p-valued input two-valued output functions repre- 
sented by the expression 

f (X19X2,... ,X,,)= vX;‘-X2s’*-.X$ (A.5) 

(SI,SZ,.~.J,, 
with W products. When W = p”, tW(“+) I B(n,p, W) 5 
tWn, where t = 2P - 1. 

Proof: Lower Bound: Consider the expression which has 
the following form: 

f Wl,X2,...,Xn) = 

v xp’ * xp * . . . * xua, . x2; . . . . . x$ (A.4 
aEPu 

where a = (a,,~~,... ,a,),and& EPandk = U+ 
1 ,...,n. 

Note that the number of products in (A.6) is W = p*. The 
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number of distinct nonzero functions realized by 
x s “+I II+1 . . . . - x$ (A.7) 

is t(‘-“). Thus, the total number of distinct nonzero functions 
represented by (A.6) is at least t W(n-u), because for each 
@,+1,*-. , S,) in (A.7), we have distinct function. 

Upper Bound: It is clear that the number of distinct 
functions realized by (A.5) with W products is at most 
tnw. (Q.E.D) 

Theorem A.3: Let C(n,p, W) be the number of distinct 
p-valued single-output functions realized by a p-valued Type 
2 PLA with W columns. When W = p”, p = 2’ and p 14, 
tW(“+ - (p - l)w I C(n,p, W) 5 tW” * (p - l)w. 

Proofi An n-input and r-output function realized by the 
body of a Type 2 PLA can be represented as 
f (X,,X2, * * -,Xn,Xn+d = v x;’ - x,s 

(S,,-. +%,I) 

. . . . - x2 * xf;+;, (A.8) 

where X,, i denotes a variable for the outputs and it takes 
r values. It is clear that (A.8) also represents an (n + l)- 
input single-output function. Therefore, the number of the 
functions realized by a ‘Iype 2 PLA with W columns is equal 
to the number of (n + 1)-variable functions represented by an 
expression (A.8) with W products. 

Because the last variable takes r values, the number of dif- 
ferent literals is 2’ - 1 = p - 1. Similar to the proof of Lemma 
A. 1, we have: lower bound: t w(n-u) * (p - 1) w, and upper 
bound: tWn * (p - l)w. (Q.E.D.) 
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